操作系统原理实验二

合集下载

实验报告二主存空间的分配和回收

实验报告二主存空间的分配和回收
temp=freeTab; /*寻找空闲表中对应登记项*/
if(strcmp(PName,"OS")==0)
{ printf("ERROR!");
return;
}
while((strcmp(temp->proID,PName)!=0||temp->flag==1)&&temp)
temp=temp->next;
四、程序中使用的数据结构及符号说明
结构1:
typedef struct freeTable
{
char proID[6];
int startAddr; /*空闲区起始地址*/
int length; /*空闲区长度,单位为字节*/
int flag; /*空闲区表登记栏标志,用"0"表示空表项,用"1"表示未分配*/
freeNode=freeNode->next;
}
getchar();
break;
default:printf("没有该选项\n");
}/*case*/
}/*while*/
}/*main()*/
六、运行调试结果
初始界面:
分配主存,五个作业名:P1、P2、P3、P4、P5
显示主存使用情况:
回收主存P2:
if(front->flag==1&&rear->flag==1)
/* 上邻空闲区,下邻空闲区,三项合并*/
{
front->length=front->length+rear->length+temp->length;

操作系统实验二实验报告

操作系统实验二实验报告

操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。

通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。

三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。

2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。

3、为新进程指定可执行文件的路径、命令行参数、进程属性等。

4、编写代码来等待新进程的结束,并获取其退出代码。

(二)进程同步实验1、设计一个生产者消费者问题的模型。

2、使用信号量来实现生产者和消费者进程之间的同步。

3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。

4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。

(三)进程通信实验1、选择使用管道来实现进程之间的通信。

2、创建一个匿名管道,父进程和子进程分别读写管道的两端。

3、父进程向管道写入数据,子进程从管道读取数据并进行处理。

四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。

通过观察进程的创建和执行过程,加深了对进程概念的理解。

(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。

分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。

(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。

数据能够准确地在进程之间传递,验证了管道通信的有效性。

五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。

通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。

(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。

操作系统原理实验报告

操作系统原理实验报告

《操作系统原理》实验报告班级:姓名:学号:指导老师:目录:实验题目:实验一线程创建与撤销 (2)实验题目:实验二线程同步 (6)实验题目:实验三线程互斥 (11)实验题目:实验四进程通信 (17)实验题目:实验五读者-写者问题 (21)实验题目:实验六进程调度 (37)实验题目:实验七存储管理之动态链接库 (52)实验题目:实验八存储管理之内存分配 (56)实验题目:实验九存储管理之页面置换算法 (69)实验题目:实验十设备管理 (84)实验题目:实验十一文件管理之文件读写 (98)实验题目:实验一线程创建与撤销完成人:XXX报告日期:2018年3月31日一、实验内容简要描述(1)熟悉VC++、Visual Studio开发环境。

(2)使用相关函数创建和撤销线程。

(3)在一个进程中创建3个线程,名字分别为threada、threadb、threadc。

threada输出“hello world! ”。

threadb输出“My name is …”。

threadc输出“Please wait…”,然后sleep 5秒钟,接着输出“I wake up”。

二、程序设计1、设计思路该函数创建一个在调用进程的地址空间中执行的线程。

2、主要数据结构HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,DWORD dwStackSize,LPTHREAD_START_ROUTINE lpStartAddress,LPVOID lpParameter,DWORD dwCreationFlags,LPDWORD lpThreadId);VOID ExitThread(DWORD dwExitCode);VOID Sleep(DWORD dwMilliseconds);VOID Sleep(DWORD dwMilliseconds);三、实验结果1、基本数据lpThreadAttributes:指向一个SECURITY_ATTRIBUTES结构,该结构决定了返回的句柄是否可被子进程继承。

操作系统lab2实验报告

操作系统lab2实验报告

操作系统lab2实验报告实验目的:本实验的目的是通过设计和实现一个简单的操作系统内核,加深对操作系统基本概念和原理的理解。

具体实验内容包括进程管理、内存管理和文件系统的设计与实现。

实验环境:1.操作系统:Linux2.编程语言:C语言一、实验背景1.1 操作系统简介操作系统是计算机系统中的一个重要组成部分,负责管理和控制计算机的各种资源,提供用户和应用程序的接口,以及协调和调度各种任务的执行。

1.2 实验目标本实验的主要目标是设计和实现一个简单的操作系统内核,包括进程管理、内存管理和文件系统等功能。

二、实验内容2.1 进程管理①进程创建描述进程创建的过程和相关数据结构,包括创建新进程的系统调用、进程控制块等。

②进程调度描述进程调度的算法和实现方式,包括进程调度队列、调度算法等。

③进程同步与通信描述进程同步和通信的机制和方法,包括信号量、互斥锁、条件变量等。

2.2 内存管理①内存分配描述内存分配的算法和实现方式,包括连续内存分配、非连续内存分配等。

②页面置换描述页面置换的算法和实现方式,包括最优页面置换算法、先进先出页面置换算法等。

2.3 文件系统①文件操作描述文件操作的系统调用和相关数据结构,包括文件打开、读写、关闭等。

②文件系统结构描述文件系统的组织结构和实现方式,包括超级块、索引节点、块位图等。

三、实验步骤3.1 环境搭建搭建实验环境,包括安装Linux操作系统、编译器等。

3.2 进程管理实现根据设计要求,实现进程创建、调度、同步与通信等功能。

3.3 内存管理实现根据设计要求,实现内存分配、页面置换等功能。

3.4 文件系统实现根据设计要求,实现文件操作和文件系统结构。

3.5 测试与调试编写测试用例,对实现的操作系统内核进行测试和调试,并记录实验结果。

四、实验结果分析分析测试结果,评估实验过程中遇到的问题和解决方法,总结操作系统内核的性能和功能特点。

五、实验总结对实验过程中的收获和经验进行总结,提出改进和优化的建议。

操作系统原理

操作系统原理

《操作系统原理》2007年目录实验一安装Windows 2000 Professional (1)实验二操作系统的计算环境 (5)实验三 Windows 2000 系统管理 (7)实验四Windows“任务管理器”的进程管理 (11)实验五 Windows 2000编程 (15)实验六 Windows 2000进程的“一生” (21)实验七提高Windows 2000内存性能 (30)实验八 Windows鼠标处理 (35)实验九优化Windows 2000磁盘子系统 (39)实验一安装Windows 2000 Professional(实验估计时间:120分钟)背景知识计算机执行的任何程序都必须首先读入内存,CPU通过内存来访问程序。

而所谓安装操作系统,实际上是把存放在光盘上的操作系统执行代码存入硬盘的过程。

因为硬盘是PC 机的固定外部存储设备,从硬盘上加载程序到内存很方便。

另外,操作系统中的文件系统主要是靠硬盘提供物理支持。

因此,安装操作系统到硬盘,实际上有两方面的作用:·在硬盘上建立文件系统;·把操作系统的全部内容事先存放在硬盘上以备使用。

当使用计算机时,从硬盘上加载操作系统到内存,然后将机器控制权转给操作系统内核来执行。

在本实验中,我们通过Windows 2000 Professional的安装,来了解Windows操作系统的安装及配置,包括安装前的准备工作、驱动程序的配置以及系统的设定等内容。

可以认为Windows 2000是Windows NT 4.0的后续,它一共有四个版本,即Windows 2000 Professional、Windows 2000 Server、Windows 2000 Advanced Server和Windows 2000 Datacenter Server,它们的差别在于功能以及支持CPU、RAM数量上的不同。

见表1-1。

由于用户计算机环境的不同,需要的安装方式和内容也会有所不同。

北理工操作系统实验二读者写者问题

北理工操作系统实验二读者写者问题

本科实验报告实验名称:操作系统原理实验(读者写者问题)课程名称:操作系统原理实验时间:2015.10.30 任课教师:王耀威实验地点:10#102实验教师:苏京霞实验类型: 原理验证□综合设计□自主创新学生姓名:孙嘉明学号/班级:1120121474/05611202 组号:学院:信息与电子学院同组搭档:专业:信息对抗技术成绩:实验二:读者写者问题一、实验目的1.通过编写和调试程序以加深对进程、线程管理方案的理解;2.熟悉Windows多线程程序设计方法;二、实验要求在Windows环境下,创建一个控制台进程,此进程包含n个线程。

用这n个线程来表示n个读者或写者。

每个线程按相应测试数据文件(后面介绍)的要求进行读写操作。

用信号量机制分别实现读者优先和写者优先问题。

读者-写者问题的读写操作限制(包括读者优先和写者优先)1)写-写互斥:不能有两个写者同时进行写操作2)读-写互斥:不能同时有一个线程在读,而另一个线程在写。

3)读-读允许:可以有一个或多个读者在读。

读者优先的附加限制:如果读者申请进行读操作时已有另一个读者正在进行读操作,则该读者可直接开始读操作。

运行结果显示要求:要求在每个线程创建、发出读写申请、开始读写操作和结束读写操作时分别显示一行提示信息,以确定所有处理都遵守相应的读写操作限制。

测试数据文件包括 n行测试数据,分别描述创建的n个线程是读者还是写者,以及读写操作的开始时间和持续时间。

每行测试数据包括四个字段,每个字段间用空格分隔。

第1个字段为正整数,表示线程的序号。

第2个字段表示线程的角色,R表示读者,W表示写者。

第3个字段为一个正数,表示读写开始时间:线程创建后,延迟相应时间(单位为秒)后发出对共享资源的读写申请。

第4个字段为一个正数,表示读写操作的延迟时间。

当线程读写申请成功后,开始对共享资源进行读写操作,该操作持续相应时间后结束,释放该资源。

下面是一个测试数据文件的例子(在记事本手工录入数据):1 R 3 52 W 4 53 R 5 24 R 6 55 W 5.1 3三、实验环境硬件设备:个人计算机。

操作系统原理实验

操作系统原理实验

操作系统原理实验一、实验目的本实验旨在通过实际操作,加深对操作系统原理的理解,掌握操作系统的基本功能和调度算法。

二、实验环境1. 操作系统:Windows 102. 虚拟机软件:VirtualBox3. 实验工具:C语言编译器(如gcc)、汇编语言编译器(如nasm)、调试器(如gdb)三、实验内容1. 实验一:进程管理在这个实验中,我们将学习如何创建和管理进程。

具体步骤如下:a) 创建一个C语言程序,实现一个简单的计算器功能。

该计算器能够进行基本的加减乘除运算。

b) 使用fork()系统调用创建一个子进程,并在子进程中执行计算器程序。

c) 使用wait()系统调用等待子进程的结束,并获取子进程的退出状态。

2. 实验二:内存管理在这个实验中,我们将学习如何进行内存管理。

具体步骤如下:a) 创建一个C语言程序,模拟内存分配和释放的过程。

该程序能够动态地分配和释放内存块。

b) 使用malloc()函数分配一块内存,并将其用于存储数据。

c) 使用free()函数释放已分配的内存块。

3. 实验三:文件系统在这个实验中,我们将学习如何进行文件系统的管理。

具体步骤如下:a) 创建一个C语言程序,实现一个简单的文件系统。

该文件系统能够进行文件的创建、读取、写入和删除操作。

b) 使用open()系统调用打开一个文件,并进行读取和写入操作。

c) 使用unlink()系统调用删除一个文件。

四、实验步骤1. 安装虚拟机软件VirtualBox,并创建一个虚拟机。

2. 在虚拟机中安装操作系统Windows 10。

3. 在Windows 10中安装C语言编译器、汇编语言编译器和调试器。

4. 根据实验内容,编写相应的C语言程序并保存。

5. 在命令行中使用gcc编译C语言程序,并生成可执行文件。

6. 运行可执行文件,观察程序的执行结果。

7. 根据实验要求,进行相应的操作和测试。

8. 完成实验后,整理实验报告,包括实验目的、实验环境、实验内容、实验步骤和实验结果等。

哈工大威海计算机操作系统原理实验报告2

哈工大威海计算机操作系统原理实验报告2

计算机操作系统原理
实验报告
专业:1104202
学号:110420212
姓名:李敖
哈尔滨工业大学(威海)
实验二进程及其资源管理
一、实验目的
1.理解资源共享与互斥特性以及操作系统管理资源的基本方法。

2.学会使用高级语言进行多线程编程的方法。

3.掌握利用VC++或Java线程库实现一个管理器,用来实现操作系统对进程及其资源的管理功能。

4.通过该实验,学生可在源代码级完成进程及其资源管理方案的分析、功能设计、编程实现,控制进程间的同步、互斥关系。

二、实验要求
1.知识基础:学生应在完成对进程和线程、调度、死锁等章节的学习后进行。

2.开发环境与工具:
硬件平台——个人计算机。

软件平台——Windows操作系统,根据需要,任选安装VC++语言、java 语言或C语言开发环境。

三、实验内容
1.开发一个函数,建立进程控制块和资源控制块结构,并实现相关数据结构的初始化。

2.开发一系列操作,由进程调用这些操作,达到控制进程申请或释放各种资源的目的。

四、程序流程图
1.进程初始化
2.优先级策略调度
五、实验结果
创建进程1
创建进程2
查看正在运行的进程
替换进程
删除进程
进程调度进程1
进程2
进程3
FCFS
HPF
六、结果分析
有上述程序运行结果可知,此次试验已经基本达到了实验要求,能够实现进程的创建、查看、替换、删除操作以及进程的调度。

不过,在进程的创建中,要求每个资源要用到3个资源,对于再多的资源就无法保证了。

邓 豪--操作系统原理实验报告二

邓  豪--操作系统原理实验报告二

进程创建实验报告计科1301 邓豪学号:1309050158一、实验环境:Win7 64位操作系统(4g内存)VMware Workstation 10虚拟机虚拟机系统:ubuntu-14.04.1二、实验内容:(1)进程创建(2)生产者与消费者(3)读者和写者三、实验步骤:(1)进程创建:使用系统调用fork()创建一个子进程。

当此程序运行时,在系统中有一个父进程和一个子进程同步运行,在程序中分别获得父进程和子进程的进程号编写程序:编译并运行:编译上面程序,观察父进程和子进程的PID号有何关系?可以看到子进程的pid比父进程的pid大1父进程和子进程的关系是子进程是父进程的一个副本,创建子进程后,子进程会有自己的空间,然后把父进程的数据拷贝到子进程的空间里。

运行时,谁先运行是不确定的,这有系统决定如何区分父进程和子进程?父进程从fork()返回时的返回值是子进程的进程号,大于零;而子进程从fork()返回(严格来说子进程是从这里开始的)时的返回值是0。

getpid获得进程号和fork创建返回的PID号有何关系?getpid获得的进程号是当前进程的PIDfork创建返回的PID号是在父进程中返回子进程的PID,大于0扩展:父子进程的同步:编译运行结果:上一段程序中父进程执行完exit退出,再执行子进程这段程序中,父进程执行完不会exit,而是直接执行子进程,然后再依次exit 如果没有父进程中的wait(0),会出现什么现象?父进程会在打印语句结束后直接exit使用ps -aux查看子进程的状态。

如果将子进程中sleep系统调用改成系统调用pause( ),将什么结果?试实验之。

【如果一个进程休眠,而没有进程通知将导致其一直睡眠下去。

】子进程会不exit扩展:多进程运行的结果不可重现编译运行:由于三个进程共享代码区,所以相当于各自有各自的全局变量,所以为了保证结果正确,需在内存在设置一篇数据共享区用来存放共享变量。

操作系统Lab2实验报告

操作系统Lab2实验报告

深入学习 操作系统的原理和实 现细节,包括进程通 信、死锁处理、虚拟 化技术等。
实践应用
希望将所学的操作系 统知识应用到实际项 目中,提高自己的实 践能力。
持续学习
随着技术的不断发展 ,操作系统也在不断 更新和进步,需要保 持持续学习的态度。
探索新领域
对于新兴的操作系统 领域,如云操作系统 、物联网操作系统等 ,也希望有所涉猎和 探索。
学生将了解操作系统内核的组成和功能,以及操作系统如何通过内核 实现各种基本功能。
学生将通过实验深入了解操作系统的内部实现细节,提高自己对操作 系统设计和实现的认知水平。
02
实验内容
进程管理实验
总结词
理解进程状态及其转换、进程控制块PCB的组成、进程调度算法。
详细描述
通过实验,我们深入了解了进程的概念、状态及其转换。进程控制块PCB的组成,包括进程标 识符、进程状态、优先级、CPU寄存器内容等信息。此外,我们还学习了进程调度算法,如先 来先服务、最短作业优先、优先级调度等,并进行了模拟实验。
THANKS
感谢观看
操作系统Lab2实验 报告
汇报人:
202X-01-08
目录
• 实验目的 • 实验内容 • 实验结果与分析 • 问题与改进建议 • 总结与展望
01
实验目的
理解操作系统的基本概念
01
掌握核心概念
02
操作系统是计算机系统的核心软件,负责管理计算机硬件和软件资源 ,为用户提供便利的操作界面和高效的服务。
03
操作系统具有并发性、虚拟性、异步性和随机性的特点,这些特点决 定了操作系统在计算机系统中的重要地位和作用。
04
操作系统的基本功能包括进程管理、内存管理、文件管理和设备管理 ,这些功能是操作系统实现其核心目标的基础。

操作系统原理实验2-Linux操作系统命令接口

操作系统原理实验2-Linux操作系统命令接口

《操作系统原理》实验报告
实验序号:2 实验项目名称:Linux操作系统命令接口
挑战3:历史命令
挑战4:数据提取
四、实验结果与数据处理
1.查看用户
2.检查权限
3.创建文件
4.创建目录
5.复制文件
6.删除文件
7.预声明变量
8.变量赋值
9.查看变量
10.查找文件
11.打包文件
12.解压文件
13.检查磁盘
14.查看ls命令的帮助信息
15.进入文件添加任务
16.顺序执行多条命令
17.打印全部文件
18.使用管道一行一行查看
19.打印某个字段的某一行
20.默认字典排序
21.删除"hello shiyanlou" 中所有的'o','l','h'
22.将"hello" 中的ll,去重为一个l
23.将输入文本,全部转换为大写或小写输出
24.数据流重定向
25.进程 = 可执行程序 + 该进程对应的内核数据结构
26.linux操作系统基本概念:操作系统按用户数量可以分为单用户系统和多用户系统。

比如Windows就是典型的单用户系统,Linux就是典型的多用户系统。

多用户系统就是一台能并发和独立地执行分别属于两个和多个用户的若干应用程序的计算机。

27.显示环境变量
28.列出指定用户的所有进程
29显示所有进程
30.将在后台运行的作业放到前台运行
31.访问日志
32.历史命令
33.寻找文件,提取数据见上
五、分析与讨论
上机的命令有很多,要重复操作,才能熟练掌握
六、教师评语成绩。

操作系统实验报告二

操作系统实验报告二

模拟创建队列
创建进程队列
创建表头,结点
随机产生优先级,运 行时间
执行优先级最大的进 程
初始队首 结点优先 级为最大 初始运行第一个进程
run 指针指向的进程 所需时间是否为零 否 继续运行

运行结果
显示运行进程和等待 队列
进程所需时间减一, 进程优先级减三

当前运行完的进程优 先级是否低于队首的

设置进程数为7:
3.描述程序的整个执行过程,掌握进程的创建方法及运行机制 (1)执行过程(已三个进程为例) 进程1运行,进程2,3等待 进程3运行,进程1,2等待 进程3运行结束,进程1运行,进程2等待 进程2运行,进程1等待 进程2运行结束,进程1运行,等待队列无进程 进程1运行结束 执行结束 (2)进程创建方法 #define WAIT 1 #define RUN 2 #define FINISH 3 typedef struct pcb { int num; struct pcb *next; int priority; int timeneed; int state; }pcb; (3)运行机制 初始队首结点为优先级最大的进程 程序首先运行队首的进程1,其他进程等待 扫描进程队列,运行优先级最高的进程,其他进程等待(有同等优先 级的随机执行) 该进程运行结束,释放空间,再运行优先级次大的,依次执行到完成 (4)程序运行流程图
三、操作步骤 1.填补程序注释 /*进程管理*/ #include"stdio.h" #include"stdlib.h" #include "string.h" #include "ctime" #define WAIT 1 #define RUN 2 #define FINISH 3 typedef struct pcb { int num; struct pcb *next; int priority; int timeneed; int state; }pcb; struct pcb *head; struct pcb *run;

《操作系统》实验二

《操作系统》实验二

《操作系统》实验二一、实验目的本实验旨在加深对操作系统基本概念和原理的理解,通过实际操作,提高对操作系统设计和实现的认知。

通过实验二,我们将重点掌握进程管理、线程调度、内存管理和文件系统的基本原理和实现方法。

二、实验内容1、进程管理a.实现进程创建、撤销、阻塞、唤醒等基本操作。

b.设计一个简单的进程调度算法,如轮转法或优先级调度法。

c.实现进程间的通信机制,如共享内存或消息队列。

2、线程调度a.实现线程的创建、撤销和调度。

b.实现一个简单的线程调度算法,如协同多任务(cooperative multitasking)。

3、内存管理a.设计一个简单的分页内存管理系统。

b.实现内存的分配和回收。

c.实现一个简单的内存保护机制。

4、文件系统a.设计一个简单的文件系统,包括文件的创建、读取、写入和删除。

b.实现文件的存储和检索。

c.实现文件的备份和恢复。

三、实验步骤1、进程管理a.首先,设计一个进程类,包含进程的基本属性(如进程ID、状态、优先级等)和操作方法(如创建、撤销、阻塞、唤醒等)。

b.然后,实现一个进程调度器,根据不同的调度算法对进程进行调度。

可以使用模拟的方法,不需要真实的硬件环境。

c.最后,实现进程间的通信机制,可以通过模拟共享内存或消息队列来实现。

2、线程调度a.首先,设计一个线程类,包含线程的基本属性(如线程ID、状态等)和操作方法(如创建、撤销等)。

b.然后,实现一个线程调度器,根据不同的调度算法对线程进行调度。

同样可以使用模拟的方法。

3、内存管理a.首先,设计一个内存页框类,包含页框的基本属性(如页框号、状态等)和操作方法(如分配、回收等)。

b.然后,实现一个内存管理器,根据不同的内存保护机制对内存进行保护。

可以使用模拟的方法。

4、文件系统a.首先,设计一个文件类,包含文件的基本属性(如文件名、大小等)和操作方法(如创建、读取、写入、删除等)。

b.然后,实现一个文件系统管理器,包括文件的存储和检索功能。

操作系统实验报告2doc

操作系统实验报告2doc

操作系统实验报告2doc操作系统实验报告2篇一:操作系统实验二实验报告操作系统实验报告——实验二:线程和管道通信实验一、实验目的通过Linux 系统中线程和管道通信机制的实验,加深对于线程控制和管道通信概念的理解,观察和体验并发进(线)程间的通信和协作的效果 ,练习利用无名管道进行进(线)程间通信的编程和调试技术。

二、实验说明1) 与线程创建、执行有关的系统调用说明线程是在共享内存中并发执行的多道执行路径,它们共享一个进程的资源,如进程程序段、文件描述符和信号等,但有各自的执行路径和堆栈。

线程的创建无需像进程那样重新申请系统资源,线程在上下文切换时也无需像进程那样更换内存映像。

多线程的并发执行即避免了多进程并发的上下文切换的开销又可以提高并发处理的效率。

pthread 库中最基本的调用。

1.pthread_create 系统调用语法:#includeInt pthread_create(pthread_t *thread,pthread_attr_t *attr,void *(*start_routine)(void *) Void *arg);pthread_create 函数创建一个新的线程。

pthread_create 在thread 中保存新线程的标识符。

Attr 决定了线程应用那种线程属性。

使用默认可给定参数 NULL; (*start_routine) 是一个指向新线程中要执行的函数的指针 arg 是新线程函数携带的参数。

Pthread_create 执行成功会返回0并在 thread 中保存线程标识符。

执行失败则返回一个非0的出错代码2.pthread_exit 系统调用语法:#includevoid pthread_exit(void *retval);pthread_exit 函数使用函数pthread_cleanup_push 调用任何用于该线程的清除处理函数,然后中止当前进程的执行,返回retval。

操作系统原理实验

操作系统原理实验

操作系统原理实验操作系统是计算机系统中最核心的部分之一,它负责管理和控制计算机的硬件和软件资源,为用户提供一个良好的工作环境。

操作系统原理实验是计算机相关专业的学生必修课程之一,通过实验学习,可以更深入地理解操作系统的原理和工作机制,提高对操作系统的理解和应用能力。

实验一,进程管理。

进程是操作系统中最基本的概念之一,它是程序执行的基本单位。

在进程管理实验中,我们可以学习到进程的创建、调度、同步和通信等内容。

通过编写程序模拟进程的创建和调度过程,可以更直观地理解操作系统是如何管理进程的。

实验二,内存管理。

内存管理是操作系统中的重要内容之一,它负责管理计算机的内存资源,包括内存的分配与回收、内存的保护和共享等。

在内存管理实验中,我们可以学习到内存分配算法、地址转换技术以及虚拟内存的实现原理。

通过编写程序模拟内存分配和回收的过程,可以更好地理解操作系统是如何管理内存的。

实验三,文件系统。

文件系统是操作系统中负责管理存储设备上的文件和目录的部分,它提供了对文件的读写和管理功能。

在文件系统实验中,我们可以学习到文件的组织结构、文件的存储管理和文件的访问控制等内容。

通过编写程序模拟文件的创建、读写和删除过程,可以更深入地理解操作系统是如何管理文件系统的。

实验四,设备管理。

设备管理是操作系统中负责管理计算机硬件设备的部分,它包括对设备的初始化、分配和释放等功能。

在设备管理实验中,我们可以学习到设备的管理方法、设备的中断处理和设备的驱动程序设计等内容。

通过编写程序模拟设备的初始化和中断处理过程,可以更好地理解操作系统是如何管理设备的。

总结。

通过操作系统原理实验的学习,我们可以更深入地理解操作系统的原理和工作机制,提高对操作系统的理解和应用能力。

同时,实验还可以培养我们的动手能力和解决问题的能力,为今后从事计算机相关工作打下坚实的基础。

希望大家能够认真对待操作系统原理实验,取得更好的学习成绩,为将来的发展打下坚实的基础。

重庆大学操作系统实验二

重庆大学操作系统实验二

重庆大学学生实验报告实验课程名称操作系统原理开课实验室重庆大学DS1501学院软件工程年级2013 专业班学生姓名学号开课时间2015 至2016 学年第一学期重庆大学软件学院制操作系统原理》实验报告实验目的(软件需求文档)掌握线程的创建掌握线程的调度静态优先级调度动态优先级调度二、实验原理(软件设计文档)系统调用接口,线程相关函数:Step1:定义线程函数voidtsk_foo(void *pv) {n“ , task_getid());task_exit(0);}Step2:申请用户栈unsigned char *stack_foo;stack_foo = (unsigned char *)malloc(1024*1024);free 释放掉!线程退出后,才能把用户栈用Step3:创建线程int tid_foo;tid_foo = task_create(stack_foo+1024*1024, tsk_foo, (void *)0);三、使用仪器、材料(软硬件开发环境) Notepad++ expenv四、实验步骤(实现的过程)随机生成3 组非负整数列表,创建3 个线程,分别用3 种不同的排序算法(插入,冒泡,选择) 对列表进行排序三线程:void tsk_foo_line1(void * pv){int m;int i;int arry[50]; srand(time(NULL));for (i =0; i<50; i++){ m= random() % 200; if (m<0) { m=0- m;} draw(i * 10, 0, 0 + m); arry[i] = m;}sort_m(arry, 50, 0); task_exit(0);}void tsk_foo_line2(void * pv){int m;int i;int arry[50];srand(time(NULL));for (i =0; i<50; i++){m= random() % 200;if (m<0) { m=0- m;} draw(i * 10, 345, 345 +m); arry[i] = m;}sort_x(arry, 50, 345); task_exit(0);}void tsk_foo_line3(void * pv){int m;int i;int arry[50];srand(time(NULL));for (i =0; i<50; i++){ m= random() % 200; if (m<0) { m=0- m;} draw(i * 10, 690, 690 +m); arry[i] = m;}sort_c(arry , 50, 690);task exit(0);}void draw(int x, int y1, int y2){int i;for (i =y1; i<y2; i++)setPixel(i , x, RGB(255, 255, 255)); }void resetBK(int x, int y1, int y2){ int i;for (i =y1; i<y2; i++) setPixel(i , x, RGB(0, 0, 0));} 三排序:冒泡void sort_m(int * arry, int n,int l){int i, j, tem ; int t = 500 / n;for (i =0; i<n; i++)for (j=0;j<n-i- 1; j++){if (*( arry + j)>*(arry +j +1)){ resetBK(j* t, l, l + *(arry +j)); resetBK(j* t +t, l, l +*( arry + j + 1)); tem = *( arry + j);*( arry + j) = *(arry +j+1); *( arry + j + 1) = tem ; draw (j * t , l, l + *( arry +j)); draw(j*t +t,l,l + *( arry + j+ 1));}}void sort_c(int * arry, int n, int l){ int i, j, key;int t =500/ n;for (j=n- 2; j >= 0; j--){ key = *( arry +j);i =j +1; resetBK(j * t , l, l+key); while (i<n&& *( arry + i )<key){ *( arry +i -1) = *( arry +i); draw(i*t -t,l,l+*(arry+i- 1)); i =i +1;}*( arry +i - 1) = key; draw(i* t -t, l, l + key);}} 选择void sort_x(int* arry, int n, int l){int i=0, j=0, lowindex = 0;int t =500/ n;for (i =0; i<n; i ++){lowindex =i;for (j =n -1; j>i; j--) if (arry[j] < arry[lowindex ])lowindex = j;if (lowindex != i){resetBK(i*t , l, l + *(arry +i)); resetBK(lowindex* t, l,l + *(arry + lowindex )); int temp = arry[ i];arry [i] = arry[ lowindex];arry [lowindex ] = temp ; draw (i * t , l, l + *( arry +i));draw(lowindex* t, l, l + *(arry + lowindex ));}}}线程控制块tcb 中增加nice 属性,在函数sys_task_create 中初始化nice=0 /*系统调用getpriority 的执行函数获取当前线程的优先级*/int sys_getpriority (int tid){if (tid ==0) return g_task_running->nice+NZERO;// 获取当前线程的nice值uint32_t flags; struct tcb *tsk;save flags cli(flags);tsk = get_task(tid ); restore_flags(flags);return tsk->nice+NZERO; // 获取线程的nice 值}/* 系统调用setpriority 的执行函数调整当前线程的优先级线程控制块tcb 中增加estcpu 属性,在函数sys_task_create 中初始化estcpu=0; 增加priority 属性,在函数sys_task_create 中初始化priority=0; 中增加全局变量g_load_avg:表示系统的平均负荷用浮点(float-point) 表示g_load_avg 和estcpu:精度高,效率低动态调度schedule:void schedule(){struct tcb * select=g_task_head;struct tcb * my_select=g_task_running ; while (select != NULL){select->priority =127- fixedpt_toint (fixedpt_div(select->estcpu, fixedpt_fromint (4))) - select->nice * 2; // 计算所有线程的priorityselect = select->next ;}// 动态优先级select = g_task_head; while(select!=NULL){if((select->tid != 0) &&(select->state ==TASK STATE READ))Y{if(my_select->priority <select->priority )my_select=select;// 选择等待队列里的线程优先级高的elseif(my select->tid==0){my_select=select;} select=select->next;}if (my select==g task running) { if(my_select->state == TASK_STATE_READ) Y return ;my_select = task0;}printk ("0x%d -> 0x%d\r\n" , (g_task_running == NULL) -1: g_task_running->tid , select->tid);g_resched = 0;switch_to (my_select);}中添加如下g_task_running->estcpu=fixedpt_add(g_task_running->estcpu,FIXEDPT_ON)E;//计算线程使用CPU时间estcpuif(g timer ticks %HZ==0){// 每隔一秒计算一次int nready=0; // 表示处于就绪状态的线程个数struct tcb *my select=g task head;int nice;//g task running->nice;//my_select=g_task_head;fixedpt ratio ;while(my select!=NULL){if (my select->state==TASK STATE REA)DnYready++ nice=my select->nice;ratio = fixedpt_mul (FIXEDPT_TWO, g_load_avg);// 每秒钟为所有线程运行、就绪和等待)更新一次ratio = fixedpt_div (ratio , fixedpt_add (ratio , FIXEDPT_ON)E);my_select->estcpu = fixedpt_add (fixedpt_mul (ratio ,my_select->estcpu),fixedpt_fromint (nice))my_select=my_select->next;fixedpt r59 60 = fixedpt div (fixedpt fromint (59), fixedpt fromint (60));// 计算系统的平均负荷g load avgfixedpt r01 60 = fixedpt div (FIXEDPT ON,Efixedpt fromint (60)) g load avg= fixedpt add (fixedpt mul (r59 60, g load avg),fixedpt_mul (r01_60, fixedpt_fromint (nready)));主函数:int mode = 0x0118;initGraphics (mode);int y =0;for (y=0;y<; y++){setPixel/ 3,y, RGB(0, 125, 125)); setPixel/ 3 * 2, y, RGB(0, 125, 125));}五、实验结果及分析(实现的效果,包括屏幕截图、系统总体运行情况和测试情况等)静态优先级:Llxh心必ew动态优先级:。

操作系统的实验二

操作系统的实验二

操作系统的实验二在学习操作系统的过程中,实验是加深理解和掌握知识的重要环节。

本次的操作系统实验二,让我对操作系统的原理和功能有了更深入的认识。

实验二的主要目标是探究进程管理和线程调度的机制。

进程和线程是操作系统中非常关键的概念,它们的有效管理和调度直接影响着系统的性能和资源利用效率。

在实验开始之前,我们需要对相关的理论知识有清晰的了解。

进程是程序在一个数据集合上的一次执行过程,它具有动态性、并发性、独立性和异步性等特征。

而线程则是进程中的一个执行单元,线程之间可以共享进程的资源,从而减少系统开销。

实验中,我们使用了特定的操作系统环境和工具来进行模拟和观察。

通过设置不同的进程和线程参数,如优先级、时间片等,来观察它们在系统中的执行情况和资源分配情况。

在进程管理部分,我们首先创建了多个进程,并为它们分配不同的资源。

例如,为某些进程分配更多的内存空间,为另一些进程分配更多的CPU 时间。

然后,我们观察这些进程的执行顺序和资源占用情况。

通过实验,我们发现,优先级较高的进程往往能够优先获得系统资源,从而更快地完成执行。

但是,如果高优先级进程一直占用资源,可能会导致低优先级进程长时间得不到执行,出现“饥饿”现象。

为了避免这种情况,操作系统通常会采用一些公平性策略,如轮转调度、多级反馈队列调度等,来确保各个进程都有机会获得资源执行。

线程调度的实验则更加复杂一些。

线程之间共享进程的资源,这使得它们的调度更加灵活和高效。

我们创建了多个线程,并为它们设置不同的优先级和执行时间。

在实验中,我们发现,当多个线程同时竞争资源时,操作系统会根据它们的优先级和等待时间来进行调度。

优先级高的线程会优先执行,但如果优先级低的线程等待时间过长,操作系统也会适时地将其调度执行,以保证系统的公平性和响应性。

此外,我们还研究了进程和线程之间的通信方式。

进程之间的通信通常需要通过共享内存、消息队列、管道等方式来实现,而线程之间由于共享进程的资源,可以直接通过共享变量等方式进行通信。

操作系统实验二实验报告

操作系统实验二实验报告

实验二处理机管理(4学时)实验目的正确理解提高处理机的利用率及改善系统性能在很大程度上取决于处理机调度性能的好坏,在操作系统中调度的实质是一种资源分配,调度算法是指根据系统的资源分配策略规定的资源分配算法,对不同的系统和系统目标,应采用不的调度算法。

(或)在多道程序或多任务系统中,系统同时处于就绪状态的进程有若干个。

也就是说能运行的进程数远远大于处理机个数。

为了使系统中的各进程能有条不紊地运行,必须选择某种调度策略,以选择一进程占用处理机。

通过本实验,加深对处理机调度的理解。

实验内容处理机管理是操作系统中非常重要的部分。

为深入理解进程管理部分的功能,设计几个调度算法,模拟实现处理机的调度。

编程模拟FCFS调度算法、SJ(P)F算法、高优先权调度算法、基于时间片轮转调度算法。

注:“基于时间片轮转调度算法模拟”为必作,其余选做。

实验准备及实验设备计算机,Tc2.0实验步骤正确理解各调度算法的基本思想;根据各调度算法定义PCB(模拟)的格式:FCFS算法和基于时间片轮转调度算法,可设PCB的格式为:高优先权调度算法可设PC为:在正确理解各调度算的基础上编写出相应的程序。

在所设计的调度程序中,针对不同算法应包含显示和打印语句,以便显示或打印程序运行的初值和运行结果:各PCB的初始状态,选中运行进程的名称、运行后各PCB状态以及每次调度时,就绪队列的进程排列顺序(针对不同算法有所不同)。

(源程序)实验结果(运行所编的模拟调度程序,所得结果略)FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。

SJ(P)F算法不利于长作业(进程),该算法未考虑作业的紧迫程序,因而不能保证紧迫性作业(进程)会被及时处理,并且由于作业(进程)的长短是用户所提供的估计执行时间而定的,致使该算法不一定能真正做到短作业优先调度。

高优先权(分动态和静态优先权)调度算法即照顾了短作业,又考虑了作业到达的紧迫性。

对于静态优先权法,系统开销小,但不够精确,可能出现优先权低的作业(进程)长期没有被调度的情况;对于动态优先权(高响应比优先)法,它既照顾了短作业,又考虑了作业的先后次序,不会使长作业长期得不到服务,但每要进行调度之前,都须做响应比的计算,会增加系统开销。

操作系统原理实验指导书

操作系统原理实验指导书

目录实验一系统功能调用 (1)实验二熟悉Linux环境 (6)实验三 shell脚本 (14)实验四进程控制 (18)实验五进程间通信 (22)(一) 信号量机制实验 (22)实验五进程间通信 (28)(二) 进程的管道通信实验 (28)实验五进程间通信 (32)(三) 消息的发送与接收实验 (32)实验五进程间通信 (37)(四) 共享存储区通信 (37)实验六死锁避免的算法 (43)实验七存储管理 (45)1. 常用页面置换算法 (45)2.动态分区分配算法 (54)实验八文件操作 (55)实验一系统功能调用【实验目的】1.熟悉操作系统的系统功能调用。

2.掌握用C语言实现系统功能调用的方法和步骤。

3.掌握利用10H号功能调用(BIOS的显示I/O功能调用)来实现对屏幕的操作与控制。

【预习内容】1.预习DOS、BIOS系统功能调用。

2.预习C语言实现系统功能调用的方法。

【实验内容】1.在屏幕的指定区域内显示字符串。

(必做题)2.在屏幕的指定区域内画框,在框内显示字符串。

(提高题)3. 在屏幕的指定区域内动画显示字符串。

(附加题)【实验报告】1.列出调试通过程序的清单,并加注释。

2.给出必要的程序设计思路和方法(或列出流程图)。

3.总结上机调试过程中所遇到的问题和解决方法及感想。

【实验相关资料】int86(0X10, &r, &r)函数:对BIOS调用的标准函数其中0X10是BIOS调用类型号(相当于INT n调用的中断类型号n),是10H号中断调用,是一个显示I/O调用。

BIOS借助此中断产生的功能调用控制PC机屏幕上的文本和图形。

通过给AH 寄存器设置适当的值选择想要的功能调用,然后发中断10H。

第一个&r是指向联合类型REGS的指针,用于接收调用的功能号及其它一些指定的入口参数,以便传给相应寄存器。

第二个&r是指向联合类型REGS的指针,用于接收功能调用后的返回值,即出口参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<< ",EXE file:" <<pe.szExeFile
<< ", % in Kernel mode:" <<dwPctKernel<<endl;
//消除句柄
::CloseHandle(hProcess);
}
//转向下一个进程
bMore= ::Process32Next(hSnapshot,&pe);
break;
case NORMALPRIORITYCLASS:
std::coutg<<”Normal”,
break;
case IDLEPRIORITYCLASS;
std::cout<<”Idle”;
break;
case REALTIMEPRIORITYCLASS:
std::cout<<”Realtime”;
PROCESS_QUERY_INFORMATION, //指明要得到信息
FALSE, //不必继承这一句柄
pe.th32ProcessID); //要打开的过程
if(hProcess!= NULL)
{
//找出进程的时间
FILETIMEftCreation,ftKernelMode,ftUserMode,ftExit;
程序源代码如下:
#include <windows.h>
#include <iostream.h>
#include <stdio.h>
//确定自己的优先权的简单应用程序
void main()

//从当前过程中提取句柄
HANDLEhProcessThis=::GetCurrentProcess();
//请求内核提供该过程所属的优先权类
步骤四:将下面的程序源代码输入。
步骤五:单击Windows系统的“开始”→“运行”选项,输入cmd。
步骤六:依次输入命令为:
cd\
d://这里是存放的源程序地方,如果是放在其他地方,则利用cd命令进入源程序的地方
CL 3.cpp//对这是源程序进行编译
步骤七:若没有错误,则会自动生成3.exe和3.obj文件,双击”3.exe”,
break;
default:
std::cout<<”<unknown>”;
break;

Std::cout<<std::endl;
Getchar();

入WindowsXP。
步骤二:Microsoft Visual Studio C++6.0。
步骤三:在菜单栏中单击“文件”→“新建”→“文件”→C++SourceFile,选择路径(如D:\3.cpp),并命名为3.cpp。
“提示”,//消息框的标题
MBOK); //其中只有一个OK按钮
//返回0以便通知系统不进入消息循环
return 0;
}
6、扩展实验
1、获得和使用进程的句柄
步骤一:进入WindowsXP。
步骤二:Microsoft Visual Studio C++6.0。
步骤三:在菜单栏中单击“文件”→“新建”→“文件”→C++SourceFile,选择路径(如:D:\2.cpp。
DWORDdwPctKernel= ::GetKernelModePercentage(
ftKernelMode, //在内核模式上消耗的时间
ftUserMode); //在用户模式下消耗的时间
//向用户显示进程的某些信息
cout<< "process ID:" << pe.th32ProcessID
# pragma comment(lib,”user32.lib”)
intAPIENTRYWinMain(HINSTANCEhInstance,
HINSTANCEhPrevInstance,
LPSTRlpCmdLine,
intnCmdShow)
{
∷MessageBox(
NULL, //没有父窗口
“hello windows XP”, //消息框中的文本显示hello windows XP
步骤四:将下面的程序源代码输入。
步骤五:单击Windows系统的“开始”→“运行”选项,输入cmd。
步骤六:依次输入命令为:
cd\
d://这里是存放的源程序地方,如果是放在其他地方,则利用cd命令进入源程序的地方
CL 2.cpp//对这是源程序进行编译
步骤七:若没有错误,则会自动生成2.exe和2.obj文件,双击2.exe,
//初始化过程入口
PROCESSENTRY32pe;
::ZeroMemory(&pe,sizeof(pe));
pe.dwSize=sizeof(pe) ;
BOOLbMore= ::Process32First(hSnapshot,&pe);
while(bMore)
{
//打开用于读取的过程
HANDLEhProcess= ::OpenProcess(
::GetProcessTimes(
hProcess, //所感兴趣的进程
&ftCreation, //进程的启动时间
&ftExit, //结束时间(如果有的话)
&ftKernelMode, //在内核模式下消耗的时间
&ftUserMode); //在用户模式下消耗的时间
//计算内核模式消耗的时间百分比
const FILETIME&ftUser) {
//将FILETIME结构转化为64位整数
ULONGLONGqwKernel= (((ULONGLONG)ftKernel.dwHighDateTime)
<<32) +ftKernel.dwLowDateTime;
ULONGLONGqwUser= (((ULONGLONG)ftUser.dwHighDateTime)
步骤四:单击“性能”标签,在所示的“性能”选项卡中可以看到CPU的使用情况、内存的使用情况。
2)通过命令观察进程情况、
步骤一:单击“开始”→“运行”选项,输入cmd“命令提示符”下。
步骤二:输入tasklist。
步骤三:继续输入tasklist/?来寻找帮助,里面有更详细的解释。
3)通过命令来关闭一个进程
}
//以下是将当前运行过程名和消耗在内模式下的时间百分数都显示出来的应用程序
void main()
{
//对当前系统中运行的过程拍取“快照”
HANDLEhSnapshot= ::CreateToolhelp32Snapshot(
TH32CS_SNAPPROCESS, //提取当前过程
0); //如果是当前过程,就将其忽略
程序源代码如下:
#include <windows.h>
#include < tlhelp32.h >
#include <iostream.h>
#include <stdio.h>
//当在用户模式机内模式下都提供所耗时间时,在内核模式下进行所耗时间的64位计算的帮助方法
DWORDGetKernelModePercentage(const FILETIME&ftKernel,
实验2:Windows基本进程管理
1、实验目的
通过观察任务管理器,来观察各个进程的动态信息。
2、实验工具
(1)一台WindowsXP操作系统的计算机。
(2)计算机装有Microsoft Visual Studio C++6.0专业版或企业版。
3、预备知识
·任务管理器,了解用户计算机上正在运行的程序和进程的相关信息。
}
getchar();
}
7、实验后撰写实验报告。
步骤三:在菜单栏中单击“文件”→“新建”→“文件”→C++SourceFile,选择路径(如D:\1.cpp),并命名为1.cpp。
步骤四:将下面的程序源代码输入。
步骤五:单击Windows系统的“开始”→“运行”选项,输入cmd。
步骤六:依次输入命令为
cd\
d://这里是存放的源程序地方,如果是放在其他地方,则利用cd命令进入源程序的地方
DWORDdwPriority=::GetPriorityClass(hProcessThis);
//发出消息,为用户描述该类
std::cout〈〈“current process priority:”;
switch(dwPriority)

case HIGHPRIORITYCLASS:
std::cont<<”High”;
CL 1.cpp//对这是源程序进行编程
步骤七:若没有错误,则会自动生成1.exe和1.obj文件,双击“1.exe”,即可看到结果。
源代码如下:
# include <windows.h>
# include <stdio.h>
//告诉连接器与包括MessageBoxAPI函数的user32库进行连接
步骤一:单击“开始”→“运行”选项,输入cmd“命令提示符”下。
步骤二:输入tasklist后回车执行。
步骤三:继续输入taskkill/PID 208/T
5、实验编程
进行一个简单的Windows的图形用户接口(GUI)编程。
步骤一:进入WindowsXP。
相关文档
最新文档