如图的正方形网格中,每个小正方形的边长都为1,任意连接这些小

合集下载

中心对称与中心对称图形中档题30道解答题附答案

中心对称与中心对称图形中档题30道解答题附答案

9.2 中心对称与中心对称图形中档题汇编(3)相等两部分的直线.9.2 中心对称与中心对称图形中档题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为(7,﹣2);(3)求线段CC′的长.的长为:=23.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD的中心对称.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有A,B,C,D,E,是中心对称图形有A,C,E.(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是是轴对称图形;②十二瓣图形是既是轴对称图形也是中心对称图形;③十五瓣图形是是轴对称图形;④二十六瓣图形是既是轴对称图形也是中心对称图形.8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是轴对称图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点(0,0)点和(4,2)点;(0,2)点和(4,0)点.9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O中心对称.求证:BF=DE.中,11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.x+613.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.∴∴14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.OD=OB=DB=115.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为8.cosB==,18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa=Sb=Sc=Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?Sa=Sb=Sc=Sd=S19.(1)能把平行四边形分成面积相等的两部分的直线有无数条,它们的共同特点是均经过两条对角线的交点.(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.20.(2014春•定陶县期末)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.21.(2011秋•庄浪县校级期末)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.BD==OB=DE=(﹣﹣x﹣22.(2009秋•和县期末)用六根一样长的小棒搭成如图所示的图形,试移动AC、BC这两根小棒,使六根小棒成为中心对称图形;若移动AC、DE这两根,能不能也达到要求呢?(画出图形)23.(2009秋•泗阳县校级期中)如图,AC=BD,∠A=∠B,点E、F在AB上,且DE∥CF,试说明这是中心对称图形.24.(2010秋•白下区校级期中)如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点中心对称;(2)点A、B、C、A′、B′、C′能组成哪几个平行四边形?请用符号表示出来▱ABA′B′,▱BCB′C′,▱CA′C′A.25.(2009秋•琼海期中)如图,已知AD是△ABC的中线,画出以点D为对称中心、与△ABD成中心对称的三角形.26.(2011秋•克拉玛依区校级期中)关于点E成中心对称的图形.27.(2014秋•宜春期末)如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.28.(2010秋•苏州期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添画1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案中改变1个正方形的位置,画成图案③,使它既成中心对称图形,又成轴对称图形.29.(2010秋•宿豫区期中)如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.30.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是无理数;(2)在图2中,画出一个直角三角形,使它的三边长都是整数;(3)在图3中,画出一个中心对称图形.、、。

江苏省宿迁市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

江苏省宿迁市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

江苏省宿迁市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.实数的运算(共1小题)1.(2023•宿迁)计算:.二.分式的化简求值(共1小题)2.(2023•宿迁)先化简,再求值:,其中.三.二次函数的应用(共1小题)3.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?四.二次函数综合题(共3小题)4.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是 (填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是 、 ;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.6.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y 轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC 于点H,当△PFH为等腰三角形时,求线段PH的长.五.三角形综合题(共1小题)7.(2023•宿迁)【问题背景】由光的反射定律知:反射角等于入射角(如图①,即∠CEF=∠AEF).小军测量某建筑物高度的方法如下:在地面点E处平放一面镜子,经调整自己位置后,在点D处恰好通过镜子看到建筑物AB的顶端A.经测得,小军的眼睛离地面的距离CD=1.7m,BE=20m,DE=2m,求建筑物AB的高度;【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图②):他让小军站在点D处不动,将镜子移动至E1处,小军恰好通过镜子看到广告牌顶端G,测出DE1=2m;再将镜子移动至E2处,恰好通过镜子看到广告牌的底端A,测出DE2=3.4m.经测得,小军的眼睛离地面距离CD=1.7m,BD=10m,求这个广告牌AG的高度;【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔AB的高度.他们给出了如下测量步骤(如图③):①让小军站在斜坡的底端D处不动(小军眼睛离地面距离CD=1.7m),小明通过移动镜子(镜子平放在坡面上)位置至E处,让小军恰好能看到塔顶B;②测出DE=2.8m;③测出坡长AD=17m;④测出坡比为8:15(即).通过他们给出的方案,请你算出信号塔AB的高度(结果保留整数).六.四边形综合题(共1小题)8.(2021•宿迁)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN 扫过的面积.七.直线与圆的位置关系(共1小题)9.(2022•宿迁)如图,在△ABC中,∠ABC=45°,AB=AC,以AB为直径的⊙O与边BC 交于点D.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.八.切线的判定与性质(共1小题)10.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, .求证: ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.九.圆的综合题(共1小题)11.(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,tan∠BAC=,在Rt△CDE中, ,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.【拓展应用】(1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;(2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.一十.解直角三角形的应用-仰角俯角问题(共1小题)12.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).一十一.列表法与树状图法(共1小题)13.(2021•宿迁)即将举行的2022年杭州亚运会吉祥物“宸宸”、“琮琮”、“莲莲”,将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀.(1)若从中任意抽取1张,抽得卡片上的图案恰好为“莲莲”的概率是 .(2)若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,求两次抽取的卡片图案相同的概率.(请用树状图或列表的方法求解)江苏省宿迁市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2023•宿迁)计算:.【答案】0.【解答】解:原式=,=0.二.分式的化简求值(共1小题)2.(2023•宿迁)先化简,再求值:,其中.【答案】x﹣1;.【解答】解:===x﹣1,当时,原式=.三.二次函数的应用(共1小题)3.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?【答案】(1)A种商品的销售单价为30元,B种商品的销售单价为24元;(2)m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.【解答】解:(1)设A种商品的销售单价为a元,B种商品的销售单价为b元,由题意可得:,解得,答:(2)设利润为w元,由题意可得:w=(30﹣m﹣20)(40+10m)+(24﹣20)(40+10m)=﹣10(m﹣5)2+810,∵A种商品售价不低于B种商品售价,∴30﹣m≥24,解得m≤6,∴当m=5时,w取得最大值,此时w=810,答:m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.四.二次函数综合题(共3小题)4.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是 ② (填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是 、 ;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.【答案】(1)②;(2)①2;②,;(3)>16.【解答】解:(1)如图:由图可知,与二次函数y=2x2﹣4x﹣3有3个交点的是y=﹣,∴与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是②,故答案为:②;(2)①把x=1代入得y=﹣1,把x=1,y=﹣1代入函数得,a=2;②∵2x2﹣5x+2=﹣,∴2x3﹣5x2+2x+1=0,∴2x3﹣2x2﹣2x2+2x﹣x2+1=0,∴(2x3﹣2x2)﹣(2x2﹣2x)﹣(x2﹣1)=0,∴2x2(x﹣1)﹣2x(x﹣1)﹣(x+1)(x﹣1)=0,∴(x﹣1)(2x2﹣2x﹣x﹣1)=0,∴2x2﹣3x﹣1=0,∴x=或x=.故答案为:,.(3)x1满足方程﹣x+m=﹣,即﹣mx1=2,x2,x3满足方程x﹣m=﹣,即x2,x3是方程x2﹣mx+2=0的两个根,∴Δ=m2﹣8>0,即m2>8,x2+x3=m,∴=(m﹣2x1)2=m2﹣4mx1+4=m2+4(﹣mx1)=m2+8>16.5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.【答案】(1)y=x2﹣2x;(2)①证明见解答;②;(3).【解答】(1)解:∵二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,∴二次函数的解析式为:y=(x﹣0)(x﹣4)=x2﹣2x;(2)①证明:如图1,由翻折得:∠OAC=∠A',由对称得:OC=AC,∴∠AOC=∠OAC,∴∠COA=∠A',∵∠A'DB=∠ODC,∴△OCD∽△A′BD;②解:∵△OCD∽△A′BD,∴=,∵AB=A'B,∴=,∴的最小值就是的最小值,y=x2﹣2x=(x﹣2)2﹣2,∴C(2,﹣2),∴OC=2,∴当CD⊥OA时,CD最小,的值最小,当CD=2时,的最小值为=;(3)解法一:∵S△OCD=8S△A'BD,∴S△OCD:S△A'BD=8,∵△OCD∽△A′BD,∴=()2=8,∴=2,∵OC=2,∴A'B=AB=1,∴BF=2﹣1=1,如图2,连接AA',过点A'作A'G⊥OA于G,延长CB交AA'于H,设抛物线的对称轴与x 轴交于点F,由翻折得:AA'⊥CH,∵∠AHB=∠BFC=90°,∠ABH=∠CBD,∴∠BCF=∠BAH,tan∠BCF=tan∠GAA',∴==,设A'G=a,则AG=2a,BG=2a﹣1,在Rt△A'GB中,由勾股定理得:BG2+A'G2=A'B2,∴a2+(2a﹣1)2=12,∴a1=0(舍),a2=,∴BG=2a﹣1=﹣1=,∵A'G∥OQ,∴△A'GB∽△QOB,∴=,即=,∴OQ=4,∴Q(0,4),设直线A'B的解析式为:y=kx+m,∴,解得:,∴直线A'B的解析式为:y=﹣x+4,∴﹣x+4=x2﹣2x,3x2﹣4x﹣24=0,解得:x=,∴直线A′B与二次函数的交点横坐标是.(3)解法二:如图3,过点M作MH⊥OA于H,∵△OCD∽△A′BD,∴===2,∵OC=2,∴A'B=AB=1,设BD=t,则CD=2t,∴A'D=2﹣2t,OD=2A'D=8﹣8t,∵OB=OD+BD=4﹣1=3,∴8﹣8t+t=3,∴t=,∴A'D=2﹣=,∵A'B=AB,∠A'=∠OAC,∠A'BD=∠ABN,∴△A'BD≌△ABM(ASA),∴AM=A'D=,∵△AHM是等腰直角三角形,∴AH=MH=,∴M(,﹣),易得BM的解析式为:y=﹣x+4,∴﹣x+4=x2﹣2x,解得:3x2﹣4x﹣24=0,解得:x=,∴直线A′B与二次函数的交点横坐标是.6.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y 轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC 于点H,当△PFH为等腰三角形时,求线段PH的长.【答案】(1)y=;(2)P的坐标是(6,﹣7);(3)当FP=FH时,PH=;当PF=PH时,PH=;当HF=HP时,PH=;【解答】解:(1)∵A(﹣1,0),B(4,0)是抛物线y=﹣x2+bx+c与x轴的两个交点,且二次项系数a=,∴根据抛物线的两点式知,y=.(2)根据抛物线表达式可求C(0,2),即OC=2.∴==2,∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠ACO=∠CBO,∴∠QAB=∠QAC+∠CAO=∠CBA+45°+∠CAO=∠ACO+∠CAO+45°=135°,∴∠BAP=180°﹣∠QAB=45°,设P(m,n),且过点P作PD⊥x轴于D,则△ADP是等腰直角三角形,∴AD=PD,即m+1=﹣n①,又∵P在抛物线上,∴②,联立①②两式,解得m=6(﹣1舍去),此时n=﹣7,∴点P的坐标是(6,﹣7).(3)设PH与x轴的交点为Q1,P(a,),则H(a,),PH=,若FP=FH,则∠FPH=∠FHP=∠BHQ1=∠BCO,∴tan∠APQ1=tan∠BCO=2,∴AQ1=2PQ1,即a+1=2(),解得a=3(﹣1舍去),此时PH=.若PF=PH,过点F作FM⊥y轴于点M,∴∠PFH=∠PHF,∵∠CFA=∠PFH,∠Q1HB=∠PHF,∴∠CFA=∠Q1HB,又∵∠ACF=∠BQ1H=90°,∴△ACF∽△BQ1H,∴CF=AC=,在Rt△CMF中,MF=1,CM=,F(1,),∴AF:,将上式和抛物线解析式联立并解得x=(﹣1舍去),此时PH=.若HF=HP,过点C作CE∥AB交AP于点E(见上图),∵∠CAF+∠CFA=90°,∠PAQ+∠HPF=90°,∠CFA=∠HFP=∠HPF,∴∠CAF=∠PAQ1,即AP平分∠CAB,∴CE=CA=,∴E(,2),∴AE:,联立抛物线解析式,解得x=5﹣(﹣1舍去).此时PH=.∴当FP=FH时,PH=;当PF=PH时,PH=;当HF=HP时,PH=;五.三角形综合题(共1小题)7.(2023•宿迁)【问题背景】由光的反射定律知:反射角等于入射角(如图①,即∠CEF=∠AEF).小军测量某建筑物高度的方法如下:在地面点E处平放一面镜子,经调整自己位置后,在点D处恰好通过镜子看到建筑物AB的顶端A.经测得,小军的眼睛离地面的距离CD=1.7m,BE=20m,DE=2m,求建筑物AB的高度;【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图②):他让小军站在点D处不动,将镜子移动至E1处,小军恰好通过镜子看到广告牌顶端G,测出DE1=2m;再将镜子移动至E2处,恰好通过镜子看到广告牌的底端A,测出DE2=3.4m.经测得,小军的眼睛离地面距离CD=1.7m,BD=10m,求这个广告牌AG的高度;【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔AB的高度.他们给出了如下测量步骤(如图③):①让小军站在斜坡的底端D处不动(小军眼睛离地面距离CD=1.7m),小明通过移动镜子(镜子平放在坡面上)位置至E处,让小军恰好能看到塔顶B;②测出DE=2.8m;③测出坡长AD=17m;④测出坡比为8:15(即).通过他们给出的方案,请你算出信号塔AB的高度(结果保留整数).【答案】【问题背景】17m;【活动探究】3.5m;【应用拓展】信号塔AB的高度约为20m.【解答】解:【问题背景】由题意得:AB⊥BD,CD⊥BD,EF⊥BD,∴∠ABE=∠CDE=∠FEB=∠FED=90°,∵∠CEF=∠AEF,∴∠FEB﹣∠AEF=∠FED﹣∠CEF,即∠AEB=∠CED,∴△AEB∽△CED,∴=,∴AB===17(m),答:建筑物AB的高度为17m;【活动探究】如图②,过点E1作E1F⊥BD,过点E2作E2H⊥BD,由题意得:GB⊥BD,CD⊥BD,∴∠GBE1=∠CDE1=∠ABE2=∠CDE2=∠FE1B=∠FE1D=∠HE2B=∠HE2D=90°,∵∠CE2H=∠AE2H,∠CE1F=∠GE1F,∴∠FE1B﹣∠GE1F=∠FE1D﹣∠CE1F,∠HE2B﹣∠AE2H=∠HE2D﹣∠CE2H,即∠GE1B=∠CE1D,∠AE2B=∠CE2D,∴△GE1B∽△CE1D,△AE2B∽△CE2D,∴=,=,∴BE1=BD﹣DE1=10﹣2=8(m),BE2=BD﹣DE2=10﹣3.4=6.6(m),∴GB===6.8(m),AB===3.3(m),∴AG=GB﹣AB=6.8﹣3.3=3.5(m),答:这个广告牌AG的高度为3.5m;【应用拓展】如图,过点B作BM⊥AD于点M,过点C作CN⊥AD于点N,由题意得:BG⊥DG,CD⊥DG,∴∠AGD=∠CDG=∠BMA=∠CND=90°,∵∠BAM=∠GAD,∴90°﹣∠BAM=90°﹣∠GAD,即∠ABM=∠ADG,∵∠ADG+∠DAG=90°,∠ADG+∠CDN=90°,∴∠CDN=∠DAG,∴90°﹣∠CDN=90°﹣∠DAG,即∠DCN=∠ADG,∴∠DCN=∠ADG=∠ABM,∴△DCN∽△ABM,∴=,由题意得:AE=AD﹣DE=17﹣2.8=14.2(m),∵tan∠ADG=,∴tan∠DCN==,tan∠ABM==,设DN=am,AM=bm,则CN=,BM=,∵CN2+DN2=CD2,∴()2+a2=1.72,解得:a=0.8(m)(负值已舍去),∴EN=DE﹣DN=2.8﹣0.8=2(m),CN==1.5(m),∴=,∴AB=,同【问题背景】得:△BME∽△CNE,∴=,∴=,解得:b=(m),∴AB=×≈20(m),答:信号塔AB的高度约为20m.六.四边形综合题(共1小题)8.(2021•宿迁)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN 扫过的面积.【答案】(1)=;(2)BE=2MN,MN⊥BE,理由见解析过程;(3)9π.【解答】解:(1)如图①,连接AF,AC,∵四边形ABCD和四边形AEFG都是正方形,∴AC=AB,AF=AG,∠CAB=∠GAF=45°,∠BAD=90°,∴∠CAF=∠BAG,,∴△CAF∽△BAG,∴=;(2)BE=2MN,MN⊥BE,理由如下:如图②,连接ME,过点C作CH∥EF,交直线ME于H,连接BH,设CF 与AD交点为P,CF与AG交点为R,∵CH∥EF,∴∠FCH=∠CFE,∵点M是CF的中点,∴CM=MF,又∵∠CMH=∠FME,∴△CMH≌△FME(ASA),∴CH=EF,ME=HM,∴AE=CH,∵CH∥EF,AG∥EF,∴CH∥AG,∴∠HCF=∠CRA,∵AD∥BC,∴∠BCF=∠APR,∴∠BCH=∠BCF+∠HCF=∠APR+∠ARC,∵∠DAG+∠APR+∠ARC=180°,∠BAE+∠DAG=180°,∴∠BAE=∠BCH,又∵BC=AB,CH=AE,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∴∠HBE=∠CBA=90°,∵MH=ME,点N是BE中点,∴BH=2MN,MN∥BH,∴BE=2MN,MN⊥BE;(3)如图③,取AB中点O,连接ON,OQ,AF,∵AE=6,∴AF=6,∵点N是BE的中点,点Q是BF的中点,点O是AB的中点,∴OQ=AF=3,ON=AE=3,∴点Q在以点O为圆心,3为半径的圆上运动,点N在以点O为圆心,3为半径的圆上运动,∴线段QN扫过的面积=π×(3)2﹣π×32=9π.七.直线与圆的位置关系(共1小题)9.(2022•宿迁)如图,在△ABC中,∠ABC=45°,AB=AC,以AB为直径的⊙O与边BC 交于点D.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.【答案】(1)直线AC与⊙O相切,理由见解答;(2)6﹣π.【解答】解:(1)直线AC与⊙O相切,理由如下:∵∠ABC=45°,AB=AC,∴∠ABC=∠C=45°,∴∠BAC=180°﹣2×45°=90°,∴BA⊥AC,∵AB是⊙O的直径,∴直线AC与⊙O相切;(2)连接OD,AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=45°,∴△ABD是等腰直角三角形,∠AOD=90°,∵AO=OB,AB=4,∴S△ABD=•AB•OD=×4×2=4,∴图中阴影部分的面积=S△ABC﹣S△BOD﹣S扇形OAD=×4×4﹣×4﹣=8﹣2﹣π=6﹣π.八.切线的判定与性质(共1小题)10.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, ①(答案不唯一) .求证: ②(答案不唯一) ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.【答案】(1)①(答案不唯一);②(答案不唯一);证明过程见解答;(2)阴影部分的面积为.【解答】解:(1)若选择:①作为条件,②作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE与⊙O相切,求证:DE⊥AC,证明:连接OD,∵DE与⊙O相切于点D,∴∠ODE=90°,∵AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠AED=180°﹣∠ODE=90°,∴DE⊥AC;若选择:②作为条件,①作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE⊥AC,求证:DE与⊙O相切,证明:连接OD,∵DE⊥AC,∴∠AED=90°,AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠ODE=180°﹣∠AED=90°,∵OD是⊙O的半径,∴DE与⊙O相切;故答案为:①(答案不唯一);②(答案不唯一);(2)连接OF,DF,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=6,∠BAD=30°,∴BD=AB=3,AD=BD=3,∵AD平分∠BAC,∴∠EAD=∠DAB=30°,在Rt△AED中,DE=AD=,AE=DE=,∵∠EAD=∠DAB=30°,∴∠DOB=2∠DAB=60°,∠DOF=2∠EAD=60°,∵OD=OF,∴△DOF都是等边三角形,∴∠ODF=60°,∴∠DOB=∠ODF=60°,∴DF∥AB,∴△ADF的面积=△ODF的面积,∴阴影部分的面积=△AED的面积﹣扇形DOF的面积=AE•DE﹣=××﹣=﹣=,∴阴影部分的面积为.九.圆的综合题(共1小题)11.(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,tan∠BAC=,在Rt△CDE中, tan∠DCE= ,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.【拓展应用】(1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;(2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.【答案】【操作探究】tan∠DCE=;【拓展应用】(1)见解析部分;(2)见解析部分.【解答】解:【操作探究】在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,tan∠BAC=,在Rt△CDE中,tan∠DCE=,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.故答案为:tan∠DCE=;【拓展应用】(1)如图②中,点P即为所求.作法:取格点T,连接AT交⊙O于点P,点P即为所求;证明:由作图可知,OM⊥AP,OM是半径,∴=;(2)如图③中,点P即为所求.作法:取格点J,K,连接JK交AB于点P,点P即为所求.一十.解直角三角形的应用-仰角俯角问题(共1小题)12.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).【答案】约为14米.【解答】解:过A作AC⊥PQ,交PQ的延长线于C,如图所示:设AC=x米,由题意得:PQ=5米,∠APC=30°,∠BQC=45°,在Rt△APC中,tan∠APC==tan30°=,∴PC=AC=x(米),在Rt△BCQ中,tan∠BQC==tan45°=1,∴QC=BC=AC+AB=(x+3)米,∵PC﹣QC=PQ=5米,∴x﹣(x+3)=5,解得:x=4(+1),∴BC=4(+1)+3=4+7≈14(米),答:无人机飞行的高度约为14米.一十一.列表法与树状图法(共1小题)13.(2021•宿迁)即将举行的2022年杭州亚运会吉祥物“宸宸”、“琮琮”、“莲莲”,将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀.(1)若从中任意抽取1张,抽得卡片上的图案恰好为“莲莲”的概率是 .(2)若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,求两次抽取的卡片图案相同的概率.(请用树状图或列表的方法求解)【答案】见试题解答内容【解答】解:(1)从中任意抽取1张,抽得卡片上的图案恰好为“莲莲”的概率是,故答案为:;(2)把吉祥物“宸宸”、“琮琮”、“莲莲”三张卡片分别记为A、B、C,画树状图如图:共有9种等可能的结果,两次抽取的卡片图案相同的结果有3种,∴两次抽取的卡片图案相同的概率为=.。

(某某市县区)初中七年级数学(下)第二学期(6月份)月考试题卷(附答案解析版试题)

(某某市县区)初中七年级数学(下)第二学期(6月份)月考试题卷(附答案解析版试题)

(某某市县区)初中七年级数学(下)第二学期(6月份)月考试题卷(附答案解析版试题)满分150分时间:120分钟一.单选题。

(每小题4分,共48分)1.北京冬奥会圆满帷幕,中国交出满分答卷,得到世界高度赞扬,组成本次会徽的四个图案中是轴对称图形的是()2.某种病毒直径大约为0.00 000 012米,这个数用科学记数法表示为()A.1.2×10﹣7B.12×10﹣8C.120×106D.0.12×10﹣93.下列计算正确的是()A.a3+a7=a10B.(a3)3=a9C.(ab4)4=ab8D.a6÷a3=a24.已知三角形两边长分别是3和8,则此三角形第三边长可能是()A.4B.5C.10D.115.小明有80元钱,他在新年一周里得压岁钱,现在他的钱随时间的变化而变化,在上述过程中,自变量是()A.时间B.小明C.80元D.现在他有的钱6.下列事件属于必然事件的是()A.掷一枚质地均匀的骰子,掷出的点数是奇数B.车辆随机经过一个路口,遇到红灯C.任意画一个三角形,其内角和为180°D.有三条线段,将这三个线段首尾顺次相接可以组成一个三角形7.如图,AB∥CD,∠A=30°,DA平分∠CDE,则∠DEB的度数是()A.45°B.60°C.75°D.80°(第7题图)(第8题图)(第9题图)8.如图,一根垂直于地面的旗杆在离地面5米处折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5mB.12mC.13mD.18m9.如图,直线DE是△ABC边AC的垂直平分线,且与AC相交于点E,与AB相交于点D,连接CD,已知BC=8cm,AB=12cm,则△BCD的周长为()A.16cmB.18cmC.20cmD.22cm10.如图,点B,E,C,F四点共线,∠B=∠DEF,BE=CF,添加一个条件,不能判定△ABC≌△DEF的是()A.∠A=∠DB.AB=DEC.AC∥DFD.AC=DF(第10题图)(第11题图)(第12题图)11.如图,在Rt△ABC中,∠C=90°,以点A为圆心,任意长为半径画弧,分别交AC,AB于点M和N,再分别以M、N为圆心,大于12MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E,若AB=10,S△ABE=20,则CE的长为()A.6B.5C.4D.312.已知动点H以每秒1cm的速度沿图1的边框按从A→B→C→D→E→F的路径匀速运动,相应的△HAF的面积S(cm2)关于时间t(s)的关系图象如图2,已知AF=8cm,下列说法错误的是()A.动点H的速度为2cm/sB.b的值为14C.BC的长度为6cmD.在运动过程中,当△HAF的面积为30cm2时,点H的运动时间为3.75s或9.25s二.填空题。

2024年江苏省南通市海门区东洲国际学校中考数学模拟试卷(5月份)(含解析)

2024年江苏省南通市海门区东洲国际学校中考数学模拟试卷(5月份)(含解析)

2024年江苏省南通市海门区东洲国际学校中考数学模拟试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.5的倒数是( )A. 5B. −5C. 15D. −152.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为( )A. 152.33×105B. 15.233×106C. 1.5233×107D. 0.15233×1083.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )A. B. C. D.4.如图是由4个相同的小正方体组成的立体图形,它的俯视图为( )A.B.C. D.5.解一元一次方程12(x +1)=1−13x 时,去分母正确的是( )A. 3(x +1)=1−2x B. 2(x +1)=1−3x C. 2(x +1)=6−3xD. 3(x +1)=6−2x6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是( )A. 423米B. 143米C. 21米D. 42米7.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有( )A. 1个B. 2个C. 3个D. 4个8.如图,经过原点的⊙P与两坐标轴分别交于点A,B,点C是OAB上的任意一点(不与点O,B重合)如果tan∠BCO=33,则点A和点B的坐标可能为( )A. A(23,0)和B(0,2)B. A(2,0)和B(0,23)C. A(3,0)和B(0,2)D. A(2,0)和B(0,3)9.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E 作EF⊥BD,垂足为F,则OE+EF的值为( )A. 485B. 325C. 245D. 12510.已知二次函数y=ax2+bx+c的图象经过(−3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3,则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是( )A. −2或0B. −4或2C. −5或3D. −6或4二、填空题:本题共8小题,共30分。

中心对称与中心对称图形中档题30道解答题附规范标准答案

中心对称与中心对称图形中档题30道解答题附规范标准答案

9.2 中心对称与中心对称图形中档题汇编(3)一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为_________ ;(3)求线段CC′的长.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E 、O、F在同一直线上且OE=OF.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F ,求证:点E,F关于AD的中心对称.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有_________,是中心对称图形有_________ .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律._________ .(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是_________ ;②十二瓣图形是_________ ;③十五瓣图形是_________ ;④二十六瓣图形是_________ .8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标_________ ;(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是_________ 图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点_________ .9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O中心对称.求证:BF=DE.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D (0,4).(1)根据图形直接写出点C的坐标:_________ ;(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为_________ .18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa _________ Sb _________ Sc _________ Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?19.(1)能把平行四边形分成面积相等的两部分的直线有_________ 条,它们的共同特点是_________ .(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.20.(2014春•定陶县期末)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.21.(2011秋•庄浪县校级期末)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.22.(2009秋•和县期末)用六根一样长的小棒搭成如图所示的图形,试移动AC、BC这两根小棒,使六根小棒成为中心对称图形;若移动AC、DE这两根,能不能也达到要求呢?(画出图形)23.(2009秋•泗阳县校级期中)如图,AC=BD,∠A=∠B,点E、F在AB上,且DE∥CF,试说明这是中心对称图形.24.(2010秋•白下区校级期中)如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点中心对称;(2)点A、B、C、A′、B′、C′能组成哪几个平行四边形?请用符号表示出来_________ .25.(2009秋•琼海期中)如图,已知AD是△ABC的中线,画出以点D为对称中心、与△ABD成中心对称的三角形.26.(2011秋•克拉玛依区校级期中)关于点E成中心对称的图形.27.(2014秋•宜春期末)如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.28.(2010秋•苏州期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添画1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案中改变1个正方形的位置,画成图案③,使它既成中心对称图形,又成轴对称图形.29.(2010秋•宿豫区期中)如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.30.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是无理数;(2)在图2中,画出一个直角三角形,使它的三边长都是整数;(3)在图3中,画出一个中心对称图形.9.2 中心对称与中心对称图形中档题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).考点:中心对称;三角形的重心.专题:作图题.分析:(1)根据平行四边形的性质可知:重心是两条对角线的交点.(2)两模块分成两个矩形,得到连接各自中心的第二条线段,指出重心.解答:(1)平行四边形的重心是两条对角线的交点.(1分)如图,平行四边形ABCD是中心对称图形,对角线的交点O是对称中心,经过点O与对边相交的任何一条线段都以点O为中点(如图中线段PQ),因此点O是各条线段的公共重心,也是▱ABCD的重心.(2)把模板分成两个矩形,连接各自的中心;把模板重新分成两个矩形,得到连接各自中心的第二条线段,指出重心.点评:本题考查了中心对称与重心之间的关系,有一定难度,注意掌握一些特殊图形的性质.2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为(7,﹣2);(3)求线段CC′的长.考点:中心对称;勾股定理.分析:(1)根据中心对称的性质直接就得出答案即可;(2)利用点C的坐标为(0,0),即可得出点B′的坐标;(3)利用勾股定理求出即可.解答:解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.点评:此题主要考查了勾股定理以及中心对称图形的定义以及点的坐标特点等知识,中心对称图形的性质是初中阶段考查重点应熟练掌握.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?考点:中心对称图形;轴对称图形;作图-平移变换.专题:网格型.分析:(1)从A和A′的位置,确定平移方法,然后按平移条件找出其他顶点的对应点,顺次连接,即得到平移后的图形;(2)观察图形即可.解答:解:(1)如图所示.(作图正确3分)(2)新图形是轴对称图形.(6分)点评:本题的关键是作各个关键点的对应点,从而做出正确判断.4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.考点:中心对称.分析:连接AD、BC,根据对角线互相平分的四边形是平行四边形求出四边形ABCD是平行四边形,再根据平行四边形的中心对称性判断出E、F是对称点,然后根据轴对称性解答.解答:证明:如图,连接AD、BC,∵AC与BD互相平分且相交于点O,∴四边形ABCD是平行四边形,∴点O是平行四边形ABCD的对称中心,∵AE=CF,∴点E、F是对称点,∴点E、O、F在同一直线上且OE=OF.点评:本题考查了中心对称,主要利用了平行四边形的判定与中心对称性,对称点的连线比过对称中心并且被对称中心平分,熟记性质并作辅助线构造出平行四边形是解题的关键.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD的中心对称.考点:中心对称.专题:证明题.分析:根据题意推知四边形AEDF是平行四边形,则该四边形关于点O对称.解答:证明:如图,连接EF交于点O.∵DE∥AC交AB与E,DF∥AB交AC于F,∴四边形AEDF是平行四边形,∴点E,F关于AD的中心对称.点评:本题考查了中心对称.平行四边形是中心对称图形,对称中心是对角线的交点.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.考点:中心对称.分析:判断两个四边形是否关于点O中心对称可以转换为判断两个四边形的顶点是否关于点O对称即可.解答:解:这两个四边形关于点O成中心对称.∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵EF、AC、BD都经过点O,∴EO=FO,∴点A与点C,点B与点D,点E与点F均关于点O成中心对称,∴这两个四边形关于点O成中心对称.点评:本题考查了中心对称的知识,解题的关键是判断对应的顶点关于O点中心对称,难度不大.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有A,B,C,D,E ,是中心对称图形有A,C,E .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是是轴对称图形;②十二瓣图形是既是轴对称图形也是中心对称图形;③十五瓣图形是是轴对称图形;④二十六瓣图形是既是轴对称图形也是中心对称图形.考点:中心对称图形;轴对称图形.专题:规律型.分析:(1)根据轴对称图形和中心对称图形的性质可知三个图形中轴对称的为A,B,C,D,E.是中心对称的为A,C,E;(2)利用轴对称图形和中心对称图形的性质得出规律即可;(3)利用(2)中规律直接判断得出即可.解答:解:(1)以上5个图形中是轴对称图形的有A,B,C,D,E,是中心对称图形有A,C,E.故答案为:A,B,C,D,E;A,C,E;(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.故答案为:当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形;(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是轴对称图形;②十二瓣图形是轴对称图形也是中心对称图形;③十五瓣图形是轴对称图形;④二十六瓣图形是轴对称图形也是中心对称图形.故答案为:①轴对称图形;②轴对称图形也是中心对称图形;③轴对称图形;④轴对称图形也是中心对称图形.点评:本题主要考查了中心对称和轴对称的关键,做这些题时,掌握他们的性质是关键.所以学生对一些定义,性质类的知识一定要牢记.8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是轴对称图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点(0,0)点和(4,2)点;(0,2)点和(4,0)点.考点:中心对称;轴对称图形.专题:压轴题;数形结合.分析:(1)马走日,就是说在平面直角坐标系中要走到与P相邻正方形的对角位置,(2)连线可以看出是轴对称图形.解答:解:(1)根据分析可得,下一步“马”可能到达的点的坐标:(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)连线可以看出得的图形为轴对称;根据中心对称的定义可得,(1)中关于点P成中心对称的点为:(0,0)点和(4,2)点;(0,2)点和(4,0)点.点评:本题主要考查轴对称的性质和坐标确定位置等知识点,不是很难,做题要细心.9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.考点:中心对称.专题:作图题.分析:思路1:先将图形分割成两个矩形,找出各自的对称中心,过两个对称中心做直线即可;思路2:先将图形补充成一个大矩形,分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可.解答:解:如图所示,有三种思路:点评:本题需利用矩形的中心对称性解决问题.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O 中心对称.求证:BF=DE.考点:中心对称;全等三角形的判定与性质;平行四边形的判定与性质.专题:证明题.分析:连接AD、BC,根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据平行四边形的对角线互相平分可得BO=DO,根据E、F关于点O中心对称可得OE=OF,然后利用“边角边”证明△BOF和△DOE全等,根据全等三角形对应边相等即可得证.解答:证明:如图,连接AD、BC,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴BO=DO,∵点E、F关于点O中心对称,∴OF=OE,在△BOF和△DOE中,,∴△BOF≌△DOE(SAS),∴BF=DE.点评:本题考查了中心对称的性质,全等三角形的判定与性质,平行四边形的判定与性质,作辅助线构造出平行四边形,然后证明得到BO=DO是证明三角形全等的关键,也是解决本题的难点.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)考点:中心对称.分析:(1)根据中心对称的定义和性质,找直角△ABC两条边的中点作图是解题的关键;(2)根据中心对称的定义和性质,找直角△ABC一条边的中点,另一条边非中点作图是解题的关键.解答:解:(说明:两图各(2分);图中没有标记点中点,累计扣(1分),未利用中心对称扣1分.)参考图:点评:中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称点.中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.考点:中心对称;待定系数法求一次函数解析式;矩形的性质.分析:(1)根据点B、D的坐标求出点C的横坐标与纵坐标,然后写出即可;(2)连接OC、BD得到矩形的中心,然后根据平分矩形面积的直线比过中心作出直线m即可,再利用待定系数法求一次函数解析式解答.解答:解:(1)∵B(6,0)、D(0,4),∴点C的横坐标是6,纵坐标是4,∴点C的坐标为(6,4);故答案为:(6,4);(2)直线m如图所示,对角线OC、BD的交点坐标为(3,2),设直线m的解析式为y=kx+b(k≠0),则,解得,所以,直线m的解析式为y=﹣x+6.点评:本题考查了中心对称,矩形的性质,待定系数法求一次函数解析式,熟记过矩形的中心的直线把矩形的面积分成面积相等的两份是解题的关键.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.考点:中心对称;等腰三角形的判定;菱形的判定;矩形的性质.分析:(1)易证∠BEC=∠BCE,从而判定△BCE是等腰三角形.(2)由(1)知BC=BE,而BC是等腰直角△ABE的斜边,AB=BE,运用勾股定理可求.(3)根据中心对称的性质,可知四边形BCFE是平行四边形,又BC=BE,得出▱BCFE是菱形.解答:解:(1)∵AD∥BC,∴∠DEC=∠BCE,∵∠DEC=∠BEC,∴∠BEC=∠BCE,∴△BCE是等腰三角形.(2)∵在Rt△ABE中,∠ABE=45°,∴∠AEB=∠ABE=45°,∴AB=AE=1.∴,∴.(3)如图,∵△FCE与△BEC关于CE的中点O成中心对称,∴OB=OF,OE=OC,∴四边形BCFE是平行四边形,又∵BC=BE,∴四边形BCFE是菱形.点评:本题考查了矩形的性质,等腰三角形的判定、性质,勾股定理,中心对称的性质以及平行四边形和菱形的判定,知识点较多,需熟练掌握.14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.考点:中心对称;全等三角形的判定;平行四边形的性质;旋转的性质.分析:(1)根据已知条件证出∠CDO=∠ABO,∠DEO=∠BFO.,再根据点O是平行四边形的对称中心,得出OD=OB,即可证出△DEO≌△BFO.(2)首先要判断四边形是什么形状,然后根据题意首先证明△OAD是等腰直角三角形,然后证明OE=OF,再根据已知条件即可证出四边形AECF的形状.解答:(1)证明:在平行四边形ABCD中,CD∥AB,∴∠CDO=∠ABO,∠DEO=∠BFO.又∵点O是平行四边形的对称中心,∴OD=OB.∴△DEO≌△BFO.(2)解:∵在△ABD中,DB=2,AD=1,AB=,∴DB2+AD2=AB2.∴△ABD是直角三角形,且∠ADB=90°∵OD=OB=DB=1,∴AD=OD=1.∴△OAD是等腰直角三角形,∴∠AOD=45°.当直线DB绕点O顺时针旋转45°时,即∠DOE=45°,∴∠AOE=90°∵△DEO≌△BFO,∴OE=OF又∵点O是平行四边形的对称中心,∴OA=OC∴四边形AECF是平行四边形∴四边形AECF是菱形.点评:此题考查了中心对称,是一道综合型试题,比较难,证明三角形全等必须要找出三个条件相等,按照判定四边形形状的定义证明该四边形为何形状.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.考点:中心对称;菱形的判定;矩形的性质.分析:(1)根据菱形的判定以及中心对称图形的性质得出即可;(2)利用中心对称图形的性质得出四边形BDEG的面积=2×矩形ABCD面积,即可得出答案.解答:解:(1)是菱形,∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG是菱形;(2)∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG的面积=2×矩形ABCD面积=2×2=4.点评:此题主要考查了矩形的性质、菱形的判定和中心对称的性质,利用中心对称的性质得出是解题关键.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.考点:中心对称.分析:由中心对称的特征可知点A是对称中心,将点B,C,D分别绕A点旋转180°后,B与G重合,C与H重合,D与E重合.解答:解:点A是对称中心.图中A,B,C,D的对称点分别是A、G、H、E.点评:本题实际考查了中心对称的性质,关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,由此可以得出对称中心A的位置.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为8 .考点:中心对称.分析:在直角三角形ABC中,根据30°的余弦求出AB的长,再根据中心对称的性质得到BB′的长.解答:解:在直角三角形中,根据cosB===,解得:AB=4.再根据中心对称图形的性质得到:BB′=2AB=8.故答案为:8.点评:此题主要考查了解直角三角形的知识和中心对称图形的性质,根据题意得出AB的长是解题关键.18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa = Sb = Sc = Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?考点:中心对称.专题:探究型.分析:(1)由于四边形AEFD≌四边形BEFC,则Sa=Sb=S矩形ABCD,同样,△ACD≌△CAD,∴Sc=Sd=S矩形ABCD.从而得出结果.(2)只要过矩形中心的任意一条直线,都可把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.解答:解:(1)a,b,c,d的面积关系是S a=S b=S c=S d;(2)无数种.如图,DE=BF,直线EF把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.点评:中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.。

江苏省宿迁市2022年中考:数学考试真题与答案解析

江苏省宿迁市2022年中考:数学考试真题与答案解析

江苏省宿迁市2022年中考:数学考试真题与答案解析一、选择题本大题共8小题,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上。

1. -2的绝对值是()A. 2B. C. D. 1212-2-答案:A答案解析:在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选:A .2. 下列运算正确的是()A. B. 21m m -=236·m m a =C. D. ()222mn m n =()235m m =答案:C答案解析:解:,故A 不符合题意;2m m m -=,故B 不符合题意;235m m m ⋅=,故C 符合题意;()222mn m n =,故D 不符合题意;故选:C()236m m =3. 如图,AB ∥ED ,若∠1=70°,则∠2的度数是()A. 70°B. 80°C. 100°D. 110°答案:D答案解析:解:∵AB∥ED,∴∠3+∠2=180°,∵∠3=∠1,∠1=70°,∴∠2=180°-∠3=180°-∠1=180°-70°=110°,故选:D..4. 下列展开图中,是正方体展开图的是()A. B.C. D.答案:C答案解析:解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.5. 若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A. 8cmB. 13cmC. 8cm或13cmD. 11cm或13cm 答案:D答案解析:解:当3是腰时,∵3+3>5,∴3,3,5能组成三角形,此时等腰三角形的周长为3+3+5=11(cm),当5是腰时,∵3+5>5,5,5,3能够组成三角形,此时等腰三角形的周长为5+5+3=13(cm),则三角形的周长为11cm或13cm.故选:D6. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x 间,房客y 人,则列出关于x 、y 的二元一次方程组正确的是()A. B. C. D. ()7791x y x y-=⎧⎨-=⎩()7791x y x y +=⎧⎨-=⎩7791x y x y +=⎧⎨-=⎩7791x y x y-=⎧⎨-=⎩答案:B 【详解】解:设该店有客房x 间,房客y 人;根据题意得:,故选:B .()7791x y x y +=⎧⎨-=⎩7. 如果,那么下列不等式正确的是()x y <A. B. C. D. 22x y<22x y -<-11x y ->-11x y +>+答案:A答案解析:解:A 、由x <y 可得:,故选项成立;22x y <B 、由x <y 可得:,故选项不成立;22x y ->-C 、由x <y 可得:,故选项不成立;11x y -<-D 、由x <y 可得:,故选项不成立;11x y +<+故选A.8. 如图,点A 在反比例函数的图像上,以为一边作等腰直角三角形,其()20=>y x x OA OAB 中∠=90°,,则线段长的最小值是()OAB AO AB =OB A. 1B. C.D. 4答案:C二、填空题本大题共10小题,不需写出解答过程,请把答案直接填写在答题卡相应位置上。

八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

第13章《三角形中的边角关系、命题与证明》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒2.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则AC长的可能值有()个.A.3B.4C.5D.63.下列命题是假命题的是( )A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被6整除,那么它肯定也能被3整除D.内错角相等4.如图所示,∠F=90°,CE⊥AB,C是BF的中点,D是BE上的一点,下列说法正确的是( )A.CD是△ABC的中线B.AF是△ABC的高C.CE是△ABF的中位线D.AC是△ABF的角平分线5.如图,在△ABC中,AD是△ABC的角平分线,DE⊥AC,若∠B=40°,∠C=60°,则∠ADE的度数为()A.30°B.40°C.50°D.60°6.如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC 的值为()=48,则SΔDEFA.2B.4C.6D.87.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值是( )A.7B.8C.9D.108.如图,△ABC中,∠ABC=3∠C,E分别在边BC,AC上,∠EDC=24°,∠ADE=3∠AED,∠ABC的平分线与∠ADE的平分线交于点F,则∠F的度数是( )A.54°B.60°C.66°D.72°9.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE 相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°10.如图,∠ABC=∠ACB,BD、CD、BE分别平分∠ABC,外角∠ACP,外角∠MBC,以下结论:①AD∥BC,②BD⊥BE,③∠BDC+∠ABC=90°,④∠BAC+2∠BEC=180°,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图,有一张三角形纸片ABC,∠B=32°,∠A=100°,点D是AB边上的固定点(BD<1AB),2在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,当EF与AC边平行时,∠BDE的度数为.12.如图,AD为△ABC的中线,DE,DF分别为△ABD,△ACD的一条高,若AB=6,DE=4,则AC=.,DF=8313.已知△ABC的边长a,b,c满足(a−2)2+|b−4|=0,则a、b的值分别是,若c为偶数,则△ABC的周长为.14.如图,在△ABC中,点D是AC边上一点,CD:AD=1:2,连接BD,点E是线段BD上一点,BE:ED=1:3,连接AE,点F是线段AE的中点,连接CF交线段BD于点G,若△ABC的面积是12,则△EFG的面积是.15.如图△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=70°,点D在边OA上,将△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中当CD∥AB时,旋转时间秒.16.如果三角形中任意两个内角∠α与∠β满足2α−β=60°,那么我们称这样的三角形为“斜等边三角形”.在锐角三角形ABC中,BD⊥AC于点D,若△ABC、△ABD、△BCD都是“斜等边三角形”,则∠ABC=.三.解答题(共7小题,满分52分)17.(6分)(1)一个多边形的内角和是外角和的3倍,这个多边形是几边形?(2)小明求得一个多边形的内角和为1280°,小强很快发现小明所得的度数有误,后来小明复查时发现他重复加了一个内角,求出这个多边形的边数以及他重复加的那个角的度数.18.(6分)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC 与2BD的大小关系,并说明理由.19.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.将△ABC平移,使点C平移至点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△DEF;(2)在图中画出△ABC的AB边上的高CH;(3)若连接CD、AE,则这两条线段之间的关系是 ;(4)△DEF的面积为 .20.(8分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10 cm,∠CAB=90°.(1)求AD的长;(2)求△ACE和△ABE周长的差.21.(8分)在△ABC中,∠B,∠C均为锐角且不相等,线段AD是△ABC中BC边上的高,AE是△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,求∠DAE的度数;(2)若∠B=x°,∠DAE=10°,则∠C=______;(3)F是射线AE上一动点,C、H分别为线段A B,BC上的点(不与端点重合),将△BGH沿着GH 折叠,使点B落到点F处,如图2所示,请直接写出∠1,∠2与∠B的数量关系.22.(8分)已知,在△ABC中,∠BAC=∠ABC,点D在AB上,过点D的一条直线与直线AC、BC分别交于点E、F.(1)如图1,∠BAC=70°,则∠CFE+∠FEC=______°.(2)如图2,猜想∠BAC、∠FEC、∠CFE之间的数量关系,并加以证明;(3)如图3,直接写出∠BAC、∠FEC、∠CFE之间的数量关系______.23.(8分)将含30°角的三角板ABC(∠B=30°)和含45°角的三角板FDE及一把直尺按图方式摆放在起.使两块三角板的直角顶点A,F重合.点A,F,C,E始终落在直尺的PQ边所在直线上.将含45°角的三角板FDE沿直线PQ向右平移.(1)当点F与点C重合,请在备用图中补全图形,并求平移后DC与CB形成的夹角∠DCB的度数;(2)如图,点F在线段AC上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线FN与边BC交于点N,请证明在移动过程中,∠NFB的大小保持不变;(3)仿照(2)的探究,点F在射线CQ上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线F N'所在直线与直线BC交于点N,请写出一个与平移过程有关的合理猜想.(不用证明)答案一.选择题1.C【分析】根据三角形的稳定性进行判断即可求解.【详解】解:古建筑中的三角形屋架是利用了三角形的稳定性,故选C2.B【分析】依据ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,可得2<BC<11,再根据ΔABC的三边长均为整数,即可得到BC=4,6,8,10.【详解】解:∵ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵ΔABC的三边长均为整数,ΔABM的周长比ΔACM的周长大2,∴AC=22−BC−22=10−12BC为整数,∴BC边长为偶数,∴BC=4,6,8,10,即AC的长可能值有4个,故选:B.3.D【分析】利用对顶角的性质、实数的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A、如果∠1=∠2,∠2=∠3,那么∠1=∠3,正确,是真命题,故本选项不符合题意;B、对顶角相等,正确,是真命题,故本选项不符合题意;C、如果一个数能被6整除,那么它肯定也能被3整除,正确,是真命题,故本选项不符合题意;D、两直线平行,内错角相等,原命题是假命题,故本选项符合题意.故选:D.4.B【分析】根据三角形中位线的定义,三角形角平分线、中线和高的定义作答.【详解】解:A、AC是△ABC的中线,故本选项不符合题意.B 、由∠F =90°知,AF 是△ABC 的高,故本选项符合题意.C 、CE 是△ABC 的高,故本选项不符合题意.D 、AC 是△ABF 的中线,故本选项不符合题意.故选:B .5.C【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义可得∠BAD=∠DAC =40°,最后利用垂线的定义可得∠AED=90°,进而解答即可.【详解】解:∵∠B =40°,∠C =60°,∴∠BAC=180°−40°−60°=80°.∵AD 平分∠BAC ,∴∠BAD=∠DAC =40°.∵DE ⊥AC ,∴∠AED =90°,∴∠ADE =90°−∠DAE =50°.故选C .6.C【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:连接CD ,如图所示:∵点D 是AG 的中点,∴S △ABD =12S △ABG ,S △ACD =12S △AGC ,∴S △ABD +S △ACD =12S △ABC =24,∴S △BCD =12S △ABC =24,∵点E 是BD 的中点,∴S△CDE =12S△BCD=12,∵点F是CE的中点,∴S△DEF =12S△CDE=6.故选:C.7.C【分析】若两螺丝的距离最大,则此时这个木框的形状为三角形,根据三角形任意两边之和大于第三边,进行求解即可.【详解】解:①当3、4在一条直线上时,三边长为:5、7、7,此时最大距离为7;②∵4+5<3+7,∴3、7不可能在一条直线上;③当4、5在一条直线上时,三边长为:3、7、9,此时最大距离为9;④∵4+3<5+7,∴5、7不可能在一条直线上;综上所述:最大距离为9.故选:C.8.B【分析】根据题意可知∠FBC=32∠C,设∠C=x,表示出∠ADE,根据角平分线的定义,可得∠EDF的度数,根据∠FDC=∠F+∠FBC列方程,即可求出∠F的度数.【详解】解:∵BF平分∠ABC,∴∠FBC=12∠ABC,∵∠ABC=3∠C,∴∠FBC=32∠C,设∠C=x,则∠FBC=32x,∵∠EDC=24°,∴∠AED=x+24°,∵∠ADE=3∠AED,∴∠ADE=3x+72°,∵DF平分∠ADE,∴∠EDF=32x+36°,∵∠FDC=∠F+∠FBC,∴32x+36°+24°=∠F+32x,∴∠F=60°.故选:B.9.C【分析】由角平分线的定义可以得到∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE=x,假设∠C=y,∠ABC=3y,通过角的等量代换可得到∠DFB=3∠G,代入∠G的值即可.【详解】∵AE平分∠BAC,BF平分∠ABD∴∠CAE=∠BAE,∠ABF=∠DBF设∠CAE=∠BAE=x∵∠ABC=3∠C∴可以假设∠C=y,∠ABC=3y∴∠ABF=∠DBF=∠CBG=12(180°−3y)=90°−32y∵AD⊥CD∴∠D=90°∴∠DFB=90°−∠DBF=32y设∠ABF=∠DBF=∠CBG=z,则{z=x+∠Gz+∠G=x+y∴∠G=12y∴∠DFB=3∠G∵∠G=20°∴∠DFB=60°故答案选:C10.D【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角性质、平行线的判定一一判定即可.【详解】解:①设点A、B在直线MF上,∵BD、CD分别平分△ABC的内角∠ABC,外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确.②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥BD,故②正确.③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确.④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确.故选:D.二.填空题11.124°【分析】根据已知、折叠和平行线,得∠BEF=∠C,再计算∠BED的度数,最后根据三角形内角和为180°计算∠BDE的度数即可.【详解】∵EF∥AC,∠B=32°,∠A=100°,∴∠BEF=∠C=180°−∠A−∠B=180°−100°−32°=48°(两直线平行,同位角相等),∵纸片沿DE折叠(DE为折痕),点B落在点F处,∴∠BED=12∠BEF=12×48°=24°,∴∠BDE=180°−∠B−∠BED=180°−32°−24°=124°(三角形内角和为180°),故答案为:124°.12.9【分析】由AD为△ABC的中线得S△ABD =S△ACD,从而得到12⋅AB⋅DE=12⋅AC⋅DF,代入进行计算即可得到答案.【详解】解:∵AD为△ABC的中线,∴BD=CD,∴S△ABD =S△ACD,∵DE,DF分别为△ABD,△ACD的一条高,∴12⋅AB⋅DE=12⋅AC⋅DF,∵AB=6,DE=4,DF=83,∴AC=9,故答案为:9.13. 2、4 10【分析】由(a −2)2+|b −4|=0,可得a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,由c 为偶数,可得c =4,然后求周长即可.【详解】解:∵(a −2)2+|b −4|=0,∴a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,∵c 为偶数,∴c =4,∴△ABC 的周长为2+4+4=10,故答案为:2、4,10.14.94【分析】连接DF ,CE .由题意中的线段的比和S △ABC =12,可推出S △ABD =23S △ABC =8,S △CBD=13S △ABC =4,从而可求出S △ABE =14S △ABD =2,S △ADE =34S △ABD =6.结合中点的性质即得出S △ADF =S △EDF =12S △ADE =3,从而可求出S △CDF =12S △ADF =32,进而得出S △ECF =S △ACF=S △ADF +S △CDF =92,最后即得出DGEG =S △CDF S △ECF=13,最后即可求出S △EFG =34S △EDF =94.【详解】解:如图,连接DF ,CE .∵CD:AD=1:2,S △ABC =12,∴S △ABD =23S △ABC =8,S △CBD =13S △ABC =4.又∵BE:ED =1:3,∴S△ABE =14S△ABD=2,S△ADE=34S△ABD=6.∵点F是线段AE的中点,∴S△ADF =S△EDF=12S△ADE=3.∵CD:AD=1:2,∴S△CDF =12S△ADF=32,∴S△ACF =S△ADF+S△CDF=92,∴S△ECF =S△ACF=92,∴S△CDFS△ECF =3292=13,即S△DEF+S△DGCS△EFG+S△EGC=13,∴DGEG =13,∴S△EFG =34S△EDF=94.故答案为:94.15.11或29【分析】根据题意,画出图形,进行分类讨论,①当点C在△AOB内时,根据三角形的内角和定理可得∠D=20°,根据平行线的性质得出∠1=∠B=40°,再根据三角形的外角定理求出∠2,进而得出∠AOD=∠AOB+∠2,即可求解;②当点C在△AOB外时,延长BO交CD 于一点,根据平行线的性质得出∠3=∠B=40°,再根据三角形的外角定理求出∠4=20°,即可得出∠AOD,即可求解.【详解】解:①当点C在△AOB内时,如图,在Rt△OCD中,∠C=70°,∴∠D=180°−90°−70°=20°,∵CD∥AB,∠B=40°,∴∠1=∠B=40°,∵∠D+∠2=∠1,∴∠2=40°−20°=20°,∴∠AOD=∠AOB+∠2=90°+20°=110°,∴旋转时间=110÷10=11(秒),②当点C在△AOB外时,延长BO交CD于一点,如图,∵CD∥AB,∠B=40°,∴∠3=∠B=40°,由①可得,∠D=20°,∴∠4=∠3−∠D=40°−20°=20°,∴∠AOD=90°−∠4=70°,∴△COD绕点O沿顺时针方向旋转了360°−70°=290°,∴旋转时间=290÷10=29(秒),故答案为:11或29.16.55°【分析】根据新定义的“斜等边三角形”的特点分情况分析,然后利用三角形内角和定理求解即可.【详解】解:△ABD是“斜等边三角形”,BD⊥AC,∴∠ADB=90°(1)2∠A−∠ABD=60°,∵∠A+∠ABD=90°,∴解得:∠A=50°,∠ABD=40°;(2)2∠A−∠ADB=60°,∴解得:∠A=75°,∠ABD=15°;(3)2∠ABD−∠A=60°,∵∠A+∠ABD=90°,∴解得:∠A=40°,∠ABD=50°;(4)2∠ABD−∠ADB=60°,∴解得:∠ABD=75°,∠A=15°;△BCD是“斜等边三角形”,①2∠C−∠CBD=60°,∵∠C+∠CBD=90°,∴解得:∠C=50°,∠CBD=40°;②2∠C−∠CDB=60°,∴解得:∠C=75°,∠CBD=15°;③2∠CBD−∠C=60°,∵∠C+∠CBD=90°,∴解得:∠C=40°,∠CBD=50°;④2∠CBD−∠CDB=60°,∴解得:∠CBD=75°,∠C=15°;当(1)①成立时,∠A=50°,∠ABD=40°,∠C=50°,∠CBD=40°,∴∠CBA=40°+40°=80°,∴三个角中不满足“斜等边三角形”的定义,不符合题意;当(1)②成立时,∠A=50°,∠ABD=40°,∠C=75°,∠CBD=15°,∴∠CBA=40°+15°=55°,∵2∠CBA−∠A=60°,∴△ABC是“斜等边三角形”,符合题意;同理得:符合题意的只有∠ABC=55°,故答案为:55°三.解答题17.解:(1)设这个多边形的边数是n,由题意得:(n−2)×180=360×3,∴n=8,∴这个多边形是八边形;(2)设这个多边形的边数是m,由题意得:(m−2)×180<1280<(m−2)×180+180,解得:819<m<919,∵m为整数∴m=9,∴重复加的那个角的度数是:1280°−(9−2)×180°=20°答:这个多边形的边数是9,重复加的那个角的度数是20°.18.解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.19.(1)如图所示,△DEF即为所求;(2)如图所示,CH即为所求;(3)如图所示,∵△ABC平移后得到的△DEF∴若连接CD、AE,CD∥AE,CD=AE∴这两条线段之间的关系是平行且相等;(4)如图所示,△DEF的面积=4×6−12×4×3−12×1×3−12×3×6=152.20.(1)解:∵∠BAC=90°,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810= 4.8(cm),即AD的长度为4.8cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=(AC+AE+CE)−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE和△ABE的周长的差是2cm.21.(1)解:在△ABC中,∠B=70°,∠C=30°,∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°,∵AE是△ABC的角平分线.∴∠BAE=12∠BAC=12×80°=40°,∵线段AD是△ABC中BC边上的高,∴∠ADB=90°,∴∠BAD=180°−∠B−∠ADB=180°−70°−90°=20°,∴∠DAE=∠BAE−∠BAD=40°−20°=20°,(2)解:∵∠B=x°,线段AD是△ABC中BC边上的高,∴∠BAD=90°−∠B=90°−x°,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=90°−x°+10°=100°−x°,∵AE是△ABC的角平分线,∴∠BAC=2∠BAE=200°−2x°,∴∠C=180°−∠B−∠BAC=180°−x°−(200°−2x°)=(x−20°),故答案为:(x−20)°;(3)解:连接BF,∵∠1=∠GBF+∠GFB,∠2=∠HBF+∠HFB,∴∠1+∠2=∠GBF+∠GFB+∠HBF+∠HFB=∠B+∠GFH,∵△GFH由△GBH折叠所得,∴∠B=∠GFH,∴∠1+∠2=2∠B.22.(1)解:∵∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴∠ACB=180°−2∠BAC,∵∠CFE+∠FEC=180°−∠ACB,∴∠CFE+∠FEC=180°−(180°−2∠BAC)=2∠BAC,∵∠BAC=70°,∴∠CFE+∠FEC=140°;(2)∠FEC+∠CFE=2∠BAC,证明:在△CEF中∵∠C+∠CEF+∠CFE=180°,∴∠CEF+∠CFE=180°−∠C,在△ABC中,∵∠C+∠BAC+∠ABC=180°,∴∠BAC+∠ABC=180°−∠C,∴∠CEF+∠CFE=∠BAC+∠ABC,∵∠BAC=∠ABC,∴∠CEF+∠CFE=2∠BAC;(3)解:∵∠ACB=∠FEC+∠CFE,∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴180°−2∠BAC=∠FEC+∠CFE,∴∠FEC+∠CFE=180°−2∠BAC.23.(1)解:如图所示,∵DC∥AB∴∠DCB=∠B=30°,(2)证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵FN平分∠EFM∴∠EFN=∠MFN=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠NFB=∠NFM−∠BFM=45°+α−α=45°,即∠NFB的大小保持不变;(3)解:在移动过程中,∠NFB的大小保持不变;如图所示,证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵F N'平分∠EFM∴∠EF N'=∠MF N'=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠N'FB=∠N'FM−∠BFM=45°+α−α=45°,∴∠NFB=135°,即∠NFB的大小保持不变;。

2020-2021学年湖北省武汉市东湖高新区八年级上学期中数学试卷(含解析)

2020-2021学年湖北省武汉市东湖高新区八年级上学期中数学试卷(含解析)

2020-2021学年湖北省武汉市东湖高新区八年级(上)期中数学试卷一、选择题(共10小题).1.下列四个图形中,不是轴对称图形的是()A.B.C.D.2.下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形3.一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F 4.已知等腰三角形的一边长为4cm,周长是18cm,则它的腰长是()A.4cm B.7cm C.10 cm D.4cm或7cm 5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.ASA B.SAS C.AAS D.SSS6.用形状、大小完全相同的下列图形,不能进行平面镶嵌的是()A.三角形B.四边形C.正五边形D.正六边形7.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数为()A.110°B.115°C.120°D.130°8.在如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm,沿过点B的直线折叠这个三角形,使点C落在AB上的点E处,折痕为BD,则△AED的周长为()A.5cm B.6cm C.7cm D.8cm9.一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是()A.8B.9C.10D.1110.如图,△ABC是等边三角形,F、G分别为AC和BC的中点,D在线段BG上,连接DF.以DF为边作等边△DFE,ED的延长线交AB于H,连接EC,则以下结论:①BF ⊥AC;②∠AHD+∠AFD=180°;③∠BCE=60°;④当D在线段BG上(不与G点重合)运动时,DC=FC+CE.其中正确的结论个数有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,共18分)11.在平面直角坐标系中,点(2,﹣1)关于x轴对称的点的坐标为.12.若从一个n边形的一个顶点出发,最多可以引9条对角线,则n=.13.如图是两个全等三角形,则∠1的大小是.14.已知△ABC的周长为30,面积为20,其内角平分线交于点O,则点O到边BC的距离为.15.如图,在四边形ABCD中,∠B=∠D=90°,∠C=70°,E,F分别是边BC,CD上的动点,当△AEF的周长最小时,∠EAF=°.16.在△ABC中,AB=2,AC=3,以CB为边作一个等边△BCD,则DA的最大值是.三、解答题(共8小题,共72分)17.如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.18.在△ABC中,如果∠A=2∠B=3∠C,那么你能判断△ABC是什么三角形吗?19.如图,在正方形网格中,每个小正方形的边长都为1,△ABC在网格中的位置如图所示,△ABC的三个顶点都在格点上.将点A、B、C的横坐标和纵坐标都乘以﹣1,分别得到点A1、B1、C1.(1)写出△A1B1C1,三个顶点的坐标;(2)若△ABC与△A2B2C2关于x轴对称,在平面直角坐标系中画出△A2B2C2;(3)若以点A、C、P为顶点的三角形与ABC全等,直接写出所有符合条件的点P的坐标.20.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠B,DF平分∠D,求证:BE ∥DF.21.如图,在△ABC中,AC=BC,∠ACB=90°,D为△ABC内一点,∠BAD=15°,AD =AC,CE⊥AD于E,且CE=5.(1)求BC的长;(2)求证:BD=CD.22.如图,在△ABC中,点D,E分别在边AC,AB上,BD,CE交于点P且∠PBC=∠PCB =∠A.(1)探究∠AEP与∠ADP的数量关系,并证明之;(2)求证:BE=CD.23.在等腰△ABC中,AB=AC,点D是AC上一动点,点E在的BD延长线上,且AB=AE,AF平分∠CAE交DE于点F,连接FC.(1)如图1,求证:∠ABE=∠ACF;(2)如图2,当∠ABC=60°时,求证:AF+EF=FB;(3)如图3,当∠ABC=45°,且AE∥BC时,求证:BD=2EF.24.如图,点A(a,0)、B(0,b),且a、b满足(a﹣1)2+|2b﹣2|=0.(1)如图1,求△AOB的面积;(2)如图2,点C在线段AB上,(不与A、B重合)移动,AB⊥BD,且∠COD=45°,猜想线段AC、BD、CD之间的数量关系并证明你的结论;(3)如图3,若P为x轴上异于原点O和点A的一个动点,连接PB,将线段PB绕点P顺时针旋转90°至PE,直线AE交y轴于点Q,当P点在x轴上移动时,线段BE和线段BQ中哪一条线段长为定值,并求出该定值.2020-2021学年湖北省武汉市东湖高新区八年级(上)期中数学试卷参考答案与试题解析一.选择题(共10小题)1.下列四个图形中,不是轴对称图形的是()A.B.C.D.【分析】轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项不合题意;故选:A.2.下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形【分析】根据三角形具有稳定性解答.解:具有稳定性的图形是三角形.故选:A.3.一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F 【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选:A.4.已知等腰三角形的一边长为4cm,周长是18cm,则它的腰长是()A.4cm B.7cm C.10 cm D.4cm或7cm【分析】根据等腰三角形的性质分为两种情况解答.解:分情况考虑:当4是腰时,则底边长是18﹣8=10,此时4,4,10不能组成三角形,应舍去;当4是底边时,腰长是(18﹣4)×=7,4,7,7能够组成三角形.此时腰长是7.故选:B.5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.ASA B.SAS C.AAS D.SSS解:画一个三角形A′B′C′,使∠A′=∠A,A′B′=AB,∠B′=∠B,符合全等三角形的判定定理ASA,故选:A.6.用形状、大小完全相同的下列图形,不能进行平面镶嵌的是()A.三角形B.四边形C.正五边形D.正六边形【分析】任意三角形的内角和是180°,放在同一顶点处6个即能组成镶嵌.同理四边形的内角和是360°,也能组成镶嵌.正六边形的每个内角是120°,正五边形每个内角是180°﹣360°÷5=108°,其中180°,360°,120°能整除360°,所以不适用的是正五边形.解:A、任意三角形的内角和是180°,放在同一顶点处6个即能密铺;B、任意四边形的内角和是360°,放在同一顶点处4个即能密铺;C、正五边形的每一个内角是180°﹣360°÷5=108°,不能整除360°,所以不能密铺;D、正六边形每个内角是120度,能整除360°,可以密铺.故选:C.7.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数为()A.110°B.115°C.120°D.130°【分析】根据折叠的性质及∠1=50°可求出∠BFE的度数,再由平行线的性质即可得到∠AEF的度数.解:根据折叠以及∠1=50°,得∠BFE=∠BFG=(180°﹣∠1)=65°.∵AD∥BC,∴∠AEF=180°﹣∠BFE=115°.故选:B.8.在如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm,沿过点B的直线折叠这个三角形,使点C落在AB上的点E处,折痕为BD,则△AED的周长为()A.5cm B.6cm C.7cm D.8cm【分析】先根据折叠的性质可得BE=BC,DE=CD,再求出AE的长,然后求出△ADE 的周长=AC+AE,即可得出答案.解:由折叠的性质得:BE=BC=6cm,DE=DC,∴AE=AB﹣BE=AB﹣BC=8﹣6=2(cm),∴△AED的周长=AD+DE+AE=AD+CD+AE=AC+AE=5+2=7(cm),故选:C.9.一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是()A.8B.9C.10D.11【分析】根据n边形的内角和是(n﹣2)•180°,可以得到内角和一定是180度的整数倍,即可求解.解:1500÷180=8,则正多边形的边数是8+1+2=11.故选:D.10.如图,△ABC是等边三角形,F、G分别为AC和BC的中点,D在线段BG上,连接DF.以DF为边作等边△DFE,ED的延长线交AB于H,连接EC,则以下结论:①BF ⊥AC;②∠AHD+∠AFD=180°;③∠BCE=60°;④当D在线段BG上(不与G点重合)运动时,DC=FC+CE.其中正确的结论个数有()A.1个B.2个C.3个D.4个【分析】由等边三角形的性质可得BF⊥AC,可判断①,由等边三角形的性质可求∠A+∠FDH=180°,由四边形内角和定理可得∠AHD+∠AFD=180°,可判断②,由“SAS”可证△CFE≌△GFD,可得CE=GD,∠FGD=∠FCE=120°,可判断③和④,即可求解.解:∵△ABC是等边三角形,点F是AC中点,∴BF⊥AC,故①正确,∵△ABC和△EFD是等边三角形,∴∠A=∠EDF=60°=∠EFD,EF=FD,∴∠FDH=120°,∴∠A+∠FDH=180°,∴∠AHD+∠AFD=180°,故②正确;如图,连接FG,∵F、G分别为AC和BC的中点,∴CG=AC=CF=BC,又∵∠FCG=60°,∴△CFG是等边三角形,∴CF=FG=CG,∠FCG=60°=∠FGC,∴∠FGD=120°,∵∠CFG=∠EFD=60°,∴∠CFE=∠GFD,在△CFE和△GFD中,,∴△CFE≌△GFD(SAS),∴CE=GD,∠FGD=∠FCE=120°,∴CD=CG+GD=CF+CE,∠BCE=60°,故③④正确,故选:D.二.填空题(共6小题)11.在平面直角坐标系中,点(2,﹣1)关于x轴对称的点的坐标为(2,1).【分析】直接利用关于x轴对称点的性质得出答案.解:点(2,﹣1)关于x轴对称的点的坐标为(2,1).故答案为:(2,1).12.若从一个n边形的一个顶点出发,最多可以引9条对角线,则n=12.【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,列方程求解.解:设多边形有n条边,则n﹣3=9,解得n=12.故多边形的边数为12,即它是十二边形.故答案为:12.13.如图是两个全等三角形,则∠1的大小是88°.【分析】根据三角形内角和定理求出∠A,根据全等三角形的性质解答即可.解:在△ABC中,∠B=38°,∠C=54°,∴∠A=180°﹣54°﹣38°=88°,∵两个三角形全等,∴∠1=∠A=88°,故答案为:88°.14.已知△ABC的周长为30,面积为20,其内角平分线交于点O,则点O到边BC的距离为.【分析】过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,连接OA、OB、OC,根据三角形的内心和角平分线的性质得出OE =OD =OF ,再根据三角形的面积公式求出即可.解:如图,过O 作OD ⊥BC 于D ,OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA 、OB 、OC ,∵O 是△ABC 内角平分线的交点,∴OE =OF =OD ,∵△ABC 的面积是20,∴S △AOB +S △BOC +S △AOC =20, ∴=20,∴(AB +BC +AC )×OD =40,∵△ABC 的周长为30,∴AB +BC +AC =30,∴OD ==, 即O 到BC 的距离是, 故答案为:.15.如图,在四边形ABCD 中,∠B =∠D =90°,∠C =70°,E ,F 分别是边BC ,CD 上的动点,当△AEF 的周长最小时,∠EAF = 40 °.【分析】据要使△AEF 的周长最小,即利用点的对称,使三角形的三边转化到同一直线上,作出A 关于BC 和CD 的对称点A ′,A ″,即可得出∠AA ′E +∠A ″=∠HAA ′=70°,进而得出∠EAF =110°﹣70°=40°,即可得出答案.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,在四边形ABCD中,∠B=∠D=90°,∠C=70°,∴∠DAB=110°,∴∠HAA′=70°,∴∠AA′E+∠A″=∠HAA′=70°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=70°,∴∠EAF=110°﹣70°=40°,故答案为40.16.在△ABC中,AB=2,AC=3,以CB为边作一个等边△BCD,则DA的最大值是5.【分析】如图,在直线AC的上方作等边三角形△OAC,连接OD.只要证明△ACB≌△OCD,推出OD=AB=2,推出点D的运动轨迹是以O为圆心OD长为半径的圆,推出当D、O、A共线时,AD的值最大;从而求解.解:如图,在直线AC的上方作等边三角形△OAC,连接OD.∵△BCD,△AOC都是等边三角形,∴CA=CO,CB=CD,∠ACO=∠BCD,∴∠ACB=∠OCD,在△ACB和∠OCD中,,∴△ACB≌△OCD(SAS),∴OD=AB=2,∴点D的运动轨迹是以O为圆心OD长为半径的圆,∴当D、O、A共线时,DA的值最大,最大值为OA+OD=3+2=5.故答案为:5.三.解答题17.如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.【解答】证明:在△ODC和△OBA中∴△ODC≌△OBA(SAS);∴∠C=∠A,∴DC∥AB(内错角相等,两直线平行).18.在△ABC中,如果∠A=2∠B=3∠C,那么你能判断△ABC是什么三角形吗?解:∵∠A=2∠B=3∠C,∴设∠C=α,∠B=α,∠A=3α,∵∠A+∠B+∠C=180°,∴α+α+3α=180°,∴α=()°,∴∠A=()°,∠B=()°,∠C=()°,∵∠A>90°,∴△ABC是钝角三角形.19.如图,在正方形网格中,每个小正方形的边长都为1,△ABC在网格中的位置如图所示,△ABC的三个顶点都在格点上.将点A、B、C的横坐标和纵坐标都乘以﹣1,分别得到点A1、B1、C1.(1)写出△A1B1C1,三个顶点的坐标A1(3,﹣1)、B1(1,﹣4)、C1(1,﹣1);(2)若△ABC与△A2B2C2关于x轴对称,在平面直角坐标系中画出△A2B2C2;(3)若以点A、C、P为顶点的三角形与ABC全等,直接写出所有符合条件的点P的坐标.解:(1)A1(3,﹣1)、B1(1,﹣4)、C1(1,﹣1);故答案为:A1(3,﹣1)、B1(1,﹣4)、C1(1,﹣1);(2)如图所示,(3)若∠CAP=∠ACB=90°,则点P的坐标为(﹣3,﹣2)或(﹣3,4),若∠ACP=∠ACB=90°,则点P的坐标为(﹣1,﹣2),综上所述,点P的坐标为(﹣3,﹣2)、(﹣3,4)、(﹣1,﹣2).20.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠B,DF平分∠D,求证:BE ∥DF.【解答】证明:∵在四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE平分∠B,DF平分∠D,∴∠EBF+∠FDC=90°,∵∠C=90°,∴∠DFC+∠FDC=90°,∴∠EBF=∠DFC,∴BE∥DF.21.如图,在△ABC中,AC=BC,∠ACB=90°,D为△ABC内一点,∠BAD=15°,AD =AC,CE⊥AD于E,且CE=5.(1)求BC的长;(2)求证:BD=CD.【解答】(1)解:在△ABC中,∵AC=BC,∠ACB=90°,∴∠BAC=45°,∵∠BAD=15°,∴∠CAD=30°,∵CE⊥AD,CE=5,∴AC=10,∴BC=10;(2)证明:过D作DF⊥BC于F在△ADC中,∠CAD=30°,AD=AC,∴∠ACD=75°,∵∠ACB=90°,∴∠FCD=15°,在△ACE中,∠CAE=30°,CE⊥AD,∴∠ACE=60°,∴∠ECD=∠ACD﹣∠ACE=15°,∴∠ECD=∠FCD,∴DF=DE.∵在Rt△DCE与Rt△DCF中,,∴Rt△DCE≌Rt△DCF(HL),∴CF=CE=5,∵BC=10,∴BF=BC﹣CF=5,∴BF=FC,∵DF⊥BC,∴BD=CD.22.如图,在△ABC中,点D,E分别在边AC,AB上,BD,CE交于点P且∠PBC=∠PCB =∠A.(1)探究∠AEP与∠ADP的数量关系,并证明之;(2)求证:BE=CD.解:(1)∠AEP+∠ADP=180°,理由如下:△CPB中,∠EPB=∠PBC+∠PCB,∵∠PBC=∠PCB=∠A,∴∠A=∠BPE,∵∠ABD=∠EBP,∴∠ADB=∠BEP,∵∠BEP+∠AEP=180°,∴∠ADP+∠AEP=180°;(2)在PD上截取PF=PE,连接CF,∵∠PCB=∠PBC,∴PC=PB,在△CFP和△BEP中,,∴△CFP≌△BEP(SAS),∴CF=BE,∠CFP=∠BEP,∵∠BEP=∠ADB,∴∠ADP=∠CFP,∴∠CDF=∠CFD,∴CD=CF,∴CD=BE.23.在等腰△ABC中,AB=AC,点D是AC上一动点,点E在的BD延长线上,且AB=AE,AF平分∠CAE交DE于点F,连接FC.(1)如图1,求证:∠ABE=∠ACF;(2)如图2,当∠ABC=60°时,求证:AF+EF=FB;(3)如图3,当∠ABC=45°,且AE∥BC时,求证:BD=2EF.【解答】证明:(1)∵AF平分∠CAE,∴∠EAF=∠CAF,∵AB=AC,AB=AE,∴AE=AC,在△ACF和△AEF中,,∴△ACF≌△AEF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠E=∠ABE,∴∠ABE=∠ACF;(2)如图2,在FB上截取BM=CF,连接AM,∵△ACF≌△AEF,∴EF=CF,∠E=∠ACF=∠ABM,在△ABM和△ACF中,,∴△ABM≌△ACF(SAS),∴AM=AF,∠BAM=∠CAF,∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴∠BAC=60°,∴∠MAF=∠MAC+∠CAF=∠MAC+∠BAM=∠BAC=60°,∵AM=AF,∴△AMF为等边三角形,∴AF=AM=MF,∴AF+EF=BM+MF=FB;(3)如图3,延长BA、CF交于N,∵AE∥BC,∴∠E=∠EBC,∵AB=AE,∴∠ABE=∠E,∴∠ABF=∠CBF,∵∠ABC=45°,∴∠ABF=∠CBF=22.5°,∠ACB=45°,∠BAC=180°﹣45°﹣45°=90°,∴∠ACF=∠ABF=22.5°,∴∠BFC=180°﹣22.5°﹣45°﹣22.5°=90°,∴∠BFN=∠BFC=90°,在△BFN和△BFC中,,∴△BFN≌△BFC(ASA),∴CF=FN,即CN=2CF=2EF,∵∠BAC=90°,∴∠NAC=∠BAD=90°,在△BAD和△CAN中,,∴△BAD≌△CAN(ASA),∴BD=CN,∴BD=2EF.24.如图,点A(a,0)、B(0,b),且a、b满足(a﹣1)2+|2b﹣2|=0.(1)如图1,求△AOB的面积;(2)如图2,点C在线段AB上,(不与A、B重合)移动,AB⊥BD,且∠COD=45°,猜想线段AC、BD、CD之间的数量关系并证明你的结论;(3)如图3,若P为x轴上异于原点O和点A的一个动点,连接PB,将线段PB绕点P 顺时针旋转90°至PE,直线AE交y轴于点Q,当P点在x轴上移动时,线段BE和线段BQ中哪一条线段长为定值,并求出该定值.解:(1)∵(a﹣1)2+|2b﹣2|=0,∴a﹣1=0,2b﹣2=0,∴a=1,b=1,∴A(1,0)、B(0,1),∴OA=1,OB=1,∴△AOB的面积=×1×1=;(2)如图2,证明:将△AOC绕点O逆时针旋转90°得到△OBF,∵∠OAC=∠OBF=∠OBA=45°,∠DBA=90°,∴∠BDF=180°,∵∠DOC=45°,∠AOB=90°,∴∠BOD+∠AOC=45°,∴∠FOD=∠BOF+∠BOD=∠BOD+∠AOC=45°,在△ODF与△ODC中,,∴△ODF≌△ODC(SAS),∴DC=DF,DF=BD+BF,故CD=BD+AC;(3)解:BQ是定值,作EF⊥OA于F,在FE上截取PF=FD,∵∠BAO=∠PDF=45°,∴∠PAB=∠PDE,∠PED=135°,∴∠BPA+∠EPF=90°,∠EPF+∠PED=90°,∴∠BPA=∠PED,在△PBA与△EPD中,,∴△PBA≌EPD(SAS),∴AP=ED,∴FD+ED=PF+AP,即:FE=FA,∴∠FEA=∠FAE=45°,∴∠QAO=∠EAF=∠OQA=45°,∴OA=OQ=1,∴BQ=2.。

2023-2024学年天津市滨海新区九年级上学期期中数学质量检测模拟试题(含答案)

2023-2024学年天津市滨海新区九年级上学期期中数学质量检测模拟试题(含答案)

2023-2024学年天津市滨海新区九年级上学期期中数学质量检测模拟试题一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形中,可以看作是中心对称图形的是()A.B.C.D.2.(3分)已知点A(a,﹣2)与点B(2,b)是关于原点O的对称点,则()A.a=﹣2,b=﹣2B.a=﹣2,b=2C.a=2.b=﹣2D.a=2,b=23.(3分)一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为()A.﹣2B.b C.2D.﹣b4.(3分)将抛物线y=(x﹣1)2+1先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(﹣2,3)B.(﹣1,4)C.(3,4)D.(4,3)5.(3分)在平面直角坐标系中,O是坐标原点,⊙O的半径为5,若点P的坐标为(4,1),则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定6.(3分)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x的方程为()A.x(5+x)=6B.x(5﹣x)=6C.x(10﹣x)=6D.x(10﹣2x)=67.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.88.(3分)已知抛物线y=a(x﹣2)2+1(a>0),A(﹣3,y1),B(3,y2),C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依序排列为()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y19.(3分)如图,在▱OABC中,∠A=60°,将▱OABC绕点O逆时针旋转得到▱OA′B'C′,且∠A'OC =90°,设旋转角为α(0°<α<90°),则α的大小为()A.30°B.45°C.60°D.75°10.(3分)将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15°B.28°C.34°D.56°11.(3分)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,将△ABC绕着某点顺时针旋转一定的角度后,得到△A'B'C',则旋转中心的坐标为()A.(﹣1,1)B.(﹣1,2)C.(1,1)D.(1,﹣1)12.(3分)已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每题3分,共18分)13.(3分)已知抛物线y=﹣2x2+12x﹣13,则顶点坐标为.14.(3分)方程是关于x的一元二次方程,则n=.15.(3分)如图,⊙O的弦AB,CD相交于点P.若∠A=48°,∠APD=80°,则∠B=°.16.(3分)廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F 处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)17.(3分)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.18.(3分)如图,在每个小正方形的边长为1的网格中,四边形ABCD为圆P的内接四边形,点A,B,C均在格点上,D为OP与格线的交点,连接AC.(Ⅰ)AC的长等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,先确定圆心P,再画出弦DE(点E在弧ABC 上),使DE=DC,并简要说明点P的位置和弦DE是如何得到的(不要求证明).三、解答题(本大题共7小题,共66分。

实数混合运算及应用

实数混合运算及应用

二次根式的混合运算1.有下列表述:①有理数和数轴上的点一一对应;②|a|一定不是负数;③负数没有立方根;④平4.其中正确的有()A.0个B.1个C.2个D.3个2.±2,则a=______.3.两个不相等的无理数,他们的乘积是有理数,请写出一对这样的数:_____,______.4.实数a,b在数轴上所对应的点的位置如图所示,则-2b______0,a-b_____0;-a b______0;化简3b a b-+=____________.5.计算(1(2解:原式= 解:原式=(3)(4)解:原式= 解:原式=(512(0.2-+(6)21)--解:原式= 解:原式=a b(7)2x>0,y>0)解:原式=6.已知x=y=7.8.如图,正方形网格中的每个小正方形边长都是1,任意连接这些小正方形的顶点,可以得到一些线段.请在图中画出AB=CD=,EF=这样的线段,并选择其中的一个说明这样画的道理.实数综合应用1.下列判断正确的是()A.若| x |=| y |,则x=y B.若x<y,则x<yC.若| x|=2,则x=y D.若x=y,则3x=3y2.下列说法正确的是()A.2是最小的正无理数 B.绝对值最小的实数不存在C.两个无理数的和不一定是无理数D.有理数与数轴上的点一一对应3.满足xx有__________________.4._________,小数部分为________.5.已知8x,小数部分为y,则2xy-y2=_____.6.比较大小:310____5;6____2.35.7.如图,在数轴上A,B两点表示的数分别是的数是_________.8.已知25a-≤≤.9.比较大小(1(221(3(4(55和5(6)和6-(710.比较下列各数的大小:211.当m>312.当1<x<44x-+作业1、(1)(2)2-解:原式= 解:原式=(3-(4(3解:原式= 解:原式= 2、比较大小(填“>”、“<”或“=”)12_______123)A.7和8之间B.6和7之间C.3和4之间D.2和3之间4、10_________,小数部分是___________.示的实数为x,则x=______________.。

山东省烟台市2021年中考数学真题(word版,含解析)

山东省烟台市2021年中考数学真题(word版,含解析)

2021年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D 四个备选答案,其中有且只有一个是正确的1.若x的相反数是3,则x的值是()A.﹣3B.﹣C.3D.±32.下列数学符号中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.a2•a3=a6B.a2+a3=a5C.(a2)3=a6D.a2÷a3=a4.一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是()A.B.C.D.5.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,5500万用科学记数法表示为()A.0.55×108B.5.5×107C.55×106D.5.5×1036.一副三角板如图放置,两三角板的斜边互相平行,每个三角板的直角顶点都在另一个三角板的斜边上,图中∠α的度数为()A.45°B.60°C.75°D.85°7.如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为()A.(2,2)B.(,2)C.(3,)D.(2,)8.如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下:按键的结果为m;按键的结果为n;按键的结果为k.下列判断正确的是()A.m=n B.n=k C.m=k D.m=n=k9.已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.11.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数有()A.1个B.2个C.3个D.4个12.由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC=…=∠LOM =30°.若OA=16,则OG的长为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.若代数式在实数范围内有意义,则x的取值范围为.14.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为米.15.幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.16.数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为米.(结果精确到1米,参考数据:≈1.41,≈1.73)17.如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是.18.综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为cm.三、解答题(本大题共7个小题,满分66分19.(6分)先化简,再求值:,从﹣2<x≤2中选出合适的x 的整数值代入求值.20.(8分)2021年是中国共产党成立100周年.为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下:甲班15名学员测试成绩(满分100分)统计如下:87,84,88,76,93,87,73,98,86,87,79,85,84,85,98.乙班15名学员测试成绩(满分100分)统计如下:77,88,92,85,76,90,76,91,88,81,85,88,98,86,89(1)按如表分数段整理两班测试成绩班级70.5~75.575.5~80.580.5~85.585.5~90.590.5~95.595.5~100.5甲12a512乙033621表中a =;(2)补全甲班15名学员测试成绩的频数分布直方图;(3)两班测试成绩的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差甲86x8644.8乙8688y36.7表中x=,y=.(4)以上两个班级学员掌握党史相关知识的整体水平较好的是班;(5)本次测试两班的最高分都是98分,其中甲班2人,乙班1人.现从以上三人中随机抽取两人代表党校参加全市党史知识竞赛,利用树状图或表格求出恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率.21.(8分)如图,正比例函数y=x与反比例函数y=(x>0)的图象交于点A,过点A 作AB⊥y轴于点B,OB=4,点C在线段AB上,且AC=OC.(1)求k的值及线段BC的长;(2)点P为B点上方y轴上一点,当△POC与△P AC的面积相等时,请求出点P的坐标.22.(9分)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?23.(10分)如图,已知Rt△ABC中,∠C=90°.(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).①作∠BAC的角平分线AD,交BC于点D;②作线段AD的垂直平分线EF与AB相交于点O;③以点O为圆心,以OD长为半径画圆,交边AB于点M.(2)在(1)的条件下,求证:BC是⊙O的切线;(3)若AM=4BM,AC=10,求⊙O的半径.24.(11分)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N.【观察猜想】(1)线段DE与AM之间的数量关系是,位置关系是;【探究证明】(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.25.(14分)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.(1)求抛物线及直线BC的函数表达式;(2)点F是抛物线对称轴上一点,当F A+FC的值最小时,求出点F的坐标及F A+FC的最小值;(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P 的坐标;若不存在,请说明理由.2021年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D 四个备选答案,其中有且只有一个是正确的1.若x的相反数是3,则x的值是()A.﹣3B.﹣C.3D.±3【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣3的相反数是3,∴x=﹣3.故选:A.2.下列数学符号中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的定义进行判断,即可求出答案.【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.不是轴对称图形,是中心对称图形,故本选项不合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.3.下列计算正确的是()A.a2•a3=a6B.a2+a3=a5C.(a2)3=a6D.a2÷a3=a【分析】根据同底数幂的乘法,合并同类项,幂的乘方,同底数幂的除法法则进行计算,然后作出判断.【解答】解:A.a2•a3=a5,故此选项不符合题意;B.a2与a3不是同类项,不能进行合并计算,故此选项不符合题意;C.(a2)3=a6,正确,故此选项符合题意;D.a2÷a3=,故此选项不符合题意,故选:C.4.一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是()A.B.C.D.【分析】根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,是一个正方形,正方形的中间有一条横向的虚线.故选:C.5.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,5500万用科学记数法表示为()A.0.55×108B.5.5×107C.55×106D.5.5×103【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:5500万=55000000=5.5×107.故选:B.6.一副三角板如图放置,两三角板的斜边互相平行,每个三角板的直角顶点都在另一个三角板的斜边上,图中∠α的度数为()A.45°B.60°C.75°D.85°【分析】根据EF∥BC得出∠FDC=∠F=30°,进而得出∠α=∠FDC+∠C即可.【解答】解:如图,∵EF∥BC,∴∠FDC=∠F=30°,∴∠α=∠FDC+∠C=30°+45°=75°,故选:C.7.如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为()A.(2,2)B.(,2)C.(3,)D.(2,)【分析】根据直角三角形的性质得出OB,OA的长,进而利用菱形的性质得出点的坐标即可.【解答】解:∵菱形ABCD,∠BCD=120°,∴∠ABC=60°,∵B(﹣1,0),∴OB=1,OA=,AB=2,∴A(0,),∴BC=AD=2,∴C(1,0),D(2,),故选:D.8.如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下:按键的结果为m;按键的结果为n;按键的结果为k.下列判断正确的是()A.m=n B.n=k C.m=k D.m=n=k【分析】分别计算出m,n,k的值即可得出答案.【解答】解:m=23﹣=8﹣4=4;n=﹣22=4﹣4=0;k=﹣cos60°=﹣=4;∴m=k,故选:C.9.已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】先由数轴得出m,n与0的关系,再计算判别式的值即可判断.【解答】解:由数轴得m>0,n<0,m+n<0,∴mn<0,∴△=(mn)2﹣4(m+n)>0,∴方程有两个不相等的实数根.故选:A.10.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.【分析】如图,将阴影部分分割成图形小三角形的大小,令小三角形的面积为a,分别表示出阴影部分的面积个正六边形的面积,根据概率公式求解即可.【解答】解:如图所示,令S△ABC=a,则S阴影=6a,S正六边形=18a,∴将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为=,故选:B.11.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数有()A.1个B.2个C.3个D.4个【分析】把点A(﹣1,0),B(3,0)代入二次函数y=ax2+bx+c,可得二次函数的解析式为:y=ax2﹣2ax﹣3a,由图象可知,函数图象开口向下,所以a<0,可得b和c的符号,及a和c的数量关系;由函数解析式可得函数对称轴为直线:x=﹣=1,根据函数的增减性和最值,可判断②和④的正确性.【解答】解:把点A(﹣1,0),B(3,0)代入二次函数y=ax2+bx+c,可得二次函数的解析式为:y=ax2﹣2ax﹣3a,∵该函数开口方向向下,∴a<0,∴b=﹣2a>0,c=﹣3a>0,∴ac<0,3a+c=0,①错误,③正确;∵对称轴为直线:x=﹣=1,∴x<1时,y随x的增大而增大,x>1时,y随x的增大而减小;②错误;∴当x=1时,函数取得最大值,即对于任意的m,有a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④正确.综上,正确的个数有2个,故选:B.12.由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC=…=∠LOM =30°.若OA=16,则OG的长为()A.B.C.D.【分析】由AOB=∠BOC=…=∠LOM=30°,∠ABO=∠BCO=…=∠LMO=90°,可知AB:OB:OA=BC:OC:OB=…=FG:OG:OF=1::2,由此可求出OG的长.【解答】解:由图可知,∠ABO=∠BCO=…=∠LMO=90°,∵AOB=∠BOC=…=∠LOM=30°,∴∠A=∠OBA=∠BCD=…=∠OLM=60°,∴AB=OA,OB=AB=OA,同理可得,OC=OB=()2OA,OD=OC=()3OA,…OG=OF=()6OA=()6×16=.故选:A.二、填空题(本大题共6个小题,每小题3分,满分18分)13.若代数式在实数范围内有意义,则x的取值范围为x≤2.【分析】二次根式的被开方数是非负数.【解答】解:依题意,得2﹣x≥0,解得,x≤2.故答案是:x≤2.14.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为3米.【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD.【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴,∴,∴CD=3米,故答案为:3.15.幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为2.【分析】利用幻方中每一横行,每一竖行以及两条对角线上的数字之和都是15,可求出幻方右下角及第二行中间的数字,再利用幻方中对角线上的数字之和为15,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:幻方右下角的数字为15﹣8﹣3=4,幻方第二行中间的数字为15﹣6﹣4=5.依题意得:8+5+a=15,解得:a=2.故答案为:2.16.数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为14米.(结果精确到1米,参考数据:≈1.41,≈1.73)【分析】过O点作OC⊥AB的延长线于C点,垂足为C,利用直角三角形的解法得出OC,进而解答即可.【解答】解:过O点作OC⊥AB的延长线于C点,垂足为C,∵当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,∴AC=45米,∠CAO=30°,∴OC=AC•tan30°=(米),∴旗杆的高度=40﹣15≈14(米),故答案为:14.17.如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是.【分析】连接AO并延长交⊙O于D,根据圆周角定理得到∠ACB=∠ADB,根据勾股定理求出AD,根据正弦的定义计算,得到答案.【解答】解:如图,连接AO并延长交⊙O于D,由圆周角定理得:∠ACB=∠ADB,由勾股定理得:AD==2,∴sin∠ACB=sin∠ADB===,故答案为:.18.综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为22cm.【分析】延长AT交BC于点P,利用三角形的面积公式求出AP,求出BE,CD,DE,可得结论.【解答】解:延长AT交BC于点P,∵AP⊥BC,∴•BC•AP=24,∴×8×AP=24,∴AP=6(cm),由题意,AT=PT=3(cm),∴BE=CD=PT=3(cm),∵DE=BC=8cm,∴矩形BCDE的周长为8+8+3+3=22(cm).故答案为:22.三、解答题(本大题共7个小题,满分66分19.(6分)先化简,再求值:,从﹣2<x≤2中选出合适的x 的整数值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2<x≤2中选出一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:=[]•=•==,∵﹣2<x≤2且(x+1)(x﹣1)≠0,2﹣x≠0,∴x的整数值为﹣1,0,1,2且x≠±1,2,∴x=0,当x=0时,原式==﹣1.20.(8分)2021年是中国共产党成立100周年.为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下:甲班15名学员测试成绩(满分100分)统计如下:87,84,88,76,93,87,73,98,86,87,79,85,84,85,98.乙班15名学员测试成绩(满分100分)统计如下:77,88,92,85,76,90,76,91,88,81,85,88,98,86,89(1)按如表分数段整理两班测试成绩班级70.5~75.575.5~80.580.5~85.585.5~90.590.5~95.595.5~100.5甲12a512乙033621表中a =4;(2)补全甲班15名学员测试成绩的频数分布直方图;(3)两班测试成绩的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差甲86x8644.8乙8688y36.7表中x=87,y=86.(4)以上两个班级学员掌握党史相关知识的整体水平较好的是乙班;(5)本次测试两班的最高分都是98分,其中甲班2人,乙班1人.现从以上三人中随机抽取两人代表党校参加全市党史知识竞赛,利用树状图或表格求出恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率.【分析】(1)由甲班15名学员的测试成绩即可求解;(2)由(1)的结果,补全甲班15名学员测试成绩的频数分布直方图即可;(3)由众数、中位数的定义求解即可;(4)从平均数、中位数、方差几个方面说明即可;(5)画树状图,共有6种等可能的结果,恰好抽取甲、乙两班各一人参加全市党史知识竞赛的结果有4种,再由概率公式求解即可.【解答】解:(1)由题意得:a=4,故答案为:4;(2)补全甲班15名学员测试成绩的频数分布直方图如下:(3)甲班15名学员测试成绩中,87分出现的次数最多,∴x=87,由题意得:乙班15名学员测试成绩的中位数为86,故答案为:87,86;(4)以上两个班级学员掌握党史相关知识的整体水平较好的是乙班,理由如下:①甲、乙两个班的平均数相等,但乙班的中位数大于甲班的中位数;②乙班的方差小于甲班的方差,因此乙班的成绩更稳定;故答案为:乙;(5)把甲班2人记为A、B,乙班1人记为C,画树状图如图:共有6种等可能的结果,恰好抽取甲、乙两班各一人参加全市党史知识竞赛的结果有4种,∴恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率为=.21.(8分)如图,正比例函数y=x与反比例函数y=(x>0)的图象交于点A,过点A 作AB⊥y轴于点B,OB=4,点C在线段AB上,且AC=OC.(1)求k的值及线段BC的长;(2)点P为B点上方y轴上一点,当△POC与△P AC的面积相等时,请求出点P的坐标.【分析】(1)根据正比例函数的解析式求出A点坐标,由A在反比例函数上,可求出k,再根据AC=OC求出点C的坐标,即可得线段BC的长;(2)设点P(0,p),根据△POC与△P AC的面积相等,得出关于p的方程,解方程即可得点P的坐标.【解答】解:(1)∵点A在正比例函数y=x上,AB⊥y轴,OB=4,∵点B的坐标为(0,4),∴点A的纵坐标是4,代入y=x,得x=8,∴A(8,4),∵点A在反比例函数y=(x>0)的图象上,∴k=4×8=32,∵点C在线段AB上,且AC=OC.设点C(c,4),∵OC==,AC=AB﹣BC=8﹣c,∴=8﹣c,解得:c=3,∴点C(3,4),∴BC=3,∴k=32,BC=3;(2)如图,设点P(0,p),∵点P为B点上方y轴上一点,∴OP=p,BP=p﹣4,∵A(8,4),C(3,4),∴AC=8﹣3=5,BC=3,∵△POC与△P AC的面积相等,∴×3p=×5(p﹣4),解得:p=10,∴P(0,10).22.(9分)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?【分析】(1)根据日利润=每件利润×日销售量,可求出售价为60元时的原利润,设售价应定为x元,则每件的利润为(x﹣40)元,日销售量为20+=(140﹣2x)件,根据日利润=每件利润×日销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)设该商品需要打x折销售,根据销售价格不超过50元,列出不等式求解即可.【解答】(1)解:设售价应定为x元,则每件的利润为(x﹣40)元,日销售量为20+=(140﹣2x)件,依题意,得:(x﹣40)(140﹣2x)=(60﹣40)×20,整理,得:x2﹣110x+3000=0,解得:x1=50,x2=60(舍去).答:售价应定为50元;(2)该商品需要打a折销售,由题意,得,62.5×≤50,解得:a≤8,答:该商品至少需打8折销售.23.(10分)如图,已知Rt△ABC中,∠C=90°.(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).①作∠BAC的角平分线AD,交BC于点D;②作线段AD的垂直平分线EF与AB相交于点O;③以点O为圆心,以OD长为半径画圆,交边AB于点M.(2)在(1)的条件下,求证:BC是⊙O的切线;(3)若AM=4BM,AC=10,求⊙O的半径.【分析】(1)①以A为圆心,以任意长度为半径画弧,与AC、AB相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点,将点A与它连接并延长,与BC交于点D,则AD为∠BAC的平分线;②分别以点A、点D为圆心,以大于AD长度为半径画圆,将两圆交点连接,则EF为AD的垂直平分线,EF与AB交于点O;(2)根据线段垂直平分线及角平分线的性质推出角之间的关系,再根据平行线的判定得出OD∥AC,从而得出OD⊥BC即可;(3)根据题意得到线段之间的关系:OM=2BM,BO=3BM,AB=5BM,再根据相似三角形的性质求解即可.【解答】解:(1)如图所示,①以A为圆心,以任意长度为半径画弧,与AC、AB相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点,将点A与它连接并延长,与BC交于点D,则AD为∠BAC的平分线;②分别以点A、点D为圆心,以大于AD长度为半径画圆,将两圆交点连接,则EF为AD的垂直平分线,EF与AB交于点O;③如图,⊙O与AB交于点M;(2)证明:∵EF是AD的垂直平分线,且点O在AD上,∴OA=OD,∴∠OAD=∠ODA,∵AD是∠BAC的平分线,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故BC是⊙O的切线.(3)根据题意可知OM=OA=OD=AM,AM=4BM,∴OM=2BM,BO=3BM,AB=5BM,∴==,由(2)可知Rt△BOD与Rt△BAC有公共角∠B,∴Rt△BOD∽Rt△BAC,∴=,即=,解得DO=6,故⊙O的半径为6.24.(11分)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N.【观察猜想】(1)线段DE与AM之间的数量关系是DE=2AM,位置关系是DE⊥AM;【探究证明】(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.【分析】(1)由正方形的性质得出AD=AB,AF=AE,∠DAE=∠BAF=90°,证明△DAE≌△BAF(SAS),由全等三角形的性质得出DE=BF,∠ADE=∠ABF,由直角三角形的性质可得出结论;(2)延长AM至点H,使得AM=MH,连接FH,证明△AMB≌△HMF(SAS),由全等三角形的性质得出AB=HF,∠ABM=∠HFM,证明△EAD≌△AFH(SAS),由全等三角形的性质得出DE=AH,则可得出答案.【解答】解:(1)∵四边形ABCD和四边形AEGF都是正方形,∴AD=AB,AF=AE,∠DAE=∠BAF=90°,∴△DAE≌△BAF(SAS),∴DE=BF,∠ADE=∠ABF,∵∠ABF+∠AFB=90°,∴∠ADE+∠AFB=90°,在Rt△BAF中,M是BF的中点,∴AM=FM=BM=BF,∴DE=2AM.∵AM=FM,∴∠AFB=∠MAF,又∵∠ADE+∠AFB=90°,∴∠ADE+∠MAF=90°,∴∠AND=180°﹣(∠ADE+∠MAF)=90°,即AN⊥DN;故答案为DE=2AM,DE⊥AM.(2)仍然成立,证明如下:延长AM至点H,使得AM=MH,连接FH,∵M是BF的中点,∴BM=FM,又∵∠AMB=∠HMF,∴△AMB≌△HMF(SAS),∴AB=HF,∠ABM=∠HFM,∴AB∥HF,∴∠HFG=∠AGF,∵四边形ABCD和四边形AEGF是正方形,∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF,∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH,∴△EAD≌△AFH(SAS),∴DE=AH,又∵AM=MH,∴DE=AM+MH=2AM,∵△EAD≌△AFH,∴∠ADE=∠FHA,∵△AMB≌△HMF,∴∠FHA=∠BAM,∴∠ADE=∠BAM,又∵∠BAM+∠DAM=∠DAB=90°,∴∠ADE+∠DAM=90°,∴∠AND=180°﹣(∠ADE+∠DAM)=90°,即AN⊥DN.故线段DE与AM之间的数量关系是DE=2AM.线段DE与AM之间的位置关系是DE ⊥AM.25.(14分)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.(1)求抛物线及直线BC的函数表达式;(2)点F是抛物线对称轴上一点,当F A+FC的值最小时,求出点F的坐标及F A+FC的最小值;(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)用待定系数法即可求解;(2)点A、B关于抛物线的对称轴对称,设抛物线的对称轴交BC于点F,则点F为所求点,此时,当F A+FC的值最小,进而求解;(3)①当点Q在点P的左侧时,证明△QME∽△ENP,则=tan∠EQP=tan∠OCA===,进而求解;②当点Q在点P的右侧时,同理可解.【解答】解:(1)由点A的坐标知,OA=2,∵OC=2OA=4,故点C的坐标为(0,4),将点A、B、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为y=﹣x+x+4;将点B、C的坐标代入一次函数表达式得:,解得,故直线BC的表达式为y=﹣x+4;(2)∵点A、B关于抛物线的对称轴对称,设抛物线的对称轴交BC于点F,则点F为所求点,此时,当F A+FC的值最小,理由:由函数的对称性知,AF=BF,则AF+FC=BF+FC=BC为最小,当x=1时,y=﹣x+4=3,故点F(1,3),由点B、C的坐标知,OB=OC=4,则BC=BO=4,即点F的坐标为(1,3)、F A+FC的最小值为4;(3)存在,理由:设点P的坐标为(m,﹣m2+m+4)、点Q的坐标为(t,﹣t+4),①当点Q在点P的左侧时,如图2,过点P、Q分别作x轴的垂线,垂足分别为N、M,由题意得:∠PEQ=90°,∴∠PEN+∠QEM=90°,∵∠EQM+∠QEM=90°,∴∠PEN=∠EQM,∴∠QME=∠ENP=90°,∴△QME∽△ENP,∴=tan∠EQP=tan∠OCA===,则PN=﹣m2+m+4,ME=1﹣t,EN=m﹣1,QM=﹣t+4,∴==,解得m=±(舍去负值),当m=时,﹣m2+m+4=,故点P的坐标为(,).②当点Q在点P的右侧时,分别过点P、Q作抛物线对称轴的垂线,垂足分别为N、M,则MQ=t﹣1,ME=t﹣4,NE=﹣m2+m+4、PN=m﹣1,同理可得:△QME∽△ENP,∴=tan∠PQE=2,即,解得m=(舍去负值),故m=,故点P的坐标为(,),故点P的坐标为(,)或(,).。

湖北省荆州市2021年中考数学试卷试题真题(Word版,含答案解析)

湖北省荆州市2021年中考数学试卷试题真题(Word版,含答案解析)

湖北省荆州市2021年中考数学试卷一、单选题(共10题;共20分)1.在实数−1,0,1,√2中,无理数是()2D. √2A. −1B. 0C. 12【答案】 D【考点】无理数的认识,√2中,无理数是√2,【解析】【解答】解:在实数−1,0,12故答案为:D.【分析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比;若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环; 常见的无理数有非完全平方数的平方根、π和e (其中后两者均为超越数)等, 即可判定.2.如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是()A. B. C. D.【答案】A【考点】完全平方公式的几何背景,简单组合体的三视图【解析】【解答】解:俯视图是矩形中间有一个圆,圆与两个长相切,故答案为:A.【分析】俯视图是由视线由上向下看在水平面所得的视图,看图即知俯视图是矩形中间有一个圆,圆与两个长相切即可解答.3.若等式2a2⋅a+()= 3a3成立,则括号中填写单项式可以是()A. aB. a2C. a3D. a4【答案】C【考点】同底数幂的乘法,合并同类项法则及应用【解析】【解答】解:∵3a3- 2a2⋅a= 3a3- 2a3= a3,∴等式2a2⋅a+(a3)= 3a3成立,故答案为:C.【分析】根据同底数幂的乘法法则和合并同类项的法则解答即可.4.阅读下列材料,其①~④步中数学依据错误的是()如图:已知直线b//c,a⊥b,求证:a⊥c.证明:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b//c(已知)③∴∠1=∠2(同位角相等,两直线平行)∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义).A. ①B. ②C. ③D. ④【答案】C【考点】平行线的性质【解析】【解答】解:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b//c(已知)③∴∠1=∠2(两直线平行,同位角相等)∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义).所以错在③故答案为:C.【分析】由垂直的定义得出∠1=90°,由两直线平行,同位角相等得出∠1=∠2,然后由等量代换得出∠2=∠1=90°,最后由垂直的定义可得a⊥c.5.若点P(a+1,2−2a)关干x轴的对称点在第四象限,则a的取值范围在数轴上表示为()A. B.C. D.【答案】C【考点】在数轴上表示不等式组的解集,解一元一次不等式组,点的坐标与象限的关系【解析】【解答】解:∵P(a+1,2−2a)∴点P 关于x轴的对称点P′坐标为P′(a+1,2a−2)∵P′在第四象限∴{a+1>02a−2<0解得:−1<a<1故答案为:C【分析】关于x轴对称点的坐标特点是横坐标相等,纵坐标互为相反数,据此求出P'点坐标,然后根据第四象限点的横坐标大于0,纵坐标小于0的特点列不等式组求解,并把其解集在数轴上表示出来即可. 6.已知:如图,直线y1=kx+1与双曲线y2=2在第一象限交于点P(1,t),与x轴、y轴分别交于xA,B两点,则下列结论错误的是()A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y1【答案】 D【考点】反比例函数与一次函数的交点问题,一次函数的性质,等腰直角三角形【解析】【解答】解:∵直线y1=x+1与双曲线y2=2在第一象限交于点P(1,t),x∴t=2=2,即:P(1,2),故A正确,不符合题意,1把P(1,2)代入y1=kx+1得:2=k+1,解得:k=1,故C正确,不符合题意,在y1=x+1中,令x=0,则y1=1,令y1=0,则x=-1,∴A(-1,0),B(0,1),即:OA=OB,∴△AOB是等腰直角三角形,故B正确,不符合题意,由函数图象可知:当x>1时,y2<y1,故D错误,符合题意.故答案为:D.【分析】首先利用待定系数法求出t和k,然后求出直线与坐标轴交点A、B的坐标,则可得出OA、OB的长,则可得出△AOB是等腰直角三角形,然后根据一次函数的性质可得y2<y1.7.如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上.若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE、则∠BED的度数是()A. 15°B. 22.5°C. 30°D. 45°【答案】C【考点】坐标与图形性质,矩形的判定与性质,圆周角定理【解析】【解答】解:连接OB,如图所示,∵A(2,0),D(4,0),∴OA=2,OB=OE=OD=4,∴OA=1OB,2∵四边形OABC是矩形,∴∠OAB=90°,∴∠OBA=30°,∴∠BOD=90°−∠OBA=60°,∴∠BED=1∠BOD=30°;2故答案为:C.OA,从而求出∠OBA=30°,然后由同圆中圆周角和圆心角【分析】连接OB,根据A、D点坐标推出OB=12的关系即可求出∠BED.8.如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD 的交点.根据图中尺规作图痕迹推断,以下结论错误的是()A. AD=CDB. ∠ABP=∠CBPC. ∠BPC=115°D. ∠PBC=∠A【答案】 D【考点】三角形内角和定理,等腰三角形的性质,作图-角的平分线,作图-线段垂直平分线【解析】【解答】解:根据图中尺规作图可知,AC的垂直平分线交AB于D,BP平分∠ABC,∴AD=CD,∠ABP=∠CBP;选项A、B正确;∵∠A=40°,∴∠ACD=∠A =40°,∵∠A=40°,AB=AC,∴∠ABC=∠ACB =70°,∴∠ABP=∠CBP=35∘≠∠A,选项D错误;∠BCP=∠ACB−∠ACD=70°−40°=30°,∴∠BPC=180°-∠CBP-∠BCP =115°,选项C正确;故答案为:D【分析】根据作图过程可知,AC的垂直平分线交AB于D,BP平分∠ABC,然后由角平分线的定义和垂直平分线的性质可知AD=CD,∠ABP=∠CBP,结合∠A的度数,利用三角形内角和定理和等腰三角形的性质求出∠ABC和∠ACB,则∠PBC和∠BPC可求.9.如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC长为半径画AC⌢,点P为菱形内一点,连接PA,PB,PC.当△BPC为等腰直角三角形时,图中阴影部分的面积为()A. 23π−√3+12B. 23π−√3−12C. 2πD. 2π−√3−12【答案】A【考点】含30°角的直角三角形,菱形的性质,等腰直角三角形,几何图形的面积计算-割补法【解析】【解答】解:以点B为原点,BC边所在直线为x轴,以过点B且与BC垂直的直线为y轴建立平面直角坐标系,如图,∵△BPC为等腰直角三角形,且点P在菱形ABCD的内部,很显然,∠PBC<90°①若∠BCP=90°,则CP=BC=2这C作CE⊥AD,交AD于点E,∵四边形ABCD是菱形∴AB=BC=CD=DA=2,∠D=∠ABC=60°∴CE=CDsin∠D=2 ×√32=√3<2∴点P在菱形ABCD的外部,∴与题设相矛盾,故此种情况不存在;②∠BPC=90°过P作PF⊥BC交BC于点F,∵△BPC是等腰直角三角形,∴PF=BF= 12BC=1∴P(1,1),F(1,0)过点A作AG⊥BC于点G,在Rt△ABG中,∠ABG=60°∴∠BAG=30°∴BG= 12AB=1,AG= √3BG=√3∴A (1,√3),G(1,0)∴点F与点G重合∴点A、P、F三点共线∴AP=AF−PF=√3−1∴SΔABP =12×1×(√3−1)=√3−12SΔBPC=12×2×1=1S扇形BAC =60π×22360=2π3∴S阴影=S扇形BAC−SΔABP−SΔBPC=2π3−√3−12−1=2π3−√3+12故答案为:A.【分析】以点B为原点,BC边所在直线为x轴,以过点B且与BC垂直的直线为y轴建立平面直角坐标系,过点A作AG⊥BC于点G,过P作PF⊥BC交BC于点F,分三种情况讨论,①若∠BCP=90°,推出这种情况不存在;②∠BPC=90°,根据等腰直角三角形的性质求出P、F点的坐标,再根据含30°角的直角三角形的性质求出A、G的坐标,得出点A、P、F三点共线,进而求出AP的长,然后求出△ABP和△BPC的面积,最后利用S阴影=S扇形BAC−SΔABP−SΔBPC,代入数值计算即可.10.定义新运算“※”:对于实数m,n,p,q,有[m,p]※[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,如:[2,3]※[4,5]=2×5+3×4=22.若关于x的方程[x2+1,x]※[5−2k,k]=0有两个实数根,则k的取值范围是()A. k<54且k≠0 B. k≤54C. k≤54且k≠0 D. k≥54【答案】C【考点】一元二次方程根的判别式及应用,定义新运算【解析】【解答】解:∵[x2+1,x]※[5−2k,k]=0,∴k(x2+1)+(5−2k)x=0.整理得,kx2+(5−2k)x+k=0.∵方程有两个实数根,∴判别式△≥0且k≠0.由△≥0得,(5−2k)2−4k2≥0,解得,k≤54.∴k的取值范围是k≤54且k≠0.故答案为:C【分析】根据新定义的运算得出:k(x2 +1) +(5- 2k)x= 0,将其整理为一元二次方程的一般式,然后根据一元二次方程的定义和判别式的意义可得k≠0且△= (5- 2k)2- 4k2≥0,再解不等式求出k的范围即可.二、填空题(共6题;共6分)11.已知:a=(12)−1+(−√3)0,b=(√3+√2)(√3−√2),则√a+b=________.【答案】2【考点】平方差公式及应用,0指数幂的运算性质,负整数指数幂的运算性质【解析】【解答】解:∵a=(12)−1+(−√3)0=2+1=3,b=(√3+√2)(√3−√2)=(√3)2−(√2)2= 1,∴√a+b=√3+1=2,故答案是:2.【分析】先进行负指数幂和0指数幂的运算求出a,再根据平方差公式计算求出b,再将其代入原式计算即可.12.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是________.【答案】14【考点】列表法与树状图法,概率公式【解析】【解答】解:锁用A,B表示,钥匙用A,B,C,D表示,根据题意画树状图得:∵共有8种等可能的结果,有2中情况符合条件,∴一次就能打开锁的概率是28=14.故答案为14.【分析】锁用A,B表示,钥匙用A,B,C,D表示,根据题意画出树状图,由图可知:共有8种等可能的结果,有2中情况符合条件,根据概率公式即可算出任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率。

2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系专项测试试题(含详细解析)

2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系专项测试试题(含详细解析)

七年级数学第二学期第十五章平面直角坐标系专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,A B O '''是由ABO 平移得到的,点A 的坐标为(-1,2),它的对应点A '的坐标为(3,4),ABO 内任意点P (a ,b )平移后的对应点P '的坐标为( )A .(a ,b )B .(-a ,-b )C .(a +2,b +4)D .(a +4,b +2)2、点)(3,5A --向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为( )A .)(1,8-B .)(1,2-C .)(6,1--D .)(0,1-3、在平面直角坐标系中,点()3,4-,关于x 轴对称点的坐标是( )A .()3,4B .()3,4-C .()4,3-D .()4,44、在平面直角坐标系中,点()4,1A -关于原点对称的点的坐标是( )A .()41-,B .()4,1C .()4,1-D .()4,1--5、如果点P (m ,n )是第三象限内的点,则点Q (-n ,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上6、点()2,3--关于x 轴对称的点的坐标是( )A .()2,3B .()2,3-C .()2,3-D .()3,27、直角坐标系中,点A (-3,4)与点B (3,-4)关于( )A .原点中心对称B .轴轴对称C .轴轴对称D .以上都不对8、如图所示,在平面直角坐标系中,点A (0,4),B (2,0),连接AB ,点D 为AB 的中点,将点D 绕着点A 旋转90°得到点D 的坐标为( )A .(﹣2,1)或(2,﹣1)B .(﹣2,5)或(2,3)C .(2,5)或(﹣2,3)D .(2,5)或(﹣2,5)9、在△ABC 中,AB =AC ,点B ,点C 在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A 的坐标可能是( )A .(0,2)B .(0,0)C .(2,﹣2)D .(﹣2,2)10、点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A .(-4,3)B .(4,-3)C .(-3,4)D .(3,-4)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点(2,5)P -关于x 轴对称的点的坐标为________.2、点A 关于y 轴的对称点1A 坐标是()2,1--,则点A 关于x 轴的对称点2A 坐标是_____.3、在平面直角坐标系中,若点P 关于x 轴的对称点Q 的坐标是(﹣3,2),则点P 关于y 轴的对称点R 的坐标是_____.4、在平面直角坐标系中,将点P (3,﹣1)向上平移5个单位长度到点M ,则点M 关于原点对称的点的坐标是 _____.5、在平面直角坐标系中,点A (﹣3,1)绕原点逆时针旋转180°得到的点A '的坐标是 _____.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,A (-1,5),B (-1,0),C (-4,3).(1)作出△ABC 关于y 轴的对称图形△A 'B 'C ';(2)写出点A ',B ',C '的坐标;(3)在y 轴上找一点P ,使PA +PC 的长最短.2、如图,在正方形网格中,每个小正方形的边长均为1,ABC 的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC 关于x 轴成轴对称的A 1B 1C 1,并写出点A 1的坐标;(2)请画出ABC关于点O成中心对称的A 2B2C2,并写出点A2的坐标;(3)A 1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由.3、(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O.(2)如图②所示,已知△ABC的三个顶点的坐标分别为A(4,﹣1),B(1,1),C(3,﹣2).将△ABC绕原点O旋转180°得到△A1B1C1,请画出△A1B1C1,并写出点A1的坐标.4、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;(2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;(3)连接CE,CF,请直接写出△CEF的面积.5、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC 的顶点都在格点上.(1)在图中作出DEF,使得DEE与ABC关于x轴对称;(2)写出D,E两点的坐标:D,E.(3)求DEF的面积.6、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣2,3),B(﹣3,1),C(﹣1,2).(1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1;(2)画出△ABC关于原点O的对称图形△A2B2C2;(3)直接写出下列点的坐标:A1,B2.7、如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且∠ACB=90°.(1)图中与∠ABC相等的角是;(2)若AC=3,BC=4,AB=5,求点C的坐标.8、如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()3,5A -、()2,1B -、()1,3C -.(1)画出将ABC 关于点O 对称的图形111A B C △;(2)写出点1A 、1B 、1C 的坐标.9、如图,已知ABC 的三个顶点分别为(2,3)A ,(3,1)B ,(2,2)C --.(1)请在坐标系中画出ABC 关于y 轴对称的图形DEF (A ,B ,C 的对应点分别是D ,E ,F ),并直接写出点D ,E ,F 的坐标; (2)求四边形ACFB 的面积.10、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△A′B′C′.(3)求△ABC的面积.-参考答案-一、单选题1、D【分析】根据点A的坐标和点A'的坐标确定平移规律,即可求出点P(a,b)平移后的对应点P'的坐标.【详解】解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).故选:D.【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.2、C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(-3,-5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:-3-3=-6,纵坐标为:-5+4=-1,即(-6,-1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.3、A【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【详解】解:点A (3,-4)关于x 轴的对称点的坐标是(3,4),故选:A .【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.4、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点()4,1A -关于原点对称的点的坐标是:4,1,故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.5、A【分析】根据平面直角坐标系中象限的坐标特征可直接进行求解.【详解】解:∵点P (m ,n )是第三象限内的点,∴n <0,∴-n >0,∴点Q (-n ,0)在x 轴正半轴上;故选A .本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键.6、B【分析】根据两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,即可得答案.【详解】解:∵点A的坐标为(-2,-3),∴点A(-2,-3)关于x轴对称的点的坐标是(-2,3).故选:B.【点睛】本题是对坐标系中对称点的考查,熟记两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,是解题关键.7、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案.【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称.故选A.【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系.掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键.8、C分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解.【详解】解:设点D绕着点A逆时针旋转90°得到点D1,分别过点D,D1作y轴的垂线,分别交y轴于点C、E,如图:根据旋转的性质得∠DAD1=90°,AD1=AD,∴∠AED1=∠ACD=90°,∴∠D1+∠EAD1=90°,∠EAD1+∠DAC=90°,∴∠D1=∠DAC,∴△AD1E≌△DAC,∴CD=AE,ED1=AC,∵A(0,4),B(2,0),点D为AB的中点,∴点D的坐标为(1,2),∴CD=AE=1,ED1=AC=AO-OC=2,∴点D1的坐标为(2,5);设点D绕着点A顺时针旋转90°得到点D2,同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),故选:C.【点睛】本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键.9、A【分析】由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.【详解】解:由题意可知BO=CO,∵又AB=AC,∴AO⊥BC,∴点A在y轴上,∴选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A.【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.10、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】解:∵点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,∴点P 的横坐标是-3,纵坐标是4,∴点P 的坐标为(-3,4).故选C .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.二、填空题1、 (-2,-5)【分析】关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点()2,5P -关于x 轴对称点的坐标为:()2,5--,故答案为:()2,5--.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.2、(2,1)【分析】根据关于坐标轴对称的点的特征,先求得A 的坐标,进而求得2A 的坐标【详解】解:∵点A 关于y 轴的对称点1A 坐标是()2,1--,∴点A 坐标是()2,1-∴点A 关于x 轴的对称点2A 坐标是()2,1故答案为:()2,1【点睛】本题考查了关于坐标轴对称的点的坐标特征,掌握关于坐标轴对称的点的坐标特征是解题的关键.①关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y 轴对称的两个点,纵坐标相等,横坐标互为相反数3、(3,2)-【分析】根据题意直接利用关于x 轴、y 轴对称点的性质进行分析即可得出答案.【详解】解:∵点P 关于x 轴的对称点Q 的坐标是(﹣3,2),∴点P 的坐标为(﹣3,﹣2),∴点P 关于y 轴的对称点R 的坐标是(3,﹣2),故答案为:(3,﹣2).【点睛】本题主要考查关于x 轴、y 轴对称点的性质,正确掌握横、纵坐标的关系是解题的关键. 4、(3,4)--【分析】根据点的平移规律,可得平移后的点,根据关于原点对称的点的横、纵坐标都互为相反数,可得答案.【详解】将点(3,1)P -向上平移5个单位长度得到点(3,4)M ,点M 关于原点对称的点的坐标是(3,4)--,故答案为:(3,4)--.【点睛】本题考查了平移与坐标变换,利用关于原点对称的点的横、纵坐标都互为相反数是解题关键.5、(3,﹣1)【分析】由条件可知A 点和A ′点关于原点对称,可求得答案.【详解】解:∵将OA 绕原点O 逆时针旋转180°得到OA ′,∴A 点和A ′点关于原点对称,∵A (﹣3,1),∴A ′(3,﹣1),故答案为:(3,﹣1).【点睛】本题主要考查旋转的定义,由条件求得A 和A′关于原点对称是解题的关键.三、解答题1、(1)见解析;(2)A ′(1,5),B ′(1,0),C ′(4,3);(3)见解析【分析】(1)分别作出点A 、B 、C 关于y 轴的对称点,再收尾顺次连接即可得;(2)根据△A 'B 'C '各顶点的位置,写出其坐标即可;(3)连接PC,则PC=PC′,根据两点之间线段最短,可得PA+PC的值最小.【详解】解:(1)如图所示,△A′B′C′为所求作;(2)由图可得,A′(1,5),B′(1,0),C′(4,3);(3)如图所示,连接AC′,交y轴于点P,则点P即为所求作.【点睛】本题主要考查了利用轴对称变换作图以及最短距离的问题,解题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,运用轴对称变换来解决,多数情况要作点关于某直线的对称点.关于y 轴对称的点,纵坐标相同,横坐标互为相反数.2、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)根据轴对称的定义判断即可.【详解】解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,△A2B2C2即为所求,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1).【分析】(1)根据对称中心的性质可得对应点连线的交点即为对称中心;(2)根据题意作出A,B,C绕原点O旋转180°得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标.【详解】(1)如图所示,点O即为要求作的对称中心.(2)如图所示,△A1B1C1即为要求作的三角形,由点A1的在平面直角坐标系中的位置可得,点A1的坐标为(-4,1).【点睛】此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质.的面积为2.4、(1)作图见详解;(2)作图见详解;(3)CEF【分析】(1)直接在坐标系中描点,然后依次连线即可;(2)先确定A 、B 、C 三点关于x 轴对称的点的坐标,然后依次连接即可;(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.【详解】解:(1)如图所示,ABC ∆即为所求;(2)A 、B 、C 三点关于x 轴对称的点的坐标分别为:()1,1D ,()1,1E --,()3,1F --,然后描点、连线,∴DEF ∆即为所求;(3)由图可得:S SSSS =12×2×2=2,∴CEF ∆的面积为2.【点睛】题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.5、(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5【分析】(1)先找出点A、B、C关于x轴的对称点,然后依次连接即可得;(2)根据△DEF的位置,即可得出D,E两点的坐标;(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.【详解】解:(1)如图所示,△DEF即为所求;(2)由图可得,D(﹣1,﹣4),E(﹣4,1);故答案为:(﹣1,﹣4),(﹣4,1);(3)S SSSS=5×5−12×2×5−12×2×3−12×3×5=9.5,∴DEF面积为9.5.【点睛】题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.6、(1)见解析;(2)见解析;(3)(-3,-2),(3,-1)【分析】(1)先根据网格找到A 、B 、C 的对应点A 1、B 1、C 1,然后顺次连接A 1、B 1、C 1即可;(2)先根据网格找到A 、B 、C 的对应点A 2、B 2、C 2,然后顺次连接A 2、B 2、C 2即可;(3)根据(1)(2)说画图形求解即可.【详解】解:(1)如图所示,111A B C △即为所求;(2)如图所示,222A B C △即为所求;(3)由图可知,1A 的坐标为(-3,-2),2B 的坐标为(3,-1),故答案为:(-3,-2);(3,-1).【点睛】本题主要考查了坐标与图形变化—旋转变化,轴对称变化,画旋转图形和轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.7、(1)∠ACO ;(2)点C 的坐标为(0,125). 【分析】(1)由同角的余角相等,可得到∠ABC=∠ACO ;(2)利用面积法可求得CO 的长,进而得到点C 的坐标.【详解】解:(1)∵OC ⊥AB ,∠ACB=90°.∴∠ABC+∠BCO=∠ACO+∠BCO=90°,∴∠ABC=∠ACO ;故答案为:∠ACO ;(2)∵AC=3,BC=4,AB=5,∴三角形ABC 是直角三角形,∠ACB =90°12AB ⨯CO =12AC ⨯BC ,即CO =345⨯=125, ∴点C 的坐标为(0,125). 【点睛】 本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.8、(1)见解析;(2)()13,5A -,()12,1B -,()11,3C -.【分析】(1)直接利用关于点O 对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2)()13,5A -,()12,1B -,()11,3C -.【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.9、(1)画图见解析,(2,3)D -,(3,1)E -,(2,2)F -;(2)252【分析】(1)根据关于y 轴对称的点的坐标特征写出点D ,E ,F 的坐标,然后描点即可;(2)根据三角形面积公式,利用四边形ACFB 的面积ACF ABF S S ∆∆=+进行计算.【详解】解:(1)根据题意得:点(2,3)A ,(3,1)B ,(2,2)C --关于y 轴的对称点分别为(2,3)D -,(3,1)E -,(2,2)F -, 如图,DEF 为所作;(2)四边形ACFB 的面积ACF ABF S S ∆∆=+11451522=⨯⨯+⨯⨯ 252=. 【点睛】本题主要考查了图形的变换——轴对称,坐标与图形,熟练掌握轴对称图形的关键是找到对称轴,图形关于对称轴折叠前后对应线段,对应角相等是解题的关键.10、(1)见解析;(2)见解析;(3)4.【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A ′、B ′、C ′,顺次连线即可得到△A ′B ′C ′;(3)利用面积加减法计算.(1)如图所示:(2)解:如图所示:(3)解:△ABC的面积:3×4﹣12⨯4×2﹣12⨯2×1﹣12⨯2×3=12﹣4﹣1﹣3=4,故答案为:4.【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.。

2023-2024学年北京四中八年级(上)期中数学试卷(含解析)

2023-2024学年北京四中八年级(上)期中数学试卷(含解析)

2023-2024学年北京四中八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)下列博物院的标识中是轴对称图形的是( )A.B.C.D.2.(2分)如图,用三角板作△ABC的边AB上的高,下列三角板的摆放位置正确的是( )A.B.C.D.3.(2分)下列计算正确的是( )A.(4ab)2=4a2b2B.a2⋅a3=a6C.a2+a2=a4D.(﹣3a3b)2=9a6b24.(2分)如图,△ABC被木板遮住了一部分,其中AB=6,则AC+BC的值不可能是( )A.11B.9C.7D.55.(2分)根据分式的基本性质,分式可变形为( )A.B.C.D.6.(2分)如图,已知AD∥BC,欲用“边角边”证明△ABC≌△CDA,需补充条件( )A.AB=CD B.∠B=∠D C.AD=CB D.∠BAC=∠DCA 7.(2分)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连接CP,过点A作AH⊥CP交CP的延长线于点H,连接AP,则∠PAH的度数( )A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小8.(2分)用两种或两种以上的正多边形没有重叠、没有缝隙地填充一个平面,并且每个顶点周围的多边形排列是相同的,所得到的图案叫做“半正密铺”图案.如图所示的三个“半正密铺”图案可以依次用记号(4,8,8),(3,6,3,6),(3,3,4,3,4)表示.下列记号中,不能表示“半正密铺”图案的是( )A.(3,12,12)B.(3,4,6,4)C.(3,3,4,12)D.(3,4,3,3,6)二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)计算:(π﹣3.14)0= ;= .10.(2分)要使分式有意义,则x的取值范围是 .11.(2分)一个多边形的每个内角都等于150°,则这个多边形是 边形.12.(2分)等腰三角形一腰上的高与另一腰的夹角是20°,则等腰三角形的顶角等于 .13.(2分)如图,∠ABC=60°,AB=3,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒,当△ABP是直角三角形时,t = .14.(2分)有两个正方形A、B,现将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A,B的面积之和为 .15.(2分)数学课上,老师提出问题:任画两条长度不等的线段a、b,利用“尺规作图”作Rt△ABC使所画线段分别为三角形的一条直角边和斜边.在交流讨论环节,小明看到小勇所作之图如下,请你回答下列问题:所以,Rt△ABC为所求作的三角形.(1)在以下作图步骤中,小勇的作图顺序可能是 ;(只填序号)①以点B为圆心,BA的长为半径画弧,交射线AG于点D;②画直线BF;③分别以点A,D为圆心,大于线段AB的长为半径画弧,交于点F;④以点A为圆心,线段b的长为半径画弧,交直线BF于点C,连接AC;⑤画射线AG,并在AG上截取线段AB=a.(2)∠ABC=90°的理由是 .16.(2分)在等边△ABC中,M、N、P分别是边AB、BC、CA上的点(不与端点重合),对于任意等边△ABC,下面四个结论中:①存在无数个△MNP是等腰三角形;②存在无数个△MNP是等边三角形;③存在无数个△MNP是等腰直角三角形;④存在一个△MNP在所有△MNP中面积最小.所有正确结论的序号是 .二、解答题(本大题共8小题,第17题每小题24分,共24分,第18,19,20,21,23题每题6分,第22,24题每题7分,共68分)17.(24分)(1)计算:;(2)计算:20222﹣2020×2024 (需简便运算);(3)计算:(15x2y﹣10xy2)÷5xy;(4)计算:(2x+3y)2﹣(2x+y)(2x﹣y);(5)因式分解:(x+m)2﹣(x+n)2;(6)因式分解:3ax2+6axy+3ay2.18.(6分)如图,A,C,D三点共线,△ABC和△CDE落在AD的同侧,AB∥CE,BC=DE,∠B=∠D,求证:(1)△ABC≌△CDE;(2)AB+CE=AD.19.(6分)先化简:,再从0,﹣1,﹣2,2中选择一个合适的数作为x 的值代入求值.20.(6分)如图所示的正方形网格中,每个小正方形的边长都是1,△ABC顶点都在网格线的交点上,点A坐标为(﹣4,﹣1),点B坐标为(﹣1,﹣1),点C坐标为(﹣3,3).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)请写出点B关于x轴对称点的坐标为 ;(3)点P在y轴上,且△ABP与△ABC的面积相等,则点P的坐标为 .21.(6分)中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.如图2,∠ABC为直角,以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.以点B 为圆心,以任意长为半径画弧,交射线BA ,BC 分别于点D ,E ;以点D 为圆心,以BD 长为半径画弧与交于点F ;再以点E 为圆心,仍以BD 长为半径画弧与交于点G ;作射线BF ,BG .(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG ,∠GBF ,∠FBE 的大小关系.22.(7分)如图(1),等边△ABC 中,D 是AB 边上的动点,以CD 为一边,向上作等边△EDC ,连接AE .(1)△DBC 和△EAC 会全等吗?请说说你的理由;(2)试说明AE ∥BC 的理由;(3)如图(2),将(1)动点D 运动到边BA 的延长线上,所作仍为等边三角形,请问是否仍有AE ∥BC ?证明你的猜想.23.(6分)阅读下列材料:对于多项式x 2+x ﹣2,如果我们把x =1代入此多项式,发现x 2+x ﹣2的值为0,这时可以确定多项式中有因式(x﹣1);同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x﹣2=(x﹣1)(x+2).又如:对于多项式2x2﹣3x﹣2,发现当x=2时,2x2﹣3x﹣2的值为0,则多项式2x2﹣3x﹣2 有一个因式(x﹣2),我们可以设2x2﹣3x﹣2=(x﹣2)(mx+n),解得m=2,n=1.于是我们可以得到:2x2﹣3x﹣2=(x﹣2)(2x+1)请你根据以上材料,解答以下问题:(1)当x= 时,多项式6x2﹣x﹣5的值为0,所以多项式6x2﹣x﹣5有因式 ,从而因式分解6x2﹣x﹣5= ;(2)以上这种因式分解的方法叫“试根法”,常用来分解一些比较复杂的多项式,请你尝试用试根法分解多项式:x3﹣7x+6.24.(7分)如图1,已知△ABC是等边三角形,点E在射线AB上,且∠ACE=2α,在射线CE上取点D使得CD=CA,连接AD并延长交射线CB于点F.(1)当0°<2α<60°时,①∠DAB= ;(请用含α的代数式表示)②求证:CE+BE=CF;(2)当60°<2α<120°时,请根据题意补全图2,并写出线段CE,BE,CF间的数量关系 .第二部分附加题(共10分)25.(5分)找规律.第1组:,42+32=52;第2组:,82+152=172;第3组:,122+352=372;……(1)请写出第4组等式 , ;(2)请写出第n组等式 , ;(3)若k2+96032=96052(k>0)则k= .26.(5分)为了比较两个实数的大小,常用的方法是判定这两个数的差的符号,我们称这种方法为“作差比较法”.要比较两个代数式的大小,同样可以采用类似的方法.因此,可以利用不等式比较大小.如果要证明A>B,只需要证明A﹣B>0;同样的,要证明A <B,只需要证明A﹣B<0.例如:小明对于命题:任意的实数a和b,总有a2+b2≥2ab,当a=b并且只有a=b时,等号成立,给出了如下证明:证明:∵a2+b2﹣2ab=(a﹣b)2≥0,∴a2+b2≥2ab,当a=b并且只有a=b时,等号成立.(1)请仿照小明的证明方法,证明如下命题:若a,b,x,y≥0,且a≥x,则(a﹣x)2+(b﹣y)2≤(a+b﹣x)2+y2.(2)若a1≥a2≥……≥a n≥0,b1≥b2≥……≥b n≥0,且a1+a2+……+a n=b1+b2+……+b n=1,求(a1﹣b1)2+(a2﹣b2)2+……+(a n﹣b n)2的最大值.2023-2024学年北京四中八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.【解答】解:△ABC的边AB上的高是经过点C与AB垂直,故选:A.3.【解答】解:A.(4ab)2=16a2b2,故A错误,不符合题意;B.a2⋅a3=a5,故B错误,不符合题意;C.a2+a2=2a2,故C错误,不符合题意;D.(﹣3a3b)2=9a6b2,故D正确,符合题意.故选:D.4.【解答】解:在△ABC中,AC+BC>AB,∵AB=6,∴AC+BC>6,∴AC+BC的值不可能是5,故选:D.5.【解答】解:原式=﹣=,故选:D.6.【解答】解:添加的条件是AD=CB,理由是:∵AD∥BC,∴∠DAC=∠BCA,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),故选:C.7.【解答】解:∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,∴BC=BP=BA,∴∠BCP=∠BPC,∠BPA=∠BAP,∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BPA=180°,∠ABP+∠CBP=90°,∴∠BPC+∠BPA=135°=∠CPA,∵∠CPA=∠AHC+∠PAH=135°,∴∠PAH=135°﹣90°=45°,∴∠PAH的度数是定值,故选:C.8.【解答】解:A、∵正三角形一个内角为60°,正十二边形一个内角为150°,60°+2×150°=360°,∴(3,12,12)可以得到“半正密铺”图案,故不符合题意;B、∵正三角形一个内角为60°,正方形一个内角为90°,正六边形一个内角为120°,60°+2×90°+120°=360°,∴(3,4,6,4)可以得到“半正密铺”图案,故不符合题意;C、∵2×60°+90°+150°=360°,∴(3,3,4,12)可以得到“半正密铺”图案,故不符合题意;D、3×60°+90°+120°=390°≠360°,∴(3,4,3,3,6)不可以得到“半正密铺”图案,故符合题意;故选:D.二、填空题(本大题共8小题,每小题2分,共16分)9.【解答】解:(π﹣3.14)0=1;=.故答案为:0;﹣.10.【解答】解:∵x﹣3≠0,∴x≠3.故答案为:x≠3.11.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是十二边形.12.【解答】解:当高在三角形内部时(如图1),顶角是70°;当高在三角形外部时(如图2),顶角是110°.故答案为:70°或110°.13.【解答】解:分两种情况:①当∠APB=90°时,过A作AP⊥BC于点P,∵∠ABC=60°,AB=3,∴BP=,∵动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,∴t=;②当∠BAP=90°时,过A作P'A⊥AB交BC于点P',∵∠ABC=60°,AB=3,∴BP'=6,∵动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,∴t=6,综上所述,当△ABP是直角三角形时,t=或6,故答案为:或6.14.【解答】解:设正方形A的边长为a,正方形B的边长为b,由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1,由图乙得(a+b)2﹣a2﹣b2=10,2ab=10,所以a2+b2=11,故答案为:11.15.【解答】解:(1)⑤①③②④,故答案为:⑤①③②④;(2)∠ABC=90°的理由是:等腰三角形的三线合一;故答案为:等腰三角形的三线合一.16.【解答】解:如图1中,满足AM=BN=PC,可证△PMN是等边三角形,这样的三角形有无数个.如图2中,当NM=NP,∠MNP=90°时,△MNP是等腰直角三角形,这样的三角形有无数个(见图3).故①②③正确,△PNM的面积不存在最小值(面积可以接近O,没有最小值).故答案为①②③.二、解答题(本大题共8小题,第17题每小题24分,共24分,第18,19,20,21,23题每题6分,第22,24题每题7分,共68分)17.【解答】解:(1)原式=﹣6a3b2;(2)原式=20222﹣(2022﹣2)×(2022+2)=20222﹣(20222﹣22)=20222﹣20222+22=4;(3)原式=15x2y÷5xy﹣10xy2÷5xy=3x﹣2y;(4)原式=4x2+12xy+9y2﹣(4x2﹣y2)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2;(5)(x+m)2﹣(x+n)2=(x+m+x+n)(x+m﹣x﹣n)=(2x+m+n)(m﹣n);(6)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2.18.【解答】证明:(1)∵AB∥CE,∴∠A=∠ECD,在△ABC和△CDE中,,∴△ABC≌△CDE(AAS);(2)∵△ABC≌△CDE;∴AC=CE,AB=CD,∴AB+CE=CD+AC=AD.19.【解答】解:==.∵x≠±2且x≠0,∴x=﹣1时,.20.【解答】解:(1)如图,△A1B1C1即为所求;(2)B(﹣1,﹣1)关于x轴的对称点的坐标为(﹣1,1).故答案为:(﹣1,1);(3)设P(0,m),由题意×3×|m+1|=×3×4,∴m=3或﹣5,∴P(0,3)或(0,﹣5).故答案为:(0,3)或(0,﹣5).21.【解答】解:(1)如图,射线BG,BF即为所求.(2)∠DBG=∠GBF=∠FBE.理由:连接DF,EG,则BD=BF=DF,BE=BG=EG,即△BDF和△BEG均为等边三角形,∴∠DBF=∠EBG=60°,∵∠ABC=90°,∴∠DBG=∠GBF=∠FBE=30°.22.【解答】解:(1)△DBC和△EAC会全等证明:∵∠ACB=60°,∠DCE=60°∴∠BCD=60°﹣∠ACD,∠ACE=60°﹣∠ACD ∴∠BCD=∠ACE在△DBC和△EAC中,∵,∴△DBC≌△EAC(SAS),(2)∵△DBC≌△EAC∴∠EAC=∠B=60°又∠ACB=60°∴∠EAC=∠ACB∴AE∥BC(3)结论:AE∥BC理由:∵△ABC、△EDC为等边三角形∴BC=AC,DC=CE,∠BCA=∠DCE=60°∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE在△DBC和△EAC中,∵,∴△DBC≌△EAC(SAS),∴∠EAC=∠B=60°又∵∠ACB=60°∴∠EAC=∠ACB∴AE∥BC.23.【解答】解:(1)当x=1时,6x2﹣x﹣5=6×12﹣1﹣5=0,所以多项式6x2﹣x﹣5有因式x﹣1,即6x2﹣x﹣5=(x﹣1)(6x+5).故答案为:1,x﹣1,(x﹣1)(6x+5);(2)当x=1时,x3﹣7x+6=13﹣7×1+6=0,所以x3﹣7x+6=(x﹣1)(x2+x﹣6)=(x﹣1)(x+3)(x﹣2).24.【解答】(1)①解:∵CD=CA,∴∠CAD=∠CDA,∵∠ACE=2α,∴∠CAD=(180°﹣2α)=90°﹣α,∵△ABC为等边三角形,∴∠CAB=60°,∴∠DAB=∠CAD﹣∠CAB=90°﹣α﹣60°=30°﹣α,故答案为:30°﹣α;②证明:在CF上截取CM=CE,连接DM,BD,∵∠ABC=60°,∠DAB=30°﹣α,∴∠F=60°﹣(30°﹣α)=30°+α,∵CD=CB,∠DCM=∠BCE,CM=CE,∴△CMD≌△CEB(SAS),∴∠CMD=∠CEB,DM=BE,∴∠DEB=∠DMF,∵∠DEB=∠DAB+∠CDA=120°﹣2α,∴∠DMF=120°﹣2α,∴∠MDF=180°﹣30°﹣α﹣120°+2α=30°+α,∴∠F=∠MDF,∴DM=MF,∴BE=MF,∴CF=CM+MF=CE+BE;(2)解:补全图形如下:在CE上截取CN=CF,连接BN,BD,则CA=CB=CD,同(1)可知△BCN≌△DCF(SAS),∴∠CNB=∠CFD,∴∠BNE=∠BFD,∵∠BCE=2α﹣60°,CD=CB=CA,∴∠CAD=∠CDA=(180°﹣2α)=90°﹣α,∴∠DAB=60°﹣(90°﹣α)=α﹣30°,∴∠E=∠CDA﹣∠DAB=120°﹣2α,∵∠CFD=90°﹣α+60°=150°﹣α,∴∠CNB=150°﹣α,∴∠BNE=30°+α,∴∠NBE=180°﹣∠BNE﹣∠E=30°+α,∴∠BNE=∠NBE,∴BE=NE,∴CE=NC+NE=CF+BE.故答案为:CE=CF+BE.第二部分附加题(共10分)25.【解答】解:∵第1组:,42+32=52;第2组:,82+152=172;第3组:,122+352=372;∴(1)请写出第4组等式,162+632=652;故答案为:,(2)请写出第n组等式=,(4n)2+(4n2﹣1)2=(4n2+1)2;故答案为:=,(4n)2+(4n2﹣1)2=(4n2+1)2;(3)∵k2+96032=96052(k>0),设x+(x+2)=k,则x(x+2)=9603,解得x=97,k=196,故答案为:196.26.【解答】(1)证明:由题意得,(a﹣x)2+(b﹣y)2﹣(a+b﹣x)2﹣y2=(a﹣x)2﹣(a+b﹣x)2+(b﹣y)2﹣y2=(a﹣x+a+b﹣x)(a﹣x﹣a﹣b+x)+(b﹣y+y)(b﹣y﹣y)=﹣b(2a+b﹣2x)+b(b﹣2y)=b(﹣2a﹣b+2x+b﹣2y)=2b(x﹣a﹣y).∵a,b,x,y≥0,且a≥x,∴x﹣a≤0,﹣y≤0.∴x﹣a﹣y≤0.∴2b(x﹣a﹣y)≤0.∴(a﹣x)2+(b﹣y)2﹣(a+b﹣x)2﹣y2≤0.∴(a﹣x)2+(b﹣y)2≤(a+b﹣x)2+y2.(2)解:设a1≥b1,∵b1≥b2≥……≥b n≥0,b1+b2+……+b n=1,∴b1≥.又++……+≤+b1b2+……+b1b n=b1(b1+b2+……+b n)=b1,∴b1(a1+a2+……+a n)=a1b1+b1(a2+……+a n)≤a1b1+a1(a2+……+a n)≤a1b1+a2b2+…+a n b n+a1a2+a2a3+……+a n﹣1a n.∴a1b1+a2b2+…+a n b n≥b1(a2+……+a n)﹣(a1a2+a2a3+……+a n﹣1a n).∴(a1﹣b1)2+(a2﹣b2)2+……+(a n﹣b n)2=(++……+)﹣2(a1b1+a2b2+…+a n b n)+(++……+)≤(++……+)﹣2b1(a1+a2+……+a n)+2(a1a2+a2a3+……+a n﹣1a n)+b1=(a1+a2+……+a n)2﹣2b1+b1=1﹣2b1+b1=1﹣b1≤1﹣=.∴(a1﹣b1)2+(a2﹣b2)2+……+(a n﹣b n)2的最大值为.。

【人教版】数学九年级上学期《期中检测试题》带答案解析

【人教版】数学九年级上学期《期中检测试题》带答案解析
(1)求证:DH是圆O的切线;
(2)若 = ,求证A为EH的中点;
(3)若EA=EF=2,求圆O 半径.
25.如图,抛物线过O、A、B三点,A(4,0)B(1,-3),P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.
(1)直线PQ与x轴所夹锐角的度数,并求出抛物线的解析式.
(2)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:PD+DQ的最大值;②PD.DQ的最大值.
C、不是轴对称图形而是中心对称图形,故本选项错误;
D、不是轴对称图形也不是中心对称图形,故本选项错误.
故选:B.
【点睛】本题考查了轴对称图形和中心对称图形的问题,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键.
2.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球,2个黄球和3个白球,从袋中任意摸一个球,是白球的概率是()
5.若二次函数y=ax2+bx+a2-3(a、b为常数)的图象如图所示,则a的值为()
A. 1B. C. - D. -3
【答案】C
【解析】
【分析】
根据图象可以知道二次函数y=ax2+bx+a2-3经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值.
【详解】解:把原点(0,0)代入抛物线解析式,得
10.如图,正方形ABCD边长为8,M,N分别是边BC,CD上的两个动点,且AM⊥MN,则AN的最小值是()
A.8B.4 C.10D.8
【答案】C
【解析】
【分析】
通过正方形的性质可以证明Rt△ABM∽Rt△MCN,设BM=x,可得CN=﹣ x2+x=﹣ (x﹣4)2+2,根据二次函数的性质,可得CN的最大值,再根据勾股定理即可求出AN的长度.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
G
B E C
你能求出三角形ABC的面积和周长吗? 你发现三角形ABC是什么特殊的三角形? 你能求出底边上的高吗?
F
如图的正方形网格 中,每个小正方形 的边长都为现三角形ABC是什么特殊的三角形? 你能求出底边上的高吗?
A
如图,正三角形ABC的边 长为6,求三角形的面积。
如图的正方形网格中, 每个小正方形的边长 都为1,任意连接这些 小正方形的顶点,可 得到一些线段.
你能在图中找出表示
2 的线段吗?
知识回忆 : ☞
这些数都属于我们学过的什么数?
实数
一一对应
数轴上的点
你能数轴上准确的表示出哪些数?
· · · ··3 -1 0 1 2
你能在数轴上表示出
· -1
· 0 · 1
B
C
构造直角三形求线段的长。
18

勾股定理

习题18.1(3)
· -1
· 0
· 1
·
2
2 的点吗?
·
2
你能用类似的方法在数轴上准确表示 出 10 的点吗?
5
5
13
13
你能在数轴上画出表示
3
的点吗?
你还有其它的方法在数轴上表示
3 的点吗?
作出长为 n (n 0, n为整数) 的线段. 思 路 构 造 直 角 三 形
n (n 0, n为整数) 成为直角三角形的一条边
F
如图的正方形网格 中,每个小正方形 的边长都为1.
相关文档
最新文档