一元二次方程知识点总结复习课程
一元二次方程专题复习
一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
一元二次方程复习课件
32 x X 2
X 32-2X
一元二次方程解法的复习
例6、有一堆砖能砌12米长的围墙,现要围一个20
平方米的鸡场,鸡场的一边靠墙(墙长7米),其余三
边用砖砌成,墙对面开一个1米宽的门,求鸡场的长
和宽各是多少米?
解:设鸡场的宽为x米,则长为(12+1-2x) =(13-2x)米,列方程得: X(13-2x)=20 解得:x1=4,x2=2.5 经检验:两根都符合题意 ∴13-2x=5或8 (舍去)
(4):主要用到的数学思想方法
分类讨论
知识聚焦
一元二次方程根的判别式
一元二次方程 ax 2
bx c 0a 0根的判式是:
b 4ac
2
一元二次方程
判别式的情况
ax bx c 0a 0
2
根的情况
定理与逆定理
b 2 4ac 0 两个不相等实根 b 2 4ac 0 两个相等实根 b 2 4ac 0 无实根(无解)
一:回顾与总结
在解答下列各小题过程中,回顾用到了哪些知识点?
① 只含有一个未知数
1:下列方程中,属于一元二次方程的是( c ) 3 (1):一元二次方程的三要素 ② 未知数的最高次数是2次 2 A : 2 x y 1 0 B : x 2x 1 0 ③ 两边是整式
1 C : x 2 x 3 0 D : 2 3x 2 0 3x
当方程中有括号时,思考方法是:
1:应先用整体思想考虑有没有简单方法; 2:若看不出合适的方法时,则把它去括号并整理 为一般形式再选取合理的方法。
变式1: 2(x-2)2+5(2-x)-3=0 2-x 变式2:
初三数学一元二次方程复习与总结江苏科技版
初三数学一元二次方程复习与总结某某科技版【本讲教育信息】一. 教学内容:一元二次方程复习与总结学习目标:1. 加深理解一元二次方程的有关概念2. 熟练地应用不同的方法解方程3. 能应用方程的思想和方法解决实际问题4. 体会“降幂法”在解方程中的含义二. 重点、难点:重点:一元二次方程的解法与应用难点:一元二次方程的综合应用课堂教学(一)知识要点(1)本章知识结构(2)中考主要考点①利用一元二次方程的意义解决问题②用整体思想对复杂的高次方程或分式方程进行变形(换元法)③考查配方法(主要结合函数的顶点式来研究)④一元二次方程的解法⑤一元二次方程根的近似值⑥建立一元二次方程模型解决问题⑦利用根的判别式求方程中的字母系数的值⑧与一元二次方程相关的探索或说理题⑨与其他知识结合,综合解决问题【典型例题】例1. 写出两个一元二次方程,使每个方程都有一个根为0,并且二次项系数都为1 _____________________________________________________解:答案不唯一,例如:x2=0x2-x=0例2. 用换元法解方程x 2-2x +xx 272-=8,若设x 2-2x =y ,则原方程化为关于y 的整数方程是( ) A. y 2+8y -7=0 B. y 2-8y -7=0 C. y 2+8y +7=0D. y 2-8y +7=0解:D 。
换元法的实质是整体思想的应用。
例3. 用配方法解方程:x 2-4x -1=0解:利用配方法解一元二次方程的一般步骤是移项,二次项系数化为1,两边同时加上一次项系数一半的平方,左边化为完全平方式、利用平方的意义求解。
例4.判断方程ax 2+bx +c =0(a ≠0)一个解x 的X 围是( ) A. 3<x <3.23 B. 3.23<x <3.24 C. 3.24<x <3.25 D. 3.25<x解:一元二次方程根近似值是深层次地理解方程的重要概念,在实际应用中,作用很大。
10.《一元二次方程》全章复习与巩固—知识讲解(基础)
《一元二次方程》全章复习与巩固—知识讲解(基础)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.【典型例题】类型一、一元二次方程的有关概念1.下列方程中是关于x 的一元二次方程的是( )A .2210x x +=B .20ax bx c ++=C .(1)(2)1x x -+=D .223250x xy y --= 【答案】C ;【解析】A :不是整式方程,故本选项错误;B :当a =0时,即ax 2+bx +c =0的二次项系数是0时,该方程就不是一元二次方程;故本选项错误;C :由原方程,得x 2+x-3=0,符一元二次方程的要求;故本选项正确;D :方程3x 2-2xy -5y 2=0中含有两个未知数;故本选项错误.故选C .【总结升华】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.举一反三:【高清ID :388528 关联的位置名称(播放点名称):利用定义求字母的值】【变式】关于x 的方程22(28)(2)10a a x a x --++-=,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.【典型例题】 类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x2-=0; (2) (x+a)2=;(3) 2x2-4x-1=0; (4) (1-)x2=(1+)x.【答案与解析】(1)原方程可化为0.5x2=∴x2=用直接开平方法,得方程的根为∴x1=,x2=-.(2)原方程可化为x2+2ax+a2=4x2+2ax+∴x2=a2用直接开平方法,得原方程的根为∴x1=a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t=1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0.∴ 3x-2=0或3x-3=0,∴ 123x =,21x =. (2)原方程可化为:2(t-1)2+(t-1)=0.∴ (t-1)[2(t-1)+1]=0.∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0.∴ 11t =,212t =.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.类型三、一元二次方程根的判别式的应用3.(2015•荆门)若关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,则a 的取值范围是( )A .a ≥1B . a >1C . a ≤1D .a <1【答案】A ;【解析】∵关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0,∴a ≥1.故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.【高清ID :388528 关联的位置名称(播放点名称):根系关系】2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程2220x x t -++=的两个不相等的实数根,(1)求t 的取值范围; (2)设2212s x x =+,求s 关于t 的函数关系式. 【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1.(2)由一元二次方程根与系数的关系知:122x x +=,122x x t =+,从而2212s x x =+21212()2x x x x =+-222(2)2t t =-+=-,即2(1)s t t =-<-.【总结升华】利用根与系数关系求函数解析式综合题.举一反三:【变式】已知关于x 的一元二次方程222(1)x m x m =--的两实数根为1x ,2x .(1)求m 的取值范围;(2)设12y x x =+,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为222(1)0x m x m +-+=.∵ 原方程有两个实数根.∴ 22[2(1)]4840m m m =--=-+≥△,∴ 12m ≤. (2) 1222y x x m =+=-+,且12m ≤. 因为y 随m 的增大而减小,故当12m =时,取得最小值1. 要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.类型五、一元二次方程的应用5.如图所示,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm,由题意得4x2=10×8×(1-80%).解得x1=2,x2=-2.经检验,x1=2符合题意,x2=-2不符合题意舍去.∴ x=2.答:截去的小正方形的边长为2cm.【总结升华】设小正方形的边长为x cm,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%.举一反三:【变式】(2015春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在欲砌50m长的墙,砌成一个面积300m2的矩形花园,则BC的长为多少m?【答案】解:设AB=x米,则BC=(50﹣2x)米.根据题意可得,x (50﹣2x )=300,解得:x 1=10,x 2=15,当x=10,BC=50﹣10﹣10=30>25,故x 1=10(不合题意舍去),50﹣2x=50﹣30=20.答:BC 的长为20m .6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高x 个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得x 2-5x+6=0.解得,x 1=2,x 2=3.∴ 当x =2时,2x =4;当x =3时,2x =6.答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x 个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张,则出租出去的总床位为(100-10x)张,据此可列方程.【巩固练习】一、选择题1.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( )A.1B.﹣1C.0D.无法确定2.若一元二次方程式ax (x +1)+(x +1)(x +2)+bx (x +2)=2的两根为0.2,则|3a +4b |之值为何( )A .2B .5C .7D .83.(2015•濠江区一模)某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为( )A .2%B . 5%C . 10%D . 20% 4.将代数式x 2+4x-1化成(x+p )2+q 的形式( )A.(x-2)2+3B.(x+2)2-4C.(x+2)2-5D.(x+2)2+45.若关于x 的一元二次方程2210kx x ++=有实数根,则k 的取值范围是( ).A .k <0B .k ≤0C .k ≠1且k ≠0D .k ≤1且k ≠06.从一块正方形的铁片上剪掉2 cm 宽的长方形铁片,剩下的面积是48 cm 2,则原来铁片的面积是( ) A.64 cm 2 B.100 cm 2 C.121 cm 2 D.144 cm 27.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定8.如果关于x 的方程ax 2+x-1=0有实数根,则a 的取值范围是( )A .B .C .且D .且二、填空题9.已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m = ,另一个根是 .10.(2014秋•青海校级期末)有一间长20m ,宽15m 的矩形会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则地毯的长、宽分别为 和 .11.关于x 的一元二次方程22(1)10a x x a -++-=有一个根为0,则a = .12.阅读材料:设一元二次方程似20ax bx c ++=(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:12b x x a +=-,12c x x a =,根据该材料填空:已知x 1,x 2是方程2630x x ++=的两实数根,则2112x x x x +的值为________. 13.已知两个连续奇数的积是15,则这两个数是___________________.14.设x 1,x 2是一元二次方程x 2-3x-2=0的两个实数根,则2211223x x x x ++的值为________. 15.问题1:设a 、b 是方程x 2+x -2012=0的两个实数根,则a 2+2a +b 的值为 ;问题2:方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1―1)(x 2―1)= ; 问题3:已知一元二次方程x 2-mx +m -2=0的两个实数根为x 1、x 2且x 1x 2(x 1+x 2)=3,则m的值是 ;问题4:已知一元二次方程x 2-2x+m=0,若方程的两个实数根为X 1,X 2,且X 1+3X 2=3,则m 的值是 .16.某校2010年捐款1万元给希望工程,以后每年都捐款,计划到2012年共捐款4.75万元,则该校捐款的平均年增长率是 .三、解答题17.某两位数的十位数字与个位上的数字之和是5,把这个数的个位上的数字与十位上的数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数.18. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.19.(2015•十堰)已知关于x 的一元二次方程x 2﹣(2m+3)x+m 2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元?【答案与解析】一、选择题1.【答案】B;【解析】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B.2.【答案】B;【解析】先根据一元二次方程式ax(x+1)+(x+1)(x+2)+bx(x+2)=2的根确定a.b 的关系式.然后根据a.b的关系式得出3a+4b=-5.用求绝对值的方法求出所需绝对值.3.【答案】D;【解析】设平均每月增长的百分率为x,根据题意,得50(1+x)2=72,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去)故选D.4.【答案】C;【解析】根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.x2+4x-1=x2+4x+4-4-1=(x+2)2-5,故选C.5.【答案】D;【解析】因为方程是一元二次方程,所以k≠0,又因为一元二次方程有实数根,所以△≥0,即△=4-4k≥0,于是有k≤1,从而k的取值范围是k≤1且k≠0.6.【答案】A;【解析】本题用间接设元法较简便,设原铁片的边长为xcm.由题意,得x(x-2)=48,解得x1=-6(舍去),x2=8.∴x2=64,即正方形面积为64 cm2.7.【答案】A;【解析】由t是方程的根得at2+bt+c=0,M=4a2t2+4abt+b2=4a(at2+bt)+b2= b2-4ac=△.8.【答案】B ;【解析】注意原方程可能是一元二次方程,也可能是一元一次方程.二、填空题9.【答案】1;﹣3.【解析】根据一元二次方程的解定义,将x =2代入关于x 的方程x 2+mx ﹣6=0,然后解关于m 的一元一次方程;再根据根与系数的关系x 1+x 2=﹣b a解出方程的另一个根. 10.【答案】 15m ,10m ;【解析】设留空宽度为xm ,则(20﹣2x )(15﹣2x )=20×15×,整理得:2x 2﹣35x+75=0,即(2x ﹣5)(x ﹣15)=0,解得x 1=15,x 2=2.5,∵20﹣2x >0,∴x<10,∴x=2.5,∴20﹣2x=15,15﹣2x=10.∴地毯的长、宽分别为15m 和10m .11.【答案】-1;【解析】把x=0代入方程得1a =±,因为10a -≠,所以1a =-.12.【答案】10;【解析】此例首先根据阅读部分,明确一元二次方程根与系数的关系, 然后由待求式2112x x x x +变形为2221212121212()2x x x x x x x x x x ++-=,再整体代换. 具体过程如下:由阅读材料知 x 1+x 2=-6,x 1x 2=3. 而222221121212121212()2(6)23103x x x x x x x x x x x x x x ++---⨯+====. 13.【答案】3和5或-3和-5;【解析】注意不要丢解.14.【答案】7;【解析】∵ x 1,x 2是一元二次方程2320x x --=的两实数根,∴ x 1+x 2=3,x 1x 2=-2∴ 222222112211221212123(2)()3(2)7x x x x x x x x x x x x x x ++=+++=++=+-= 15.【答案】2011;-2;m=-1或3;m=34. 【解析】由于a ,b 是方程x 2+x-2012=0的两个实数根,根据根与系数的关系可以得到a+b=-1,并且a 2+a-2012=0,然后把a 2+2a+b 可以变为a 2+a+a+b ,把前面的值代入即可求出结果.16.【答案】50%;【解析】设该校捐款的平均年增长率是x , 则, 整理,得,解得,答:该校捐款的平均年增长率是50%.三、解答题17.【答案与解析】设原两位数的十位数字为x,则个位数字为(5-x),由题意,得[10x+(5-x)][10(5-x)+x]=736.整理,得x2-5x+6=0,解得x1=2,x2=3.当x=2时5-x=3,符合题意,原两位数是23.当x=3时5-x=2符合题意,原两位数是32.18.【答案与解析】设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答:这两个月的平均增长率是10%.19.【答案与解析】解:(1)∵关于x的一元二次方程x2﹣(2m+3)x+m2+2=0有实数根,∴△≥0,即(2m+3)2﹣4(m2+2)≥0,∴m≥﹣;(2)根据题意得x1+x2=2m+3,x1x2=m2+2,∵x12+x22=31+|x1x2|,∴(x1+x2)2﹣2x1x2=31+|x1x2|,即(2m+3)2﹣2(m2+2)=31+m2+2,解得m=2,m=﹣14(舍去),∴m=2.20.【答案与解析】⑴若商店经营该商品不降价,则一天可获利润100×(100-80)=2000(元)⑵ ①依题意得:(100-80-x)(100+10x)=2160即x2-10x+16=0解得:x1=2,x2=8经检验:x1=2,x2=8都是方程的解,且符合题意.答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.②依题意得:y=(100-80-x)(100+10x)∴y= -10x2+100x+2000=-10(x-5)2+2250画草图(略)观察图像可得:当2≤x≤8时,y≥2160∴当2≤x≤8时,商店所获利润不少于2160元.。
一元二次方程复习课(精品)
一元二次方程复习一、一元二次方程知识点1、一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程2、一元二次方程的解法(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。
在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,(X2={-b-√[b2-4ac)]}/2a3、解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法(就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c4、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a ,二根之积=c/a也可以表示为x 1+x 2=-b/a,=c/a 。
利用韦达定理,可以求出一元二次方程中的各系数, 在题目中很常用 5、一元二次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“dei er ta”, 而△=b 2-4ac ,这里可以分为3种情况:I 、当△>0时,一元二次方程有2个不相等的实数根; II 、当△=0时,一元二次方程有2个相同的实数根;¥III 、当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)二、考点研究考点一、概念例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x x B 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
复习2:一元二次方程根的判别式
4、若关于x的一元二次方程mx2-2x+1=0有两个不相等实数根,
则m的取值范围是
()
A.m<1
B. m<1且m≠0
C.m≤1
D. m≤1且m≠0
5、若关于x的方程x2+(2k-1)x+k2-7/4=0有两个相等的实数根,则 k= .
6.关于x的一元二次方程mx2-(3m-1)x+2m-1=0, 其根的判别式的值为1,求m的值及该方程的根。
则x1+x2=
;x1x2= ;
2、方程2x2-kx-6=0的一个根是2,则k=
;
另一个根为( )
3、以2,-3为根的一元二次方程是
;
4、已知a、b是方程x2+x-1=0的两实根,则
a2+2a+b=
拓展已知a、b满足6a=a2+4,6b=b2+4,
求 ab ba
思维训练. 1、在一元二次方程
ax2 bx c 0(a 0)中
3、一元二次方程的根与系数的关系:注意:此关系是在( )条件下存 在的。若 ax2+bx+c=0 的两根为 X1、x2,则x1+x2= ;x1x2= ;
4、以x1、x2为根(二次项系数为1)的一元二次方程是——————
➢ 课时训练(一)
Hale Waihona Puke 1、下列一元一次方程中,有实数根的是( )
A
.x2-x+1=0
➢ 要点、考点聚焦
1.一元二次方程ax2+bx+c=0(a≠0)根的情况: (1)当Δ>0时,方程有两个不相等的实数根; (2)当Δ=0时,方程有两个相等的实数根; (3)当Δ<0时,方程无实数根.
一元二次方程所有知识点总结复习 ppt课件
2020/10/22
一元二次方程所有知识点总结复习
4
探究交流
❖ (1)判断方程X(X+10)=X2-3是否是一元 二次方程?
❖ (2)方程3 X2+2X=1的常数项是1,方程 3 X2-2X+6=0的一次项系数是2,这种说法对 吗?
答案:(1)化简后为10X+3=0,所以它是一元一次方程。
(2)要将一元二次方程化为一般形式,且系数包括它前 面的性质符号。
21 . 3
18
2x225.
解:系数化1,得 x 22 5,
2
开平方,得
x2
5.
2
x 2 10 或 x 2 10 .
2
2
解这两个一元一次方程,得
2020/10/22
x 102,x 102
2
2
一元二次方程所有知识点总结复习
20
解下列方程:
小结
(1 ) ( x 1 ) 2 4 (2) 1 (y 2)2 3 0
2020/10/22
一元二次方程所有知识点总结复习
5
练习:
(1)方程(m+2)X|m|+3mx+1=0是关于X 的一元二次方程,求m的值。 答案:m=2
(2)当m=
时,方程(m2-1)x2-(m
-1)x+1=0是关于x的一元一次方程。 答案:m=-1
(3)已知关于x的一元二次方程(m-1) x2+ 3x+㎡-1=0有一个解是0,求m的值。答案:m=-1
13
一元二次方程的解法(1) ----开平方法
2020/10/22
一元二次方程所有知识点总结复习
14
问题1:
一桶某种油漆可刷的面的为1500dm2,李林用这
桶油漆恰好刷好完10个同样的正方体形状的盒
第1讲一元二次方程的概念与解法-2021届九年级数学中考一轮复习课件
知识点点解读
3 公式法
用求根公式解一元二次方程的方法,它是解一元二次方程的一般方法
一元二次方程ax²+bx+c=0的求根公式:x= - b b2 - 4ac
公式法的一般步骤
2a
①指出方程中a,b,c的值
②求出b²-4ac的值
③若b²-4ac≥0.则用求根公式求解,若b²-4ac<0,则方程无解
4 因式分解法 一般步骤:①使方程的右边化为0 ②使方程左边化为两个一次因式的积 ③令每个因式等于0,得到两个一元一次方程,然后解这个一元一次方程,求这个方 程的解
解:(1)方程x2﹣8x+15=0, 分解因式得:(x﹣3)(x﹣5)=0, 可得x﹣3=0或x﹣5=0, 解得:x1=3,x2=5;
(2)方程x2﹣x﹣20=0, 分解因式得:(x﹣5)(x+4)=0, 可得x﹣5=0或x+4=0, 解得:x1=5,x2=﹣4;
经典例题
考点7 用公式法解一元二次方程
一元二次方程的解法(1) 中考一轮复习课件
教学目标
1 一元二次方程的概念 2一元二次方程的一般式 3一元二次方程解的问题 4直接开平方法解一元二次方程 5配方法解一元二次方程 6 因式分解法解一元二次方程 7公式法解一元二次方程
知识点解读
1 一元二次方程的概念:只含有一个未知数,并且未知数的最高次数为 2的整式方程 2 一元二次方程的一般情势:形如ax²+bx+c=0,其中a不为0,b,c可以 为0,a为二次项系数,ax²为二次项,bx为一次项,b为一次项系数,c为 常数项 3 一元二次方程的解:使方程左右两边相等的未知数的值,就一元二次 方程的解 4一元二次方程解法①直接开平方法 ②配方法 ③公式法 ④因式分解法
第二章 一元二次方程复习 讲义
龙文教育学科教师辅导讲义学员姓名: 辅导课目:数学 年级:八年级 学科教师:汪老师 授课日期及时段课 题第二章 一元二次方程复习重点、难点、考点1、一元二次方程的基本概念2、一元二次方程的解法及应用学习目标1、理解一元二次方程的基本概念及其相应的应用2、一元二次方程的解法及其应用教学内容一、知识回顾:1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数。
2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法. (注意:用直接开平方的方法时要记得取正、负.)(2)配方法:关键化原方程为2()x m n +=的形式 (警告: 用配方法时二次项系数要化1.)(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是221,24(40)2b b ac x b ac a-±-=-≥.(注意:方程要先化成一般形式.)(4)因式分解法(主要有提取公因式、运用平方差公式、运用完全平方公式、十字相乘法):因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积; ③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.(注意:方程要先化成一般形式.)3.一元二次方程根的判别式: 24b ac ∆=-(1)一元二次方程20(0)ax bx c a ++=≠根的情况:①当0∆>时,方程有两个不相等的实数根;②当0∆=时,方程有两个相等的实数根; ③当0∆<时,方程无实数根. (2)判定一元二次方程根的情况; (3)确定字母的值或取值范围。
知识点练习知识一:一元二次方程的概念1、一元二次方程(1-3x)(x+3)=2x 2+1的一般形式是 它的二次项系数是 ; 一次项系数是 ;常数项是 。
一元二次方程专题复习资料
一元二次方程专题复习 知识盘点1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。
通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。
2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。
(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。
如果n <0,则原方程 。
(3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________(4)因式分解法:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个 的乘积;③令每个因式都等于 ,得到两个 方程;④解这两个方程,它们的解就是原方程的解。
3.一元二次方程的根的判别式 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 的实数根,即-----=-----=2,1x x(2)ac b 42-=0⇔一元二次方程有两个 的实数根,即-----==21x x ,(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根。
4. 一元二次方程根与系数的关系如果一元二次方程20ax bx c ++=(0)a ≠的两根为12,x x ,则12x x += ,12x x =提示:在应用一元二次方程根与系数的关系时,一定要保证元二次方程有实数根。
5. 列一元二次方程解应用题列一元二次方程解应用题的步骤和列一元一次方程解应用题的步骤一样,即审、找、设、列、解、答六步。
(完整版)一元二次方程知识点和易错点总结
一元二次方程知识点总结知识结构梳理(1)含有 个未知数。
(2)未知数的最高次数是 1、概念 (3)是 方程。
(4)一元二次方程的一般形式是 。
(1) 法,适用于能化为)((0)2≥=+n n m x 的一元二次方程 (2) 法,即把方程变形为ab=0的形式,2、解法 (a ,b 为两个因式), 则a=0或(3) 法(4) 法,其中求根公式是 根的判别式当 时,方程有两个不相等的实数根。
(5) 当 时,方程有两个相等的实数根。
当 时,方程有没有的实数根。
可用于解某些求值 (1) 一元二次方程的应用 (2)(3)可用于解决实际问题的步骤 (4) (5)(6)知识点归类知识点一 一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
注意:1、一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是一元二次方程2、同时还要注意在判断时,需将方程化成一般形式。
例 下列关于x 的方程,哪些是一元二次方程?⑴3522=+x ;⑵062=-x x ;(3)5=+x x ;(4)02=-x ;(5)12)3(22+=-x x x知识点二 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。
其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。
注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。
(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。
例1 已知关于x 的方程()()021122=-+--+x m x m m 是一元二次方程时,则=m知识点三 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。
21章-一元二次方程复习教案
智考一对一教育学科辅导讲义7.总结知识框架)~真题在线1.(2011山东济南,18,3分)方程x2﹣2x=0的解为.2.(2011·天水)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少设宽为x m,从图(2)的思考方式出发列出的方程是.3.(2011•德州)若x 1,x 2是方程x 2+x ﹣1=0的两个根,则x 12+x 22= .;变式训练一元二次方程的定义:1.下列方程中是关于x 的一元二次方程的是( )A .x 2+1x2=0 B .ax 2+bx +c =0 C .(x -1)(x +2)=1 D .3x 2-2xy -5y 2=0 2.下列方程中,无论取何值,总是关于x 的一元二次方程的是( )A.02=++c bx axB.x x ax -=+221C.0)1()1(222=--+x a x aD.0312=-+=a x x :3.关于x 的一元二次方程(a 2—1)x 2+x —2=0是一元二次方程,则a 满足( )A. a ≠1B. a ≠—1C. a ≠±1D.为任意实数4.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
5.关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当 时为一元二次方程。
6.关于x 的方程0232=+-m x x 的一个根为-1,则方程的另一个根为______,______。
—7.已知m 是方程2250x x --=的一个根,则22m m -=______________。
8.关于的一元二次方程22(1)10a x x a -++-=的一个根是0,则的值为( )A. 1B.1-C.1或1-解一元二次方程: 1.选用合适的方法解下列方程)4(5)4(2+=+x x x x 4)1(2=+ 22)21()3(x x -=+ !^112122=+-+x x x x 31022=-x x 32x =2x?x (3x -1)=3-x 4(x -2)2-(3x -1)2=0 (2x -1)2+3(2x -1)+2=0|32x 32--x =0 x (2x+3)=4x+6¥*2.配方法解方程x 2—4x+2=0,下列配方正确的是( )A .B .C .2(2)2x -=-D .2(2)6x -= 3.解方程(5x —1)2=3(5x —1)的适当方法是( )A .开平方法B .配方法C .公式法D .因式分解法 4.等腰三角形的底和腰分别是方程的两个根,则这个三角形的周长是( ) A .8B .10C .8或10D . 不能确定5.若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( ) <A. 1,0 ,0 ,-1 D.无法确定 6.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠57. 用配方法解方程2420x x -+=,则下列配方正确的是( )A.2(2)2x -=B.2(2)2x +=C.2(2)2x -=-D.2(2)6x -=8. x 2+3x+ =(x+ )2 ;x 2— +2=(x )2 ()22_____________23-=+-x x x 9.若8)2)((=+++b a b a ,则b a +=10.当=n _________时,方程n nx x +=-72的一个根是2)11. 代数式522+-x x 的最小值是__________12.请写出一个以2和4为根的一元二次方程_______________________13.如果x 2-2(m +1)x + m 2+ 5=0是一个完全平方公式,则m .14.当m 为 时,关于x 的方程(x -p )2+m =0有实数解.根与系数的关系: 注意:一元二次方程根的判别式的性质反用也成立,即已知根的情况,可以得到一个等式或不等式,从而确定系数的值或取值范围.1. 关于x 的一元二次方程x 2+kx -1=0的根的情况是( )A 、有两个不相等的同号实数根B 、有两个不相等的异号实数根*C 、有两个相等的实数根D 、没有实数根2.已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a <2B .a >2C .a <2且a ≠1D .a <-23.关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是( )A .0B .8C .4± 2D .0或84.已知三角形的两边长是方程x 2—5x+6=0的两个根,则该三角形的周长L 的取值范围是( )A. 1<L <5B. 2<L <6C. 5<L <9D. 6<L <105.方程x 2—9x+18=0的两个根是等腰三角形的底边长和一腰长,则这个三角形的周长为( );A. 12B. 12或 15C. 15D. 不能确定6.若x 1,x 2是一元二次方程x 2+4x +3=0的两个根,则x 1x 2的值是( )A .4B .3C .-4D .-37.若是关于的一元二次方程的根,且≠0,则的值为( ) A. 1- B. 1 C.21-D.21 8.设m 是方程250x x +=的较大的一根,n 是方程2320x x -+=的较小的一根,则m n +=( ) A. —4 B. —3 C. 1 D. 2'9.已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.;10.~11.已知方程(1)求证方程必有相异实根。
第01讲 一元二次方程(解析版)
第01讲一元二次方程理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.类型一、关于一元二次方程的判定例1.判定下列方程是不是一元二次方程:(1);(2).【答案】(1)是;(2)不是.【解析】(1)整理原方程,得,所以.其中,二次项的系数,所以原方程是一元二次方程.(2)整理原方程,得,所以.其中,二次项的系数为,所以原方程不是一元二次方程.【总结升华】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.例2.判定下列方程是否关于x的一元二次方程:(1)a2(x2-1)+x(2x+a)=3x+a;(2)m2(x2+m)+2x=x(x+2m)-1.【答案与解析】(1)经整理,得它的一般形式(a 2+2)x 2+(a-3)x-a(a+1)=0,其中,由于对任何实数a 都有a 2≥0,于是都有a 2+2>0,由此可知a 2+2≠0,所以可以判定:对任何实数a,它都是一个一元二次方程.(2)经整理,得它的一般形式(m 2-1)x 2+(2-2m)x+(m 3+1)=0,其中,当m≠1且m≠-1时,有m 2-1≠0,它是一个一元二次方程;当m=1时方程不存在,当m=-1时,方程化为4x=0,它们都不是一元二次方程.【总结升华】对于含有参数的一元二次方程,要十分注意二次项系数的取值范围,在作为一元二次方程进行研究讨论时,必须确定对参数的限制条件.如在第(2)题,对参数的限定条件是m≠±1.例如,一个关于x 的方程,若整理为(m-4)x 2+mx-3=0的形式,仅当m-4≠0,即m≠4时,才是一元二次方程(显然,当m=4时,它只是一个一元一次方程4x-3=0).又如,当我们说:“关于x 的一元二次方程(a-1)x 2+(2a+1)x+a 2-1=0……”时,实际上就给出了条件“a-1≠0”,也就是存在一个条件“a≠1”.由于这个条件没有直接注明,而是隐含在其他的条件之中,所以称它为“隐含条件”.【变式】判断下列各式哪些是一元二次方程.①21x x ++;②2960x x -=;③2102y =;④215402x x-+=;⑤2230x xy y +-=;⑥232y =;⑦2(1)(1)x x x +-=.【答案】②③⑥.【解析】①21x x ++不是方程;④215402x x-+=不是整式方程;⑤2230x xy y +-=含有2个未知数,不是一元方程;⑦2(1)(1)x x x +-=化简后没有二次项,不是2次方程.②③⑥符合一元二次方程的定义.类型二、一元二次方程的一般形式、各项系数的确定例3.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:(1)-3x 2-4x+2=0;(2).【答案与解析】(1)两边都乘-1,就得到方程3x 2+4x-2=0.各项的系数分别是:a=3,b=4,c=-2.(2)两边同乘-12,得到整数系数方程6x 2-20x+9=0.各项的系数分别是:.【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中c=-2不能写为c=2,(2)题中不能写为.例4.已知关于y 的一元二次方程m 2(y 2+m)-3my=y(8y-1)+1,求出它各项的系数,并指出参数m 的取值范围.【答案与解析】将原方程整理为一般形式,得(m 2-8)y 2-(3m-1)y+m 3-1=0,由于已知条件已指出它是一个一元二次方程,所以存在一个隐含条件m 2-8≠0,即m≠±.可知它的各项系数分别是a=m 2-8(m≠±),b=-(3m-1),c=m 3-1.参数m 的取值范围是不等于±的一切实数.【总结升华】在含参数的方程中,要认定哪个字母表示未知数,哪个字母是参数,才能正确处理有关的问题.【变式1】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项:(1)2352x x =-;(2)(1)(1)2a x x x +-=-.【答案】(1)235+2=0x x -,二次项系数是3、一次项系数是-5、常数项是2.(2)(1)(1)2a x x x +-=-化为220,ax x a +--=二次项系数是a、一次项系数是1、常数项是-a-2.【变式2】关于x 的方程的一次项系数是-1,则a .【答案】原方程化简为x 2-ax+1=0,则-a=-1,a=1.类型三、一元二次方程的解(根)例5.若0是关于x 的方程()2223280m x x m m -+++-=的解,求实数m 的值,并讨论此方程解的情况.【思路点拨】根据一元二次方程解的性质,直接求出m 的值,根据若是一元二次方程时,注意二次项系数不为0,再利用根的判别式求出即可.【答案与解析】解:∵0是关于x 的方程()2223280m x x m m -+++-=的解,∴2280m m +-=∴24m m ==-或①当20m -≠∴4m =-∴原方程为:2630x x -+=2490b ac =-=> ∴此方程有两个不相等的根.2630x x -+=()3210x x --=解得:00.5x =或②当2m =∴30x =∴0x =【总结升华】此题主要考查了一元二次方程的解以及根的判别式,熟练记忆根的判别式公式是解决问题的关键.例6.已知关于x 的方程(m﹣1)x 2+5x+m 2﹣3m+2=0的常数项为0,(1)求m 的值;(2)求方程的解.【答案与解析】解:(1)∵关于x 的方程(m﹣1)x 2+5x+m 2﹣3m+2=0的常数项为0,∴m 2﹣3m+2=0,解得:m 1=1,m 2=2,∴m 的值为1或2;(2)当m=2时,代入(m﹣1)x 2+5x+m 2﹣3m+2=0得出:x 2+5x=0x(x+5)=0,解得:x 1=0,x 2=﹣5.当m=1时,5x=0,解得x=0.【总结升华】此题是一元一次方程与一元二次方程的解法的小综合,注意本题中说的是“方程”,而不是“一元二次方程”.【变式】(1)x=1是的根,则a=.(2)已知关于x 的一元二次方程22(1)210m x x m -++-=有一个根是0,求m 的值.【答案】(1)当x=1时,1-a+7=0,解得a=8.(2)由题意得一、单选题【分析】通过观察表格可得20x px q ++=时,3.2 3.3x <<,即可求解.【详解】解:由表格可知,当 3.2x =时,20x px q ++<,当 3.3x =时,20x px q ++>,∴20x px q ++=时,3.2 3.3x <<,∴解的整数部分是3,十分位是2.故选:B .【点睛】本题考查一元二次方程的解,通过观察所给的信息,确定一元二次方程解的范围是解题的关键.3.(2022秋·江苏徐州·九年级校考期末)关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是()A .1-B .1C .1或1-D .1-或0【答案】A【分析】根据方程是一元二次方程,可得10a -≠,将0x =代入解析式,求出a 的值即可.【详解】解:∵关于x 的一元二次方程()22110a x x a -++-=的一个根是0,∴10a -≠,210a -=,∴1a =-;故选A .【点睛】本题考查一元二次方程的定义和一元二次方程的解.熟练掌握一元二次方程二次项系数不为0,使等式成立的未知数的值是方程的解,是解题的关键.二、填空题一、单选题1.(2022秋·江苏连云港·九年级校考阶段练习)一元二次方程2323x x -=的二次项系数、一次项系数、常数项分别是()A .3、2、3-B .3、2、3C .3、2-、3D .3、2-、3-【答案】D【分析】将一元二次方程2323x x -=化为一般形式即可求得结果.【详解】解:将一元二次方程2323x x -=化为一般形式,得23230x x --=,二次项系数为3,一次项系数为2-,常数项为3-.故选:D .【点睛】本题考查了一元二次方程的一般形式以及多项式的有关概念,解决问题的关键是将一元二次方程化为一般形式.2.(2022秋·江苏无锡·九年级校考阶段练习)若关于x 的一元二次方程()2215320m x x m m -++-+=的常数项为0,则m =()A .1B .2C .1或2D .0【答案】B 【分析】根据一元二次方程成立的条件和常数项为0列出方程组,解方程组即可求解.【详解】若关于x 的一元二次方程()2215320m x x m m -++-+=的常数项为0,则232010m m m ⎧-+=⎨-≠⎩,解得2m =,故选:B .【点睛】本题考查了一元二次方程的一般形式和一元二次方程的含义,熟练掌握知识点是解题的关键.3.(2022秋·江苏南京·九年级校联考阶段练习)观察表格中数据,一元二次方程4.(2022秋·江苏连云港·九年级校考阶段练习)若关于x 的一元二次方程()2100ax bx a +-=≠有一根为1x =,则一元二次方程()()21110a x b x -+--=必有一根为______.【答案】2【分析】利用整体思想设1x t -=,得到方程210at bt +-=,再根据210(0)ax bx a +-=≠即可得到t 的值,最后得出结论.【详解】解:∵在2(1)(1)10-+--=a x b x 中,设1x t-=∴210at bt +-=∵210(0)ax bx a +-=≠有一个根1x =∴在210at bt +-=中1t =∴即在2(1)(1)10-+--=a x b x 中,11x -=∴2x =故答案为:2【点睛】本题考查了换元法解一元二次方程,利用整体思想解一元二次方程是解题的关键.5.(2023春·江苏宿迁·九年级统考阶段练习)已知m 是方程2210x x +-=的一个根,则代数式2242021m m ++的值为_________【答案】2023【分析】由方程根的定义得到221m m +=,整体代入2242021m m ++即可得到答案.【详解】解:∵m 是方程2210x x +-=的一个根,∴2210m m +-=,∴221m m +=,∴()222420212220212120212023m m m m ++=++=⨯+=.故答案为:2023【点睛】此题考查了一元二次方程的解和代数式的值,熟练掌握一元二次方程解的定义是解题的关键.6.(2023春·江苏南京·九年级校联考阶段练习)已知方程20x bx c ++=的两个根分别是2、1,则b c +=______.【答案】1-【分析】把1x =代入20x bx c ++=得出10b c ++=,整理即可得出答案.【详解】解:把1x =代入20x bx c ++=得:10b c ++=,∴1b c +=-.故答案为:1-.【点睛】本题主要考查了一元二次方程的解,解题的关键是熟练掌握方程解的定义,得出10b c ++=.三、解答题(2)解:∵(﹣3x 2+6x ﹣5)-(﹣x 2+2x +3)=﹣2x 2+4x ﹣8=﹣2(x ﹣1)2﹣6<0,∴﹣3x 2+6x ﹣5<﹣x 2+2x +3,(﹣3x 2+6x ﹣5)*(﹣x 2+2x +3)=(﹣3x 2+6x ﹣5)﹣3(﹣x 2+2x +3)=﹣3x 2+6x ﹣5+3x 2﹣6x ﹣9=﹣14,∵化简后的结果与x 取值无关,∴不论x 取何值,结果都应该等于﹣14,不可能等于40,∴小华说小明计算错误.【点睛】本题考查解一元二次方程的能力和新定义的应用,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.12.(2022秋·九年级课时练习)已知方程()22(a x)a x x a 8a 16-=++-+是关于x 的一元二次方程.(1)求a 的取值范围;(2)若该方程的一次项系数为0,求此方程的根.【答案】(1)a 1≠;(2)1x 4=-,2x 4=【分析】(1)先把方程化为一元二次方程的一般形式,再考虑二次项系数不为0即可;(2)把方程化为一般形式后,根据条件一次项系数为0列出方程,求出a 的值,再代入原方程,解出方程即可.【详解】解:()1化简,得()2a 1x 3ax 8a 160-+-+=.方程()22(a x)a x x a 8a 16-=++-+是关于x 的一元二次方程,得a 10-≠,解得a 1≠,当a 1≠时,方程()22(a x)a x x a 8a 16-=++-+是关于x 的一元二次方程;()2由一次项系数为零,得a 0=.则原方程是2x 160-+=,即2x 160-=.因式分解得()()x 4x 40+-=,解得1x 4=-,2x 4=.【点睛】本题考查了一元二次方程的定义,一元二次方程的二次项的系数不能为0,一元二次方程不含一次项时可选用因式分解法解一元二次方程.13.(2022秋·九年级课时练习)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x=5.。
(完整版)一元二次方程知识点总结和例题——复习,推荐文档
配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项 系数为 1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使 左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果 q≥0,方程的根是 x=-p±√q;如果 q<0,方程无实根. (3)公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一 般方法。
一个一元二次方程经过整理化成 ax2+bx+c=0(a≠0)后,其中 ax2 是二次项,
程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两 根之积等于常数项除以二次项系数所得的商。
a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
7.分式方程
分母里含有未知数的方程叫做分式方程。
c a
。
温馨提示:利用根与系数的关系解题时,一元二次方程必须有实数根。
例题:
1、关于 x 的一元二次方程 x2 kx 4k 2 3 0 的两个实数根分别是 x1, x2 ,
且满足 x1 x2 x1x2 ,则 k 的值为:
()
(A) 1或 3 4
(B) 1
3
(C)
4
(D)不存在
2、已知 , 是关于 x 的一元二次方程 x2 2m 3x m2 0 的两个不相
12、当 x =
时,代数式 x2 3x 比代数式 2x2 x 1的值大 2 .
13、某商品原价每件 25 元,在圣诞节期间连续两次降价,现在商品每件 16
A.2 B.3 C.-2 或 3 D.2 或-3
建议收藏下载本文,以便随时学习! 一元二次方程综合复习
10、若(m+1) xm(m2)1 +2mx-1=0 是关于 x 的一元二次方程,则 m 的值是
一元二次方程知识点归纳
②销售问题;利润问题,利润=售价-成本;利润率=利润/成本×100%;
③比赛问题:
④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.
例:方程 是关于x的一元二次方程,则方程的根为-1.
2.一元二次方程的解法
(1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方求解.
(2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解法求解.
(3)公式法:一元二次方程ax2+bx+c=0的求根公式为x= (b2-4ac≥0).
一元二次方程知识点
一、知识清单梳理
知识点一:一元二次方程及其解法
关键点拨及对应举例
1.一元二次方程的相关概念
(1)定义:只含有一个未知数=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.
(2)解题策略:已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解.
与一元二次方程两根相关代数式的常见变形:x12+x22=(x1+x2)2-2x1x2,
(x1+1)(x2+1)=x1x2+(x1+x2)+1,
等.
失分点警示
在运用根与系数关系解题时,注意前提条件时△=b2-4ac≥0.a≠0
3.根的判别式
(1)当Δ= 0时,原方程有两个不相等的实数根.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程知识点
总结
一元二次方程
一、定义
1.一元二次方程:只含有一个未知数,且未知数的最高次数为2的整式方程。
2.一般式:)0(02≠=++a c bx ax
其中2ax 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项。
3.根:如果0x 满足)0(002
0≠=++a c bx ax ,则0x 就是方程)0(02≠=++a c bx ax 的一个根。
判断一个方程是否是一元二次方程,(从定义出发),必须符合以下四个标准:
(1)整式方程;
(2)方程中只有一个未知数;
(3)化简后方程中未知数的最高次数是2;
(4)未知数次数为2的项系数不为0。
二、一元二次方程的解法
I 一般解法
1.直接开平方法
对于形如m x =2或)0,0()(2≥≠=+m a m b ax 的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解。
例:2(3)81x +=,直接开平方,39x +=±
2.配方法
通过配方把一元二次方程转化成形如m b ax =+2)(的方程,再运用直接开平方法的方法求解。
例:22840x x ++=,配方,22(2)4
x +=
3.因式分解法
因式分解法分解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0。
即:若0=ab ,则0=a ,或0=b 。
对于二次三项式)0(02≠=++a c bx ax 如果可以因式分解,则必可以分解成))((21x x x x a --,其中21,x x 是方程)0(02≠=++a c bx ax 的两个根。
当一元二次方程)0(02≠=++a c bx ax 无实数根时,二次三项式
)0(02≠=++a c bx ax 无法在实数范围内分解。
因式分解法一般步骤:
(1)将方程化成一元二次方程的一般形式;
(2)把方程的左边分解为两个一次因式的积,右边等于0;
(3)令每一个因式都为零,得到两个一元一次方程;
(4)解出这两个一元一次方程的解,即可得到原方程的两个根。
4.公式法
公式法的一般步骤:
(1)把一元二次方程化为一般式;
(2)确定a,b,c 的值;
(3)代入ac b 42-中计算其值,判断方程是否有实数根;
(4)若042≥-ac b ,代入求根公式求值;否则,原方程无实数根;
(先计算ac b 42-判断符号,减少计算量,而且求根公式对于任何一个一元二次方程都适用)
II 、特殊一元二次方程的解法
1、含有无理数一元二次方程
利用十字相乘的因式分解法求解(注意:分母有理化)
2、含有参数的一元二次方程
22243210
3211x ax a a a a -++-=+- 对因式分解后,再对整体因式分解 一般我们称之为“双()、常见如十字相乘”
22m x x +()、需要分类讨论的情况
如:关于 的方程
……有根
⎧⎪⎨⎪⎩
方程是几次方程讨论:二次项系数是否为0根的个数 (3)绝对值方程 2
212x x ⎧⎪⎪⎧⎨⎪⎨⎪⎪⎪⎩⎩
、将当做找零点常用方程解法、零点分段法分区间讨论
化简求值 (4)高次方程常见处理方法
3221,234x x x x ⎧⎪⎪⎨⎪⎪⎩
g 、代入降次 如将处理为将换掉 、换元(整体)、因式分解
、倒数方程
三、 一元二次方程的判别式
1、设一元二次方程为)0(02≠=++a c bx ax ,其根的判别式为:ac b 42-=∆,则
(1)⇔>∆0方程)0(02≠=++a c bx ax 有两个不相等的实数根
a
ac b b x x 24,221-±-=。
(2)⇔=∆0方程)0(02≠=++a c bx ax 有两个相等的实数根a
b x x 221-
==。
(3)⇔<∆0方程)0(02≠=++a c bx ax 没有实数根。
注意:一元二次方程要么有两个实数根(两个相等实数根或两个不等实数根),要么没有实数根;不会有一个实数根。
2、常见判别式的用处
由于判别式本身可引出等号和不等号,今儿就会有如下作用
(1)、往往利用相等实根引出等号,进而进入化简求值的领域
(2)、往往利用不等实根引出不等号,确定参数取值范围
(3)、往往利用一次函数和反比例函数,或一次函数和二次函数交点存在性问题,转化为判别式的问题来求解参数
四、一元二次方程两根的应用
1、韦达定理得推导过程
21212221220(a 0)22244ax bx c b b x x a a
b b b x x a a
b b a
c c x x a a
++=≠∆≥--==--∴+==--+==若有两个实根(0)
则 2、由以上推导过程得出的注意事项!
10
(2)∆≥∆
()用韦达定理,必须前提逆用韦达定理解题时,对得到的方程必须检验
3、韦达定理得常见题型 12121222121212,,,=14x x a b c a x x x x x x x x x x +++=(1)、确定参数(例如,已知求时,往往令来求
(2)、同第一种,确定参数后构造方程
(3)、确定另一个根
(4)、根据和的正负,确定两根关系
(5)、结合()-()进行化简求值
4、同解方程的一般解法
01x ()、设方程公共解为
02x ()、将代入原方程,形成新的方程 ①和②
-+(3)、①②或①②后,进行因式分解
最后对所得的式子进行关于0的讨论
四、一元二次方程的应用
列一元二次方程解决应用的步骤
1.审题:明确已知条件和未知条件,以及他们之间的关系;
2.找等量关系:明确题目中的等量关系;
3.设未知数:用字母表示未知数,可以直接设未知数也可以间接设未知数;
4.列方程:根据等量关系列方程;
5.解方程:选择恰当的方法解方程;
6.检验:检验所求出的一元二次方程的根是否符合题意;
7.作答:写出题目最终的答案。