煤的灰熔融性测定40页PPT
煤灰熔融性

1.煤灰熔融性(煤的灰熔点)--煤灰的熔融性是指煤灰受热时由固态向液态逐渐转化的特性,煤的灰熔融性是动力用煤高温特性的重要测定项目之一。
由于煤灰不是一个纯净物,它没有严格意义的熔点,衡量其熔融过程的温度变化,通常用三个特征温度:即变形温度(DT,软化温度(ST、流动温度(FT)。
这三个温度代表了煤灰在熔融过程中固相减少,液相渐多的三点,在工业上多用软化温度作为熔融性指标,称为灰熔点。
因此煤灰熔融性和煤灰粘度是动力用煤的重重要指标,煤灰熔融性习惯上称作煤灰熔点,但严格来讲,这是不确切的。
因为煤灰是多种矿物质组成的混合物,这种混合物并没有一个固定的溶点,而仅有一个熔化温度的范围。
开始熔化的温度远比其中任一组分纯净矿物质熔点为低。
这些组分在一定温度下还会形成一种共熔体,这种共熔体在熔化状态时,有熔解煤灰中其他高熔点物质的性能,从而改变了熔体的成及其熔化温度。
煤灰的熔融性和煤灰的利用取决于煤灰的组成。
煤灰成分十分复杂,主要有:JSiO2,A12O3,Fe2,CaO,MgO,SO等,如下表所示:我国煤灰成分的分析灰分成分含量(%)SiO2 15-60A12O3 15-40Fe2O3 1-35CaO 1-20MgO 1-5K20+Na20 1-5煤灰成分及其含量与层聚积环境有关。
我国很多煤层的矿物质以粘土为主,煤灰成分则为SiO2,AI2O3为主,两者总和一般可达50—80%。
在滨海沼泽中形成的煤层,如华北晚石纪煤层黄铁矿含量高,煤灰中Fe2O3及SO3含量亦较高;在内陆湖盆地中形成的某些第三纪褐煤的煤灰中CaO含量较高。
大量试验资料表明,SiO2含量在45—60%时,煤质灰熔点随SiO2含量增加而降低;SiO2在其含量〈45%或〉60%时,与灰熔点的关系不够明显。
Al2O3在煤灰中始终起增高灰熔点的作用。
煤灰中Al2O3的含量超过期30%时,灰熔点1500灰成分中Fe2O3,CaO,Ma均为较易熔组分,这些组分含量越高,煤炭灰熔点就越低。
煤的灰熔融性测定

GB/T 219测定方法
• 方法提要 将煤灰制成一定尺寸的三角锥,在一定的气体介
质中,以一定的升温速度加热,观察灰锥在受热过程 中的形态变化,观测并记录它的四个特征熔融温度: 变形温度、软化温度、半球温度和流动温度。
试剂和材料 糊精溶液:糊精(化学纯)10g溶于100mL蒸馏水中,配成100g/L溶液。 氧化镁:工业品,研细至粒度小于0.1mm。 碳物质:灰分低于15%,粒度小于1mm的石墨或其他碳物质。 标准物质:可用来检查试验气氛性质的煤灰熔融性标准物质。 氢气或一氧化碳。 刚玉舟(图2):耐温1500℃以上,能盛足够量的碳物质。
精密度
熔融特征温度
DT ST HT FT
精密度
重复性限/℃
再现性临界差/℃
60
—
40
80
40
80
40
80
日常维护
1、图像的清晰程度是该仪器准确判断各特征温度的前提条件。 ✓ 影响图像清晰度的主要因素有摄像机、石英镜片的表面模糊情况。 ✓ 当采用封碳法时很容易使镜片变脏,因此建议每次实验前将仪器后
原形
DT
ST
HT
FT
图1
灰锥熔融特性示意图
202自动识别方式:系统从默认的900℃开始,自动判断灰锥个数和各个灰 锥的特征温度。
• 变形温度 DT:灰锥在900℃时的初始高度(如160)与当前高度(如 100)的比值乘以100大于或等于变形(初高/终高如设置值130)的值 时,同时灰锥头宽大于或等于变形(灰锥头宽如设置6)值时,系统将 确认当前温度为变形温度。
灰锥托板:在1500℃下不变形,不与灰锥发生反应,不吸收灰样。
可溶性淀粉(工业用)。 玛瑙研钵。
• 灰锥编号
灰熔融性(可修改).ppt

二. 试验气氛 测定气氛是影响灰熔融性测定结果的 最主要因素之一 铁的影响 工业中成渣部位是弱还原性
精选整理
12
影响测定结果的因素
三. 加热速度的影响
四. 温度测量准确度的影响
五. 试样尺寸的影响
六. 托板材料的影响
精选整理
13
影响测定结果的因素
七. 观察者主观因素的影响 八. 摄像仪器的放大失真 九. 仪器自动判断的偏差
2、调节试验气氛——封碳法或通气法
3 、 升 温 : <900℃ , ( 15 ~ 20 ) ℃/min
900℃, (51)℃/min
4、观察锥形,记录特征温度
5、至所有样品达到流动温度,或达到
1500℃时,停止试精选验整理
8
气氛控制
弱还原性气氛
通气法 封碳法
(50±10)% H2 (50±10)% CO2 (60±5)% CO (40±5)% CO2
2、煤灰熔融性测定方法的国标号是
。
3、测定煤灰熔融性需要记录哪四个特征温 度: 、 、 和 。
4、GB/T 219-2008的适用范围是: 、 、 、和 。
5、煤中矿物质的 及其在高温下的 决定了煤灰的熔融 温度。
6、碳物质要求灰分低于 ,粒度小于 的 、 它碳物质。
精选整理
或其
20
练习题
7、简述糊精溶液的配置。 8、简述灰熔融性试验过程中高温炉升温速度的控制方
法。 9、叙述弱还原性气氛的检查方法。 10、简述通气法控制弱还原性气氛的具体要求。
精选整理
21
练习题
11、灰熔融性测定方法的分类。
12、灰熔融性四个特征温度及其判断依据。
第二节 灰分测定课件ppt

2021/3/10
9
2. 快速灰化法
选煤厂生产检查煤样快速灰化法 此方法仅适用于选煤厂内快速测定精煤灰分。 方法要点
称0.5g空气干燥煤样,由炉口逐渐送入预先加热到(815士 10)0C的马弗炉中灰化,灼烧至质量恒定,以残留物的质量占 煤样质量的百分数作为灰分产率。 测定步骤
在预先灼烧至质量恒定已称量(称准至0.0002g)的灰皿中 称取粒度小于0.2mm的空气干燥煤样(0.5士0.05)g(称准至 0.0002g),摇匀、摊平。
第三节 煤中灰分的测定
2021/3/10
1
第三节 煤中灰分的测定
一、煤中灰分定义 二、测定原理 三、测定方法 四、结果计算 五、精密度
2021/3/10
2
一、煤中灰分定义
灰分:煤中矿物质在一定条件下经分解、化 合等一系列复杂反应后残留物。
煤中存在的矿物质主要有粘土、黄铁矿、页 岩、方解石及其他一些微量成分。
8
2. 快速灰化法
(2)方法B 马弗炉法 方法要点
将装有煤样的灰皿由炉口逐渐送入预先加热到(815士10)0C的马弗炉中 灰化并灼烧至质量恒定,以残留物的质量占煤样质量的百分数作为灰分产率。 仪器设备 同缓慢灰化法 测定步骤 称取煤样同缓慢灰化法。
煤灰熔融性的测定

煤灰熔融性的测定煤灰熔融性的测定方法(1)为国家标准推荐方法,方法(2)为质检中心推荐采用的分析方法。
1 高温法1.1 方法提要将煤灰制成一定尺寸的三角锥,在一定的气体介质中,以一定的升温速度加热,观察灰锥在受热过程中的形态变化,观测并记录它的四个特征熔融温度:变形温度、软化温度、半球温度和流动温度。
1.1.1变形温度(DT)灰锥尖端或棱开始变圆或弯曲时的温度。
1.1.2软化温度(ST)灰锥弯曲至锥尖触及托板或灰锥变成球形时的温度1.1.3半球温度(HT)灰锥形变至近似半球形,即高约等于低长的一半时的温度1.1.4流动温度(FT)灰锥融化展开成高度在1.5mm以下的薄层时的温度。
1.1.5灰锥熔融特征示意图如下图1.5所示。
图1.51.2 试剂和材料1.2.1 氧化镁(HG/T2573):工业品,研细至粒度小于0.1mm。
1.2.2 糊精:化学纯,配成100g/L溶液。
1.2.3 碳物质:灰分低于15%,粒度小于1mm的无烟煤、石墨或其他碳物质。
1.2.4 参比灰:含三氧化二铁20%~30%的煤灰,预先在强还原性(100%的氢气或一氧化碳或它们与惰性气体的混合物构成的气氛),弱还原性和氧化性气氛中分别测出其熔融特征温度(在强还原性和氧化性气氛中的软化温度、半球温度和流动温度约比还原性气氛者高100℃~300℃),在常规的测定中以它作为参比物来检定试验气氛性质。
1.2.5 二氧化碳1.2.6 氢气(GB/T3634)或一氧化碳。
1.2.7 刚玉舟(图1.6):耐温1500℃以上,能盛足够量的碳物质。
图1.6 灰锥模子1.2.8 灰锥托板:在1500℃下不变形,不与灰锥作用,不吸收灰样。
灰锥托板按下列方法制做:取适量氧化镁(2.1),用糊精溶液(2.2)润湿成可塑状。
将灰锥托板模的垫片放入模座,用小刀将镁砂铲入模中,用小锤轻轻锤打成型。
用顶板将成型托板轻轻顶出,先在空气中干燥,然后在高温炉中逐渐加热到1500℃。
煤灰熔融性的测定

实验四煤灰熔融性的测定一、实验目的煤燃烧后产生的灰分,在高温下的熔融性是锅炉用煤的重要特性。
对于煤粉燃烧固态排渣的锅炉,它是判断炉膛结渣可能性的依据之一。
为了减少结渣的危险,煤粉炉要求燃烧灰熔点较高的煤。
对于层燃锅炉燃用灰熔点较低的煤可形成适当的融渣,起到保护炉排的作用。
对于液态排渣煤粉炉,较低的灰熔温度有利于排渣。
通过观察煤灰熔融过程,掌握煤灰熔融的四个特征温度:变形温度(DT)、软化温度(ST)、半球温度(HT)、流动温度(FT)的测定方法。
二、实验原理将灰样制成高20mm、底边长7mm的三角形灰锥,防于充满氧化性气氛或弱还原性气氛的电炉中加热。
随着温度上升,灰锥经历了四个阶段对应四个特征温度:⑴变形温度(DT):灰锥尖端或棱开始变圆或弯曲时的温度⑵软化温度(ST):灰锥弯曲至锥尖触及托板或灰锥变成球形时的温度⑶半球温度(HT):灰锥形变至近似半球形,即高约等于底长的一半时的温度⑷流动温度(FT):灰锥熔化展开成高度在1.5mm以下的薄层时的温度。
煤灰熔融特性主要取决于它们的化学成分、组成的共晶体,同时气体介质的氧化性、还原性对煤灰熔融特性也有影响。
锅炉炉膛中多呈弱还原性气氛,而实验室在氧化性气氛中测定的煤灰熔融性特征温度略高于在弱还原性气氛中的测定值。
三、实验设备和材料1.高温炉(满足下列条件的高温炉均可使用)⑴能加热到1500℃⑵有足够的恒温带(各部分温差小于5℃)⑶能按规定的程序加热⑷炉内气氛可控制为弱还原性和氧化性⑸能在实验过程中观察试样形态变化。
2.烟气分析器一台(通常用奥氏烟气分析器,和一氧化碳检测管);‘3.碳物质:灰份≤15%,粒度≤1mm的无烟煤、石墨或其它碳物质。
4.糊精:化学纯,配成100g/L溶液;5.刚玉舟:放置灰锥托板,耐温1500℃以上6.其它:灰锥模具、瓷砖;手电筒、兰色目镜、标准筛、秒表、研钵、灰锥托板四、实验方法1.灰样制备取粒度小于0.2mm的空气干燥基煤样,按GB212-91规定将其完全灰化,然后用研钵研细至0.1mm以下。
煤灰熔融性(一)

氧化性气氛:炉内不放任何含碳物质,并 使空气自由流通
谢谢
高温炉 能加热到1500℃以上 有足够的恒温带 能按规定的程序加热 炉内气氛可控制为弱还原性和氧化性 能在试验过程中观察试样形态变化
常用管式硅碳管高温炉
检测气氛
弱还原气氛定义:含有50±10%(体积比)的 氢(或一氧化碳)和50±10%(体积比)的二氧 化碳的混合气体。
可判断煤灰的渣型基本概念?四个特征温度?变形温度dt灰锥尖端或棱开始变园或弯曲时的温度?软化温度st灰锥弯曲至锥尖触及托板或灰软化温度st灰锥弯曲至锥尖触及托板或灰锥变成球形时的温度?半球温度ht灰锥形变至似半球形即高约等于底长的一半时的温度?流动温度ft灰锥融化展开高度在15mm以下的薄层时的温度基本概念检测仪器?高温炉?能加热到1500以上?有足够的恒温带?能按规定的程序加热?能按规定的程序加热?炉内气氛可控制为弱还原性和氧化性?能在试验过程中观察试样形态变化?常用管式硅碳管高温炉检测气氛?弱还原气氛定义
基本概念
四个特征温度 变形温度 DT 灰锥尖端或棱开始变园或弯
曲时的温度 软化温度 ST 灰锥弯曲至锥尖触及托板或灰
锥变成球形时的温度 半球温度 HT 灰锥形变至似半球形,即高约
等于底长的一半时的温度 流动温度 FT 灰锥融化展开高度在1.5mm以
下的薄层时的温度
基本概念
检测仪器
SiO2,A12O3,Fe2O3,CaO,MgO,SO3
意义
动力用煤高温特性的重要测定项目之一,是动力 用煤的重要指标,它反映煤中矿物质在锅炉中的 变化动态。测定煤灰熔融性温度在工业上特别是 火电厂中具有重要意义。
1.可以提供锅炉ຫໍສະໝຸດ 计选择炉膛出口烟温和锅炉安 全运行的依据。
5煤炭的灰熔融性测定

SDAF205
1.采用进口高清彩色摄像头,自动图像判断更准确。 采用进口高清彩色摄像头,自动图像判断更准确。 采用进口高清彩色摄像头 2.采用新型立式炉膛,保温、控温效果好,能耗低 采用新型立式炉膛, 采用新型立式炉膛 保温、控温效果好, 3.自动进样,避免热辐射和烫伤。 自动进样, 自动进样 避免热辐射和烫伤。
3、碳物质:灰分低于15﹪,粒度小于 碳物质:灰分低于15﹪ 1mm的无烟煤 石墨或其他碳物质。 1mm的无烟煤、石墨或其他碳物质。 的无烟煤、 4、煤灰熔融性标准物质:可用来检查试 煤灰熔融性标准物质: 验气氛性质的煤灰熔融性标准物质。 验气氛性质的煤灰熔融性标准物质。 5、气体:二氧化碳、氢气或一氧化碳。 气体:二氧化碳、氢气或一氧化碳。 6、刚玉舟:耐温1500℃以上,能盛足 刚玉舟:耐温1500℃以上, 够量的碳物质。 够量的碳物质。 7、灰锥托板:在1500℃下不变形,不 灰锥托板: 1500℃下不变形, 与灰锥发生反应,不吸收灰样。 与灰锥发生反应,不吸收灰样。
煤灰熔融性是动力用煤和气化用煤的一个重要的质 量指标。 量指标。煤灰的熔融温度可反映煤中矿物质在锅炉 中的动态, 中的动态,根据它可以预计锅炉中的结渣和沾污作 用。因此煤灰熔融性是指导锅炉设计和运行的一个 重要参数。一般认为, 重要参数。一般认为,煤灰的变形温度与锅炉轻微 结渣和其吸热表面轻微积灰的温度相对应; 结渣和其吸热表面轻微积灰的温度相对应;软化温 度与锅炉大量结渣和大量积灰的温度相对应; 度与锅炉大量结渣和大量积灰的温度相对应;而流 动温度则与锅炉中灰渣呈液态流动或从吸热表面滴 下和在燃料床炉栅上严重结渣的温度相关联。 下和在燃料床炉栅上严重结渣的温度相关联。在四 个特征温度中,软化温度用途较广, 个特征温度中,软化温度用途较广,一般都是根据 它来选择合适的燃烧或气化设备, 它来选择合适的燃烧或气化设备,或根据燃烧和气 化设备类型来选择具有合适软化温度的原料煤。 化设备类型来选择具有合适软化温度的原料煤。例 固态排渣燃烧或气化炉, 如,固态排渣燃烧或气化炉,就要求使用灰的熔融 温度较高的煤,否则锅炉内就容易结渣, 温度较高的煤,否则锅炉内就容易结渣,从而影响 锅炉正常操作或降低气化质量,严重者会造成事故, 锅炉正常操作或降低气化质量,严重者会造成事故, 而液态排渣则要求使用熔融温度低的煤。 而液态排渣则要求使用熔融温度低的煤。