第四章_线性代数方程组的解法
线性代数第四章齐次线性方程组
上页
下页
返回
(3)设X (c1 , c2 , , cr , k1 , k2 , , knr )T 是方程组 的任意解,则X k1 X1 k2 X 2 knr X nr (d1 , d 2 , , d r ,0,0, ,0)T 是齐次方程组的解,代入BX = 0,得
b11 b12
同理,分别将xr1 ,
xr2 ,
,
x
的
n
值(0,1,
,0),
,
(0,0, ,1)代入BX = 0,求出(4.2)的解
X 2 (c12 , c22 , , cr 2 ,0,1, ,0)T ;
X nr (c1,nr , c2,nr , , cr ,nr ,0,0, ,1)T ;
上页
下页
返回
(1) X1, X 2 , , X nr是AX = 0的解; (2)考虑k1 X1 k2 X 2 knr X nr 0,即
b1n b2n
AB 0
0
0 0
brr 0
br ,r 1 0
brn 0
0
0
0
0
0
上页
下页
返回
将未知量xr1 , xr2 , BX = 0,去掉0= 0的等式,
移项得线性方程组
b11 0
b12 b22
(l1 , l2 , , lr , k1 , k2 , , knr )T (0,0, ,0,0, ,0)T ,
nr
其中li k jcij ,( j 1,2, , n r;i 1,2, , r) j 1
有k1 0, k2 0, , knr 0, 故X1, X 2 , , X nr线性无关。
0
1
x1 2x2 3x3 0
高等数学线性代数线性方程组教学ppt(4)
1.2 高斯消元法
对线性方程组消元的三种变换(统称为线性方程组 的初等变换):
(1)交换方程组中某两个方程的位置; (2)以非零常数k乘以方程组中某个方程; (3)用数k乘以方程组中某个方程后加到另一个方程 上去.
定理1 线性方程组经过初等变换后得到的新方程组 与原方程组同解.
例1
解线性方程组
R( A) n;
(2)若R(A) n 1,则 A 0, AA* A E O,
由例5知:R( A) R( A*) n, R( A*) n R( A) n (n 1) 1, 即R( A*) 1.
另一方面,由于R(A) n 1, 因此A存在n 1阶非零子式,即A* O, 从而R( A*) 1.
R( A*) 1;
任一解都可以表示为
x 0 k11 knrnr ,
其中k1, , knr R. 即,当R(A) R(A | b)时,有
Ax b的通解
Ax b的一个特解 Ax 0的通解.
行阶梯形矩阵对应的方程组,叫行阶梯 形方程组;
行阶梯形方程组中,每个方程的第一个 未知量称为主未知量(主变量),其余变量叫 自由未知量(自由变量);
用消元法解线性方程组,就是用初等行 变换将方程组的增广矩阵化为行阶最简形, 得到的行阶梯方程组与原方程组同解.
例2 求解非齐次方程组的通解
x1 x1
3.设0是Ax b的某个解(称为特解),则Ax b 的任一个解向量都可表示成0与对应的 Ax 0的解之和,即有
0 .
证 :由于 0 ( 0 ),记 0,由性质1知 是导出组Ax 0的解,则 0 .
故只要 取遍Ax 0的全部解, 0 就取遍了 Ax b的所有解.
三、Ax b解的结构定理 定理4 若Ax b有解,1, ,nr是对应的Ax 0 的基础解系,0是Ax b的一个特解,则Ax b的
线性方程组的解法
线性方程组的解法线性方程组是数学中常见的问题,它可以用于描述多个未知数之间的关系。
解决线性方程组的问题是求解未知数的具体取值,从而得到方程组的解。
本文将介绍几种常见的解线性方程组的方法。
一、高斯消元法高斯消元法是解决线性方程组的经典方法之一。
它通过矩阵变换的方式,将线性方程组转化为一个三角矩阵,从而简化求解过程。
以下是高斯消元法的步骤:1. 将线性方程组写成增广矩阵的形式,其中最后一列为常数项。
2. 选取一个非零元素作为主元,在当前列中将主元素所在的行作为第一行,然后通过初等行变换将其他行的主元素变为0。
3. 重复第2步,直到所有的主元素都变成1,并且每个主元素所在的列的其他元素都变为0。
4. 反向代入,从最后一行开始,依次回代求解未知数的值。
二、矩阵的逆矩阵法矩阵的逆矩阵法是利用矩阵的逆矩阵来求解线性方程组。
以下是逆矩阵法的步骤:1. 对于线性方程组Ax=b,如果矩阵A可逆,将方程组两边同时左乘A的逆矩阵AI,得到x=A^(-1)b。
2. 通过求解矩阵A的逆矩阵来得到未知数向量x的值。
3. 如果矩阵A不可逆,那么线性方程组没有唯一解,可能有无穷多解或者无解。
三、克拉默法则克拉默法则是另一种解决线性方程组的方法,它利用行列式的性质来求解未知数的值。
以下是克拉默法则的步骤:1. 对于线性方程组Ax=b,令|A|=D,其中D表示矩阵A的行列式。
2. 分别计算将矩阵A的第i列替换为常数列b所得到的行列式|A_i|。
3. 未知数向量x的第i个分量可以通过x_i = |A_i|/D来得到。
克拉默法则的优点是简单直观,但是当方程组的规模很大时,计算行列式将变得非常复杂。
四、矩阵的广义逆法矩阵的广义逆法是一种应对方程组无解或者有无穷多解的情况的方法。
对于线性方程组Ax=b,如果矩阵A不可逆,我们可以通过求解广义逆矩阵A^+来得到一个特解x_0。
1. 分别计算A^+ = (A^T·A)^(-1)·A^T和x_0 = A^+·b。
第四章线性方程组的求解
1.2.2
For j=k+1,…, n
aij- aik akj aij(新) bi - aik bk bi (新)
*常用|akk|≤
步骤 2. 步骤 3.
bn /ann xn For k=n-1,…,1 3.1 3.2
(回代)
bk s For j=k+1,…,n
b1( 0 ) (1) b2 (1) bn
注意:若a11(0) =0,因为 det(A)0,在A的第1列元素中至 少有某ai1(0) 0将i行与第1行交换,再作第1步 。
(0 a11 ) 假定已完成k-1步消元, ( 0) ( 0) ( A( k 1) , b( k 1) ) ( A ,b ) (0 a12 ) (1 a22)
迭代法:从一个初始向量出发,按照一定的迭代格 式,构造出一个趋向于真解的无穷序列。
举例
x 2 x2 2 x3 2 例:直接法解线性方程组 1 2 x1 3 x2 3 x3 4 4 x1 x2 6 x3 3
1 2 2 2 ( A, b) 2 3 3 4 4 1 6 3 2 2 1 2 0 1 7 8 0 0 61 61
解:
2 2 1 2 0 1 7 8 0 9 2 11
x3 1 x2 8 7 x3 1 x1 2 2x2 2x3 2
第四章 解线性方程组的直接法
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a n1 x1 a n 2 x 2 a nn x n bn
线性代数第四章4-5节课件
后n-r列
x1 - b11 xr +1 - b12 xr + 2 x -b x - b x 2 21 r + 1 22 r + 2 xr - br 1 xr +1 - br 2 xr + 2 -
- b1,n- r xn , - b2,n- r xn , - br ,n - r xn .
方法1:先求出通解,再从通解求得基础解系.
1 -2 1 0 -3 4 1 2 r A 2 3 0 -1 ~ 0 1 2 -3 1 -1 -5 7 0 0 0 0
x1 - 3 x3 + 4 x4 0 x 2 + 2 x 3 - 3 x4 0
:线性方程组的解的判定
1. 包含 n 个未知数的齐次线性方程组 Ax = 0 有非零解的充 分必要条件是系数矩阵的秩 R(A) < n . 2. 包含 n 个未知数的非齐次线性方程组 Ax = b 有解的充分 必要条件是系数矩阵的秩 R(A) = R(A, b),并且 当R(A) = R(A, b) = n时,方程组有唯一解;
因为
方程组的任意一个解都可以表示为x1, x2 的线性组合.
x1, x2 的四个分量不成比例,所以 x1, x2 线性无关. 所以x1, x2 是原方程组的基础解系.
方法2:先求出基础解系,再写出通解.
1 -2 1 0 -3 4 1 2 r A 2 3 0 -1 ~ 0 1 2 -3 1 -1 -5 7 0 0 0 0
把 Ax = 0 的全体解组成的集合记作 S,若求得 S 的一个 最大无关组S0:x = x1, x = x2, ...,, x = xt ,那么Ax = 0 的
(完整版)线性代数第四章线性方程组(自考经管类原创)
知识结构
线性方程组
齐次线性方程组 非齐次线性方程组
4.1 齐次线性方程组
2
1.齐次线性方程组的解
设有齐次线性方程组
a11x1 a12 x2 a1n xn 0
a21 x1
a22 x2 a2n xn
0
am1 x1 am2 x2 amn xn 0
求齐次线性方程组通解的方法
(1)将系数矩阵A进行初等行变为行最简形矩阵T (2)写出Ax=0的同解方程组Tx=0 (3)确定自由未知量(n-r个),并用自由未知量表示其他未知量 (4)依次令其中某个自由未知量为1,其他自由未知量为0,求相 应的特殊解,那么基础解系即为所有特殊解的全体 (5)特殊解的线性组合即为通解,此处写明组合系数为任意实数
下面给出非齐次线性方程组解的性质
(1)设x 1及x 2都是Ax b的解,则x 1 2为对应的齐次方程Ax 0的解.
证明 A1 b, A2 b
A1 2 b b 0.
即x 1 2满足方程Ax 0.
(2) 设x 是方程 Ax b的解, x 是方程 Ax 0的解,则x 仍是方程 Ax b 的解.
a21x1 LLL
a22 x2 LLL
L L
L
a2n xn LLL
b2 L
am1x1 am2 x2 L amn xn bm
简写成矩阵形式AX=b,其中
a11 a12
A
a21
a22
am1 am2
a1n
a2n
,
amn
x1
x
x2
xn
b1
b
b2
例1 判断t为何值时,方程组无解
-x1 4x2 x3 1 tx2 3x3 3
线性代数方程组的解法
说明:线性方程组的初等变换是可逆的。 即,方程组(1)经初等变换化为一个新方 程组,那么新方程组也可以经过初等变换还 原为原方程组(1)。因而,方程组(1)与 它经过若干此初等变换之后得到的新方程组 是同解的。
⎧ a11 x1 + a12 x 2 + L + a1n x n = b1 ⎪ a x + a x + L+ a x = b ⎪ 21 1 22 2 2n n 2 ⎨ ⎪ LLLLLLLLLLLL ⎪a m 1 x1 + a m 2 x 2 + L + a mn x n = bm ⎩
L a1n ⎞ ⎟ L a2 n ⎟ L L⎟ ⎟ L amn ⎟ ⎠
矩阵A的 (m , n)元
这m × n个数称为 A的元素 , 简称为元素 (元 ).
元素是实数的矩阵称为实矩阵, 元素是复数的矩阵称为复矩阵.
例如
⎛ 1 0 3 5⎞ ⎟ 是一个 2 × 4 实矩阵, ⎜ ⎝ − 9 6 4 3⎠ ⎛ 1⎞ ⎜ ⎟ ⎜ 2⎟ ⎜ 4⎟ ⎝ ⎠
问题:是否每个矩阵都可以经过初等行变换化 为梯矩阵呢? 定理1 任意m × n矩阵A总可以经初等行变换化为梯
矩阵及最简形。
证明 Step1 若A的元全为0, A已经是一个阶梯矩阵。
Step2 设非零矩阵A的第 j1 列是自左而右的第 一个非零列,设 a1 j ≠ 0 (否则,若 a ij1 非零,作 行变换 r1 ↔ ri ,总可使第j1列的第一个元非零), 矩阵A的各行分别作行变换:
解
同理可得
−2 −2 1 1 −2 1 0 1 − 3 = −10, −1
D1 = 1 0
1
1 1
− 3 = −5, D2 = 2 −1 −1 1 = −5, 0
线性方程组的解法
线性方程组的解法作为一个线性代数主题,线性方程组的解法是一个非常重要的领域。
在本文中,我们将介绍几种解决线性方程组问题的方法。
我们将从初等变换、高斯消元法、矩阵展开式等几个方面来深入探讨。
一、初等变换初等变换往往是解决线性方程组问题的起点。
我们可以对方程组进行一些基本的操作来得到一个简化的等价方程组,从而方便我们去寻找方程组的解,初等变换主要包括三种操作:1.交换方程组中的两个方程的位置。
2.将某个方程的倍数加到另一个方程上。
3.用一个非零常数来乘某个方程。
执行初等变换时,我们必须记住每个变换对解x的影响。
在交换方程x 和y 的位置时,它们的解不变,而在加上一只方程的某个倍数时,系数矩阵和右侧向量也会随之改变,但解不变。
用一个非零常数乘以方程只会改变右侧向量,同时系数矩阵也会改变。
二、高斯消元法高斯消元法是解决线性方程组问题的另一种方法。
该方法通过使用矩阵增广形式来解决线性方程组问题。
具体步骤如下:1. 将线性方程组写成增广矩阵的形式,其中右侧向量位于最后一列。
2. 使用初等变换来将增广矩阵化为行梯阵形式。
行梯阵是矩阵的形式,其中每一行从左侧开始的第一个非零元素称为主元(pivot),每个主元下方的元素均为零。
3. 从最后一行开始,使用回带算法来求得线性方程组的解。
高斯消元法对于小规模的线性方程组可以轻松解决。
但是,在大规模问题上,该方法可能会产生误差或需要很长时间才能找到解决方案。
三、克拉默法则克拉默法则是解决线性方程组问题的第三种方法。
该方法的关键在于将解决方案表示为每个未知数的一个比值。
这个比值是通过计算每个未知数对其余所有未知数的系数行列式比率而得到的。
这个方法的好处在于消去解方程组所需要的系数矩阵增广形式和行梯阵形式的需要。
但是,如果有许多未知数,计算每个比率可能会非常繁琐。
另外,如果有两个或更多个未知数系数具有相同的值,则克拉默法则计算行列式比率会失败。
四、矩阵展开式最后,我们来看一下使用矩阵展开式来解决线性方程组问题的方法。
《线性代数》教学课件—第4章 向量线性相关 第四节 线性方程组的解的结构
2. 基础解系的求法
设系数矩阵 A 的秩为 r , 并不妨设 A 的前 r 个
列向量线性无关, 于是 A 的行最简形矩阵为
1
0
b11
b1,nr
B
0
0
1 0
br1 0
br,nr
,
0
0
0
0
0
与 B 对应, 即有方程组
x1
b11xr1 b1,nr xn
,
(3)
例 12 求齐次线性方程组
2xx11x52x2
x3 x4 3x3
2
0, x4
0,
7x1 7x2 3x3 x4 0
的基础解系与通解.
解 对系数矩阵 A 作初等行变换, 变为行最
简形矩阵, 有
1
1
1 1
行变换
1
0
2 7 5
3
7 4
例 13 设 Am×nBn×l = O,证明
xr
br1xr1 br,nr xn
,
把 xr+1 , ···, xn 作为自由未知量,并令它们依次 等于 c1 , ···, cn-r ,可得方程组 (1) 的通解
x1
b11
b12
b1,nr
xr
br1
br
2
br
,nr
xr1 c1 1 c2 0 cnr 0 .
把方程 Ax = 0 的全体解所组成的集合记作 S ,
如果能求得解集 S 的一个最大无关组 S0 : 1 , 2 , ···, t,那么方程 Ax = 0 的任一解都可由最大无关
组 S0 线性表示;另一方面,由上述性质 1、2 可 知,最大无关组 S0 的任何线性组合
线性代数 第四章 (1-2节)
第四章线性方程组§1 消元法在实际问题中,我们经常要研究一个线性方程组的解,解线性方程组最常用的方法就是消元法,其步骤是逐步消除变元的系数,把原方程组化为等价的三角形方程组,再用回代过程解此等价的方程组,从而得出原方程组的解.例1 解线性方程组解 将第一个方程加到第二个方程,再将第一个方程乘以(-2)加到第三个方程得在上式中交换第二个和第三个方程,然后把第二个方程乘以-2加到第三个方程得再回代,得.分析上述例子,我们可以得出两个结论:(1) 我们对方程施行了三种变换:① 交换两个方程的位置;② 用一个不等于0的数乘某个方程;③ 用一个数乘某一个方程加到另一个方程上.我们把这三种变换叫作线性方程组的初等变换.由初等代数可知,以下定理成立.定理1 初等变换把一个线性方程组变为一个与它同解的线性方程组.(2) 线性方程组有没有解,以及有些什么样的解完全决定于它的系数和常数项,因此我们在讨论线性方程组时,主要是研究它的系数和常数项.定义1 我们把线性方程组的系数所组成的矩阵叫做线性方程组的系数矩阵,把系数及常数所组成的矩阵叫做增广矩阵.设线性方程组则其系数矩阵是增广矩阵是显然,对一个方程组实行消元法求解,即对方程组实行了初等变换,相当于对它的增广矩阵实行了一个相应的初等变换.而化简线性方程组相当于用行初等变换化简它的增广矩阵,这样,不但讨论起来比较方便,而且能够给予我们一种方法,利用一个线性方程组的增广矩阵来解这个线性方程组,而不必每次把未知量写出.例2 解线性方程组解 增广矩阵是,交换矩阵第一行与第二行,再把第一行分别乘以和(-2)加到第二行和第三行,再把第二行乘以(-2)得,在中将第二行乘以2加到第三行得,相应的方程组变为三角形(阶梯形)方程组:回代得.§2 线性方程组有解判别定理上一节我们讨论了用消元法解方程组(4.1)这个方法在实际解线性方程组时比较方便,但是我们还有几个问题没有解决,就是方程组(4.1)在什么时候无解?在什么时候有解?有解时,又有多少解?这一节我们将对这些问题予以解答.首先,由第三章,我们有下述定理定理2 设A是一个m行n列矩阵,通过矩阵的初等变换能把A化为以下形式这里r≥0,r≤m,r≤n.注:以上形式为特殊标准情况,不过,适当交换变元位置,一般可化为以上形式.由定理2,我们可以把线性方程组(4.1)的增广矩阵进行初等变换化为:(4.2)与(4.2)相应的线性方程组为:(4.3)由定理1知:方程组(4.1)与方程组(4.3)是同解方程组,要研究方程组(4.1)的解,就变为研究方程组(4.3)的解.① 若dr+1,dr+2,…,dm中有一个不为0,方程组(4.3)无解,那么方程组(4.1)也无解.② 若dr+1,dr+2,…,dm全为0,则方程组(4.3)有解,那么方程组(4.1)也有解.对于情形①,表现为增广矩阵与系数矩阵的秩不相等,情形②表现为增广矩阵与系数矩阵的秩相等,由此我们可以得到如下定理.定理3 (线性方程组有解的判别定理)线性方程组(4.1)有解的充分必要条件是系数矩阵与增广矩阵有相同的秩r.① 当r等于方程组所含未知量个数n时,方程组有惟一的解;② 当r<n时,方程组有无穷多解.线性方程组(4.1)无解的充分必要条件是:系数矩阵A的秩与增广矩阵B的秩不相等.在方程组有无穷多解的情况下,方程组有n-r个自由未知量,其解如下:其中是自由未知量,若给一组数就得到方程组的一组解例3 研究线性方程组解 写出增广矩阵对进行初等行变换可化为由此断定系数矩阵的秩与增广矩阵的秩不相等,所以方程组无解.例4 在一次投料生产中,获得四种产品,每次测试总成本如下表:生产批次产品(公斤)总成本(元)ⅠⅡⅢⅣ12001001005029002500250200100705031004002013604400180160605500试求每种产品的单位成本.解 设Ⅰ、Ⅱ、Ⅲ、Ⅳ四种产品的单位成本分别为,由题意得方程组:化简,得写出增广矩阵对其进行初等行变换,化为由上面的矩阵可看出系数矩阵与增广矩阵的秩相等,并且等于未知数的个数,所以方程组有唯一解:例5 解线性方程组解 这里的增广矩阵是对其进行初等行变换,化为由上式可看出系数矩阵与增广矩阵的秩相等,所以方程组有解,对应的方程组是把移到右边,作为自由未知量,得原方程组的一般解为给自由未知量一组固定值:,我们就得到方程组的一个解.事实上,在例5中,也可作为自由未知量.我们同样可考察.。
线代第四章线性方程组第一节
其中 k 为任意常数. 为任意常数.
North University of China
目录 上页 下页 返回 结束
k 取遍所有实数时, 上 取遍所有实数时 ,
式也就取遍方程组的所有 解.这种解的表达形式称 为线性方程组的一般解. 为线性方程组的一般解. 一般解
North University of China
目录 上页 下页 返回 结束
下三种关于 线性方程组的 关于线性方程组 以 下三种 关于 线性方程组 的 变换称为线性方程组的 初等变换: 初等变换 :
(1) 交换某两个方程的位置; 交换某两个方程的位置; (2) 用一个非零数乘以某一个方程的两边; 用一个非零数乘以某一个方程的两边; (3) 将一个方程的倍数加到另一个方程. 将一个方程的倍数加到另一个方程.
North University of China
目录 上页 下页 返回 结束
对线性方程组用消元法 对应方程组的增广矩阵
, x1 + x 2 + 2 x3 = 1 1 1 2 1 − 3 x 2 − 2 x3 = 2, B3 = 0 −3 −2 2 ; 0 0 −2 −4 − 2 x3 = −4;
b1 b2 . ⋮ bm
x1 b1 x b 2 , b = 2 ,则线性方程组 则线性方程组(4.1)可写为: 可写为: 令x = 可写为 ⋮ ⋮ xn bm
Ax = b .
为方程组(4.1)的矩阵形式. 称(4.2)为方程组 为方程组 的矩阵形式.
目录 上页 下页 返回 结束
第一节 利用矩阵的初等变换解线性方程组
线性代数-线性方程组的解
0 0 0 0
R(A) = R(B) < 3,方程组有无穷多解 .
其通解为
x1 x2
=1− = x2
x2
−
x3
x3 = x3
(x2 , x3为任意实数 ).
(2) 当λ ≠ 1时,
1 1 λ
λ2
B ~ 0 1 −1 −λ
0
0
2+λ
(1
+
λ
)2
=
−2
x3
−
4 3
x4
,
( x3 , x4 可任意取值).
令 x3 = c1, x4 = c2,把它写成通常的参数 形式
x1
x2 x3
=
= =
2c2
+
5 3
c2
,
−2c2
−
4 3
c2
c1 ,
,
x4 = c2,
∴
x1 x2 x3 x4
=
c1
2 −2 1 0
+
c2
由于原方程组等价于方程组
x2 x3
− −
x3 x4
= a2 = a3
由此得通解:
x4 − x5 = a4
x1 = a1 + a2 + a3 + a4 + x5
x2 = a2 + a3 + a4 + x5 x3 = a3 + a4 + x5
x4 = a4 + x5
(x5为任意实数 ).
例5 设有线性方程组
1 1 2 3 1 1 1 2 3 1
B
~
0 0 0
线性方程组的解法
• 【例2】已知向量v,试建立以向量v作为主对角线 例 的对角阵A;建立分别以向量v作为主对角线两侧 的对角线的对角阵B和C。 • MATLAB程序如下: MATLAB
一、 特殊矩阵的实现
% 按各种对角线情况构成相应的对角阵A、B和C
• • • • • • • • • • • • • • •
v =[1;2;3]; % 建立一个已知的向量A A=diag(v) A= 1 0 0 0 2 0 0 0 3 B=diag(v,1) B = 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 C=diag(v,-1) C = 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3
一、 特殊矩阵的实现
• 【例 4】试分别用triu(A)、triu(A,1)和、triu(A,例 1)从矩阵A提取相应的上三角部分构成上三角 阵B、C和D。
• MATLAB程序如下:
• • • • • • • • • A=[1 2 3;4 5 6;7 8 9;9 8 7]; % 一个已知的43阶矩阵A % 构成各种情况的上三角阵B、C和D B=triu(A) B = 1 2 3 0 5 6 0 0 9 0 0 0 C=triu(A,1) D=triu(A,-1)
x1 x2 X = ⋮ x n
称为n元未知量矩阵 称为 元未知量矩阵.
b1 b2 称为(2.1)的常数项矩阵. 的常数项矩阵 B = 称为 ⋮ b m
于是线性方程组(2.1)写成矩阵方程形式 写成矩阵方程形式 于是线性方程组 将系数矩阵A和常数项矩阵 放在一起构成的矩阵 将系数矩阵 和常数项矩阵B放在一起构成的矩阵 即 和常数项矩阵 放在一起构成的矩阵,即
《线性代数》课件第4章
此时A的第j列元素恰为αj表示成β1, β2,…, βt的线性组合时的
系数.
证明:若向量组a1,a2,…,as可由β1, β2,…, βt线性表示,即每个ai
均可由β1, β2,…, βt线性表示,则有
α1 = a11β1 + a21β2 + + at1βt = (β1, β2,
, βt )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝aaa12t111 ⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟,
我们有下面的定理: 定理 1.1 矩阵的秩数=行秩数=列秩数.
例1.3 设
α1 = (1, 2, 0,1)T , α2 = (0,1,1,1)T , α3 = (1, 3,1, 2)T , α4 = (1,1,−1, 0)T
求此向量组的秩数及一个极大无关组.
解 考虑向量组构成的矩阵
A=(α1,
α2,
我们有下面的命题:
命题1.
1. α1, α2,…, αs线性无关; 2.方程x1α1 + x2α2 + … + xxαs只有零解 3. 对于任意一组不全为零的数c1,c2,…,cs均有
c1α1 + c2α2 + + csαs ≠ 0, 4. 对于任意一组数c1,c2,…,cs, 若c1α1 + c2α2 +
定义1.4 两个可以互相表示的向量组称为等价向量组.
容易看出: 1. 向量组的等价是一个等价关系; 2. 等价向量组的秩数相同; 3. 任何向量组等价于其极大无关组; 4. 两个向量组等价当且仅当它们的极大无关组等价.
最后我们给出化简向量组的一种技巧 为此先给出一个定义
定义1.5 设α1, α2,…, αs和β1, β2,…, βs是两个向量组, 若对于任意一组数c1,c2,…,cs均有
线代第四章
定义 称对 k=1,2,…,m-1满足以下两个条件的 =1,2,…,m
m × n 矩阵为梯矩阵(echelon matrik): 矩阵为梯矩阵 梯矩阵(echelon 1.若第k行是零(即该行的元全为零),则第(k+1) 1.若第 行是零(即该行的元全为零) 则第(k+1) 若第k 行必为零. 行必为零. 2.若有第(k+1)行是非零行,则其行的首非零元 2.若有第 若有第( 行是非零行, 所在的列号,必大于第k行首非零元所在的列号. 所在的列号,必大于第k行首非零元所在的列号.
不能说明A的所有k阶子式均不为零, 不能说明A的所有k阶子式均不为零,
然而可以断定一切高于k阶(如果存在的话)的子式必 果存在的话)
为零
.
(3) 若A是 m × n矩阵,则必有 矩阵,
r ( A) ≤ min(m, n)
(4-1) (4(4-2) (4-
r ( A) = r ( AT )
(4) 若 A是n阶矩阵,则r(A)≤n, 当且仅当detA≠0 矩阵, )≤n, 当且仅当detA 时r(A)=n,故也将行列式不为零的矩阵 非退化阵 故也将行列式不为零的矩阵 非退化阵) 故也将行列式不为零的矩阵(非退化阵 称为满秩 满秩[ 并称退化阵为降秩 降秩[ 称为满秩[矩]阵,并称退化阵为降秩[矩]阵.
证明
证明
定理的结论(1) 定理的结论(1) 说明非齐次方程组的解集不是 向量空间;结论(2)、(3)则说明了当已知其某个 向量空间;结论(2)、(3)则说明了当已知其某个 中元素的通解) 解 xp时,方程组的通解 xp(即S中元素的通解)本质 表出, 上必能也只能通过 N(A)的通解 xh表出,为
定理
任一m 任一m × n矩阵A经过有限次行初等 矩阵A 任一m 任一m × n矩阵A经有限次列初等变换 矩阵A 设A是任一 m × n矩阵,而B是m(或)n阶 矩阵, (4-3) (4-
线性代数 齐次线性方程组解的结构
18
§4.3 齐次线性方程组解的结构 第 四 章 线 性 方 程 组
x3 令自由未知量 x 5
分别
1 0 , , 0 6
得到方程组的一个基础解系为
7 1 5 1 1 1 , 2 0 . 2 0 6 0
1 2 2 1 r3 r2 r1 2r2 0 1 2 4 / 3 r2 (3) 0 0 0 0
1 0 2 5 / 3 2 4 / 3 0 1 0 0 0 0
14
§4.3 齐次线性方程组解的结构 第 四 章 线 性 方 程 组
由于 n r ( A) 5 2 3 , 故方程组有无穷多解, 其基础解系中有三个线性无关的解向量。 16
§4.3 齐次线性方程组解的结构 第 四 章 线 性 方 程 组
x3 令自由未知量 x 4 x 5
分别
1 0 , 0
x r 1 k 1 xr 2 k2 xn
其中,
k1 , k 2 , , k n r
k n r
任意取值。
10
§4.3 齐次线性方程组解的结构 第 二、基础解系及其求法 四 1. 基础解系 章 2. 基础解系的求法 线 性 b1,r 1 b1,r 2 b1n 方 程 b b b 组 r ,r 1 r ,r 2 rn 令 1 1 , 2 0 , , n r 0 , 0 1 0 0 0 1
§4.3 齐次线性方程组解的结构 第 二、基础解系及其求法 四 1. 基础解系 章 2. 基础解系的求法 线 相应地,齐次线性方程组 A X 0 等价(或同解)变形为 性 方 程 组
线性代数课件4线性方程组的解
2 rn:有无穷: 多组解
1. 非齐次线性方程组
定理 4 n元非齐次线性 Amn方 x程 b: 组
1)无解的R (充 A )R 要 A ,b;条件 2)有唯一解 R (A 的 )R 充 A ,b要 n; 条
2 2
12
1 1
~0 1 1
2
2
0 0 22 123
1 1
0 1
1
2
1
0 0 12 112
1 当 1 时 ,
1 1 1 1 B ~ 0 0 0 0
0 0 0 0
RARB3,方程组有 . 无穷多
其通解为
x1 x2
1 x2
x2
x3
x3 x3
x2,x3为任意 . 实
2 当 1 时 ,
4x5 5x5
2 3
x1 x2 x3 x4 8x5 2
1
解__ A
2 3
1 2 3
1 1 1
0 2 4
3 4 5
1 1
2 3
00
1 0 0
1 1 2
0 2 4
3 2 4
1 0 0
1 1 1 1 8 2 0 0 2 1 5 3
1 1 1 0 3 1 1 1 1 0 3 1
00
0 0
1 0
解
1 1 1 1 1 1 1 1
__
A 1 2 5 2 0 1 6 1
2 3 4 5 0 1 6 3
1 0 0
1 1 0
1 6 0
1
1 2
1 0
0
0 1 0
7 6 0
线性代数方程组的解法
线性代数方程组的解法关键词:线性代数方程组;高斯消元法;列主元消元法;三角分解法;杜立特尔分解法;迭代法;雅可比迭代法;高斯-赛德尔迭代法1引言目前,解线性代数方程组在计算机上常用的的方法大致把它分为两类:“直接法”与“迭代法”.在线性代数中曾指出阶线性代数方程组有唯一的解,并且可以用克拉默法则求方程组的解,初次看来问题已经解决,但从使用效果看并不是这样的.因为求阶线性代数方程组,如果用克拉默法则,需要计算个阶行列式,每个阶行列式为项之和,每项又是个元素的乘积,所以计算中仅乘法次数就高达次,当较大时,它的计算量是非常惊人的.因为现在所碰到的很多问题都需要很大的计算量,故需要好用的算法来求解.先来回顾一下回代过程和迭代过程.(1)是一个三角形方程组,当有唯一解时,可以用反推的方式求解,也就是先从第个方程解得, (2)然后代入第个方程,可得到, (3)如此继续下去,假设已得到,, , ,代进第个方程即得的计算, (4)上述求解的过程叫做回代过程.定义1[1] (向量的范数) 若向量的某个实值函数满足1.是非负的,即且的充要条件是 ;2.是齐次的,即 ;3.三角不等式,即对,总是有.那么上向量的范数(或模)就是 .下面给几个最常遇到的向量范数.向量的“1”范数:(5)向量的“2”范数:(6)向量的范数:(7)例1设求 , , .解由式(5),(6)及(7)知.定义2若矩阵的某个实值函数满足1.是非负的,即且的充要条件是 ;2.是齐次的,即 ;3.三角不等式,即对总有;1.矩阵的乘法不等式,即对总有,那么称为上矩阵的范数(或模).表 1是矩阵几个常用算子范数的定义与算式.表 1范数名称记号定义计算公式“1”范数(又名列模)“2”范数(又名谱模)“”范数(又名行模)的极限就是方程组的解向量,这时候在给定允许的误差内,只要适当的大,就可以作为方程组在满足精度要求条件下的近似解.这种求近似解的方法就是解线性方程组的一类基本的迭代解法,其中称为迭代矩阵,公式(9)称迭代公式(或迭代过程),由迭代公式得到的序列叫做迭代序列.如果迭代的序列是收敛的,则称为迭代法收敛;如果迭代的序列是不收敛,则称它是迭代法发散.定理3设 .如果约化主元素,则可以利用高斯消元的方法把方程组约化成三角形方程组来求解,其计算公式如下:(1)消元计算:对依次计算(2)回代计算:3用高斯消元法与列主元消元法解线性代数方程组(重点)!3.1 高斯消元法解方程组用高斯消元的方法求线性代数方程组的解的整个计算过程可分为两个环节,也就是利用按照次序消去未知数的方法,把原来的方程组转化成跟它同解的三角形方程组(这个转化的过程叫消元过程),再通过回代过程求三角形方程组的解,最终得到原来方程组的解.其中按照方程的顺进行消元的高斯消元法,又叫顺序消元法.3.2列主元消元法解方程组列主元消元法实际上是一种行交换的消元法,它跟顺序消元法比较而言,主要特点是在进行第次消元前,不管的值是否等于零,都在子块的第一列中选择一个元,使,并将中的第行元与第行元互相变换(相当于交换同解方程组中的第个方程),然后再进行消元计算得到结果.注:列主元素法的精度虽然稍低于全主元素法[1],但它计算简单,相对比全主元素法它的工作的量大大减少,并且从计算经验和理论分析都可以表明,它与全主元素法同样拥有很好的值稳定性,列主元素法是求解中小型浓密型方程组的最好的方法之一.4用三角分解法解线性代数方程组4.1 矩阵的三角分解定义4把一个阶矩阵分解成两个三角矩阵相乘的形式称为矩阵的三角分解.常见的矩阵三角分解是其中是下三角形的矩阵,是上三角形的矩阵.定理5[1](矩阵三角分解基本定理)设 .若的顺序主子式,那么存在唯一的杜利特尔分解其中是单位下三角形矩阵,为非奇异的上三角形矩阵.如果是单位下三角形的矩阵,是上三角形的矩阵,那么把这种分解法称为杜利特尔分解法,其中杜利特尔分解法是这种三角分解的一种特例,下面主要介绍利用杜利特尔分解法来求方程组的解.4.2 用杜利特尔分解法解线性代数方程组用杜利特尔分解法解方程组的步骤可以把它归纳为(1)实现分解,也就是1.按算式(11)(12)依次计算的第一行元与的第一列元;1.对按算式(13)(14)依次计算的第行元与的第列元.(2)求解三角形方程组,即按算式依次计算 .(3)求解三角形方程组,即按算式依次计算.利用杜利特尔分解法解方程组与高斯消元法是相似的,它重要的优点是:在利用分解,解有相同的系数矩阵的方程组时,用杜利特尔分解法非常方便,只用两个式子就可以得到方程组的解.5用迭代法解线性代数方程组用迭代法求方程组的解,需要考虑迭代过程的收敛性,在下面的讨论中,都假设方程组的系数矩阵的对角阵是不为零的.5.1 用雅可比迭代法解方程组对于一般线性方程组,如果从第个方程解出,就可以把它转化成等价的方程组. (15)从而可以得到对应的迭代公式(16)这就是解一般方程组的分量形式的雅可比(Jacobi)迭代公式.如果把它改成(17)并把系数矩阵表示成(18)其中则可以看出式的左右两端分别是向量和的第个分量,故因为可逆,所以于是就可以得到是雅可比迭代的公式.其中(称为雅可比迭代矩阵), .5.2 用高斯-赛德尔迭代法解方程组高斯-赛德尔迭代法也是常用的迭代法,设线性代数方程组为,则高斯-赛德尔迭代法的迭代公式为(19)其中迭代法(19)就称为高斯-赛德尔迭代法.通过雅可比迭代法类似的途径,就可以得到矩阵的表达式其中(称为高斯-赛德尔迭代矩阵), .高斯-赛德尔迭代法与雅可比迭代法都有算式简单、容易在计算机上实现等优点,但是用计算机来计算时,雅可比迭代法需要两组工作单元用来寄存与的量,而高斯赛-德尔迭代法只需一组工作单元存放或的分量.对于给定的线性方程组,用这两种方法求解可能都收敛或者都不收敛,也可能一个收敛另一个不收敛,两种方法的收敛速度也不一样.5.3 迭代法的收敛条件与误差分析定义6[1]矩阵全部的特征值的模的最大值,叫做矩阵的谱半径,记作 ,即.定理7[1]对任意初始向量迭代过程收敛的充要条件是;当时,越小,那么其收敛的速度是越快的.由定理7可知,用雅可比迭代法求解时,其迭代的过程是收敛的,而用高斯-赛德尔迭代法来求解,其迭代的过程是发散的.在不同条件下,收敛的速度是不同的,对同一矩阵,一种方法是收敛的,一种方法发散.第 7 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考虑 一般n 阶线性方程组:
x ... 1a n xn 1 b a11 x 1 a 1 2 2 x ... 2a n xn 2 b 矩阵形式 a21 x 1 a 2 2 2 an1 x1 an 2 x 2 ... ann x n bn
a 2n b 2 a 3n b 3
(3)
(3)
a nn b n
(3)
3 ) ≠0 ,则此消去过程可依次进行下去。 若 a( 33
第 n 1 步消去过程后, 得到等价三角方程组。
A
(n)
x b
(n)
(1) (1) (1) a 11 x1 a 12 x 2 a 13 x 3 (2) (2) a 23 x 3 a 22 x 2 (3) a 33 x 3
1、优点: 公式简明,容易程序化
2、缺点: 第k次消元时, 必须 a kk ≠ 0 , 且当
a kk 0 时 ,误差很大, 数值不稳定
(p35 N-S图)
第三节 GAUSS列主元消去法
一、高斯消去法的缺点
在简单的高斯消去法中,如果遇到 a(k)kk =0,
则消去过程就会中断,如果a(k)kk ≠ 0 ,但
a a a
1n ( 2) 2n
( 2) n2 ( 2) nn
b ,b b
(2)
(1)
1 ( 2) 2
b
(1) i1
( 2) n
这里
a
(2) ij
aij mi1 a1 j
(1)
m a a
i1
(1)
11
第二步消元: 若
a
a a a a
(2) 22
0 ,对除第一行第一列外
直接法:在假定没有舍入误差的情况下,经过有限次 运算可以求得方程组的精确解;(快速有效)
迭代法:从一个初始向量出发,按照一定的迭代格 式,构造出一个趋向于真解的无穷序列(节省内存)。
第二节 高斯消去法
高斯消去法是解线性方程组最常用的方法之一,
它的基本思想是通过逐步消元,把方程组化为系数矩
阵为三角形矩阵的同解方程组,然后用回代法解此三
1 2 2 2 ( A, b) 2 3 3 4 4 1 6 3 2 2 1 2 0 1 7 8 0 0 61 61
解:
2 2 1 2 0 1 7 8 0 9 2 1 1
x3 1 x2 8 7 x3 1 x1 2 2x2 2x3 2
Ax b
高斯消去法的主要思路:
将系数矩阵 A 经过消元过程化为上三角矩阵,然后回代 求解。
=
即:
a11 x1 a12 x2 ... a1n xn b1 a21 x1 a22 x2 ... a2n xn b2 an1 x1 an2 x2 ... ann xn bn
讨论第K次消元,得到消元公式 第K次消元目的:aik(k)=0 (i=k+1….n), 设akk(k) ≠ 0 ,为使aik(k)=0 (i=k+1….n)选取适当因子M使 aik(k)- M akk(k) =0 可求出 M = aik(k)/ akk(k) 第i个方程其他系数的变化为 ( Ri aij(k+1) = aij(k) – M. akj(k) ( i= k+1….n , j=k+1…..n+1) - M.Rk )
第四章 线性代数方程组的解法
引言 高斯消去法 高斯列主元消去法 矩阵分解法 向量和矩阵范数 解线性代数方程组的迭代法
第一节 引言
快速、高效地求解线性方程组是数值线性代数研究中 的核心问题,也是目前科学计算中的重大研究课题之一。 各种各样的科学和工程问题,往往最终都要归结为求 解一个线性方程组。 线性方程组的数值解法有:直接法和迭代法。
所以,第K次消元时(后)(K=1….n-1)
消元因子: M = aik(k)/ akk(k) ( i= k+1,n ) 系数变化:
① aij(k+1) = aij(k) (i≤ k)
② aij(k+1) = aij(k) - M. akj(k) (i>k , j=k+1…n+1) 最后得到:
[A(n) | b(n)] (n-1 次消元后)其增广矩阵为:
的子阵作上计算:
a A
( 3)
(1)
11
0 0 0
a a
(1)
(1)
12 ( 2) 22
13 ( 2) 23 ( 3) 33 ( 3) n3
(2)
0 0
(2)
a a a a
i2
(1)
1n ( 2) 2n ( 3) 3n ( 3) nn
(2) (2) 22
,b
(3)
b b b b
其绝对值很小时,在高斯消去法中,因为M
= aik(k)/ akk(k) ,所以不是因为M数值过大,就 是舍入误差过大,与实际的解相差很远。
零主元或小主元问题
例如:求解下列方程组
0.0030x1 59.14x2 59.17 5.291x1 6.130x2 46.78
此方程组的准确解为:x1=10.00;x2=1.00 下面采用高斯消去法解方程组(取四位有效数字), 消元后得-1043x2=-1044,则x2=1.001. 将x2代入第一个方程中,得 x1=-9.713 显而易见,利用高斯消去法得到的结果与精确解相差太悬殊了 从求解过程可以看出,在第一种解法中,乘以的系数为 m=5.291/0.0030
a11 0 0 0
a12 a
( 2) 22
a13 a a
( 2) 23 ( 3) 33
a1n
( 2) 2n ( 3) 3n
a a
0 0
a
0
(n) nn
b1 ( 2) b2 ( 3) b3 (n) bn
回代: Xn= ann+1(n)/ann(n) 编程时,
为节省内存将Xn放在a nn+1(n)
同理X i 放在 a in+1(i) 第i次回代公式(i=n-1…..1) Xi(即a in+1(i))=(a in+1(i) )/aii(i)
二、算法描述
1、消元
对k=1…..n-1
消元因子: C= aik(k)/ akk(k) ( i= k+1….n )
(1)
1 ( 2) 2 ( 3) 3 ( 3) n
a
b
(3) ij
a ij mi2a 2 j
b i b 2 mi 2
(2) (2)
m a a
i2
(3) i
i, j
3, 4,
,n
每步消元,先计算系数,然后计算矩阵新元素及右端项
得到同解方程组
( 3 ) ( 3 ) x = b A
如果将两个方程互换,再采用高斯消去法解方程组
5.291x1 6.130x2 46.78 0.0030x1 59.14x2 59.17
消元后得59.14x2=59.14,则x2=1.000
将x2代入第一个方程中,得 x1=10.000
此时,利用高斯消去法得到的结果与精确解一致。
a 1n x n b 1
(2) (3)
(1)
(1) (2)
a 2n x n b 2 a 3n x n b 3
(3)
a x b
nn n
(n)
(n) n
系数矩阵与常数项:
(1) a 11 0 (n) A 0 0
a a a a 0 a
12 (2) 22
) (第n行) (第一行) a(n1 1
a → ( 新第n行 )
11
(1)
相当于第i个方程-第一个方程×数→新的第i方程 同解!第一方程不动!
上述消元过程除第一个方程不变以外,第2—第 n
个方程全消去了变量 1,而系数和常数项全得到新值:
(1) (1) (1) a 11 x1 a 12 x 2 a 13 x 3 (2) (2) a 23 x 3 a 22 x 2 (2) (2) a 32 x 2 a 33 x 3 (2) (2) a n3 x 3 a n2 x 2
对方程组,作如下的变换,解不变 ①交换两个方程的次序 ②一个方程的两边同时乘以一个非0的数 ③一个方程的两边同时乘以一个非0数,加到另一个方程 因此,对应的对增广矩阵(A,b),作如下的变换,解不变。 ①交换矩阵的两行
②某一行乘以一个非0的数
③某一行乘以一个非0数,加到另一行
举例(一)
x1 2 x2 2 x3 2 例:直接法解线性方程组 2 x1 3 x2 3 x3 4 4 x1 x2 6 x3 3
从求解过程可以看出,在第一种解法中,乘以的系数为 m=5.291/0.0030,第二种解法中,乘以的系数为 m=0.0030/5.291。我们希望m尽量小,希望主元尽可能大, 就有了列主元消去法(按列)。
二、列主元消去法
a1n b1
(2) (3) (1) (1) (2)
(1) (1) (1) a11 x1 a12 x 2 a13 x 3 (2) (2) a 23 x 3 a 22 x 2 (3) a 33 x 3 (3) a x n 3 3
系数变化:
① aij(k+1) = aij(k) (i≤ k) ② aij(k+1) = aij(k) - C. akj(k) ( i > k , j=k+1,…,n+1 )