第十一讲 基因组与比较基因组学

合集下载

基因组学和比较基因组学

基因组学和比较基因组学

基因组学和比较基因组学基因组学是研究生物体的基因组结构、组成和功能的科学领域。

它通过对基因组DNA序列的分析,探索基因与生物体性状之间的关系,以及基因组在进化过程中的变化。

而比较基因组学则是基因组学的一个重要分支,通过比较不同物种的基因组,揭示不同物种之间的共通性和差异性,从而深入研究生物体之间的进化关系和适应环境的机制。

1. 基因组学的发展在过去的几十年里,基因组学技术的飞速发展推动了该领域的迅猛发展。

创立了人类基因组计划(HGP)的里程碑式成果,将人类基因组的DNA序列测定完成并发布。

这项重大工作的完成催生了众多基因组学研究的突破,开辟了基因组学在疾病诊断、再生医学、进化生物学等领域的应用前景。

2. 基因组学的研究方法基因组学的研究方法主要包括测序技术和生物信息学分析两个方面。

测序技术利用高通量测序平台,可以快速、准确地获取生物体的整个基因组序列。

生物信息学分析则是对测序得到的海量数据进行筛选、比对、注释和解读,并通过构建基因组数据库和研发相应的算法,从中提取有意义的信息。

3. 基因组学的应用领域基因组学在医学研究中发挥着重要作用。

通过对疾病相关基因的研究,可以帮助诊断疾病、制定个体化治疗方案,甚至预测疾病的风险。

此外,基因组学在农业领域也有重要的应用。

比如利用基因组测序技术可以研究和改良作物的基因组,提高作物的产量和品质,并增强植物的抗病性和适应性。

4. 比较基因组学的研究意义比较基因组学通过比较不同物种的基因组,揭示物种之间的共通性和差异性,有助于研究生物体的进化关系和适应环境的机制。

通过比较不同种类的基因组,我们可以确定物种之间的亲缘关系,揭示不同物种之间演化的轨迹和速度。

同时,比较基因组学还有助于发现和理解基因组中的功能元件、非编码RNA等,进一步拓宽了我们对基因组的认识。

综上所述,基因组学和比较基因组学是两个相互关联的学科,它们以高通量测序技术为基础,通过分析基因组DNA序列的组成和功能,探究基因与生物体性状之间的关系,以及不同物种之间的共通性和差异性。

基因组测序和比较基因组学的研究方法

基因组测序和比较基因组学的研究方法

基因组测序和比较基因组学的研究方法随着科技的发展,人类已经能够对基因组进行测序,这个技术也被称为基因组学。

基因组学的出现开辟了一个新的研究方向,比较基因组学。

在本文中,我们将探讨基因组测序和比较基因组学的研究方法。

一、基因组测序基因组测序是指将人类的基因组测量出来的过程,有两种方法:整个基因组测序和部分基因组测序。

整个基因组测序是指对人类的所有基因进行测序,而部分基因组测序是指选取一些特定的基因进行测序。

1.整个基因组测序整个基因组测序是一项庞大的工程,需要大量的资源和技术。

在整个基因组测序中,研究人员会将DNA从一个人的细胞中提取,并将其切成小片段,这些小片段会被一台仪器分别读出来。

研究人员会将这些小片段拼接起来,以重建整个基因组。

2.部分基因组测序与整个基因组测序不同,部分基因组测序只对一些特定的基因进行测序。

这种方法主要是为了研究一些特定功能的基因而采取的。

这种方法比整个基因组测序更加简便和便宜。

二、比较基因组学比较基因组学是指利用计算机技术研究两个或多个物种的基因组之间的差异和相似之处。

在比较基因组学中,基因组会被分为两类:同源基因和异源基因。

1.同源基因同源基因是指两个或多个物种中,产生相似蛋白质的基因。

这些基因之间的比较可以揭示相似和不同之处,这对研究物种之间的演化关系很有帮助。

2.异源基因异源基因是指各自物种中的产生不同蛋白质的基因。

异源基因通常意味着这些物种具有不同的生命体验,比如环境和生境等。

这些基因的比较可以揭示这些物种之间的差异和相似之处。

三、结论基因组测序和比较基因组学的引入开创了一个新时代,使研究人员能够更好地了解生物的结构和功能。

这些新技术的出现为研究人员提供了一种更深入,更直观的方式来观察和了解物种之间的关系。

分子生物学 基因组与比较基因组学

分子生物学  基因组与比较基因组学

枝原体 Mycoplasma genitalium 580,070 bp,预计有500个基因
(5)细胞器基因组 线粒体基因组
在不同类型的生物(多细胞动物、高等植物、原生动 物、藻类、真菌)中变化很大
多细胞动物:细小、致密 高等植物:复杂、不均一 原生动物、藻类、真菌:或偏向于动物型, 或偏向于植物型,但又有其各自的独特之处
生物的复杂程度与基因组大小的关系
生物种类 真细菌
革兰氏阴性菌 革兰氏阳性菌 蓝细菌 枝原体
古细菌
原生生物 眼虫(裸藻) 纤毛虫 变形虫
真菌
各类生物中基因组大小的变化范围
基因组大小范围(kb) 650 ~ 13,200 650 ~ 7,800 1,600 ~ 11,600 3,100 ~ 13,200 650 ~ 1,800
物理图
以已知DNA序列片段(序列标签位点, STS)为路 标, 以碱基对(bp)为基本测量单位的基因组图.
STS只是基因组中单拷贝的短DNA序列.
建立物理图,需要得到5套该基因组的DNA片 段.(建立相互重叠的相连DNA片段群)
比较准确
序列图
序列图是指整个人类基因组的核苷酸序 列图,也是最详尽的物理图。
结构基因组学研究的主要目标 人类基因组计划(the Human Genome Project)之前,只测定过 一些病毒(X174、、T4等)的基因组全序列
Phage X174: 5375 nt
基因组全序列的测定
1995 嗜血流感菌(Haemophilus influenzae) 1,830 kb
又称染色体外DNA(extrachromosomal DNA)
(2)大小
基因组大小(genome size)一般以单倍体基因 组的核酸量来衡量,单位有pg(10-12 g)、 Dalton(道尔顿)、bp 或 kb 、Mb等

基因组学和比较基因组学研究

基因组学和比较基因组学研究

基因组学和比较基因组学研究基因组学和比较基因组学是近年来科学研究的重点之一。

随着科技的发展,人们对基因和基因组的认识也在逐渐完善。

基因是我们生命的基础单位,而基因组是一个生物所有基因的集合。

基因组包含了生物的各种遗传信息,其结构和功能对生物的生长、发育、适应环境和相互作用等方面都有影响。

基因组学研究是关于整个基因组的分析、注释和解读。

包括对基因组间的相互作用、序列、结构和功能的研究。

可以发现遗传物质可能存在的突变和变异,并且可以对个体、种群和物种发生的模式进行研究。

由于基因组的巨大、复杂和多样性,研究需要综合各种学科和技术手段。

目前,基因组学的研究内容包括:基因组序列分析、基因组结构与功能、基因组跨物种比较、基因组变异和多样性等。

比较基因组学是一门交叉学科,它主要研究不同生物间的遗传信息相似和差异。

通过比较基因组,可以研究物种间的进化和生物多样性,也可以发现表观遗传变化,对整个生物进化和遗传变化有很大意义。

在基因组和比较基因组学研究领域,研究者们使用各种不同的技术相互协作,进而取得了一系列重要的成果。

比如,通过测序和分析基因组序列,人们获得了人类基因组图谱,这个项目花费了耗时13年和30亿美元。

其中发现了主要基因、单核苷酸多态性、复杂性状等各种高度重要的分子信息。

这一重要的里程碑标志着人类基因组学的开端,不仅揭示了人类生命的基本规律,而且在生物医学科学、个体化医疗、生殖和疾病治疗等方面做出了重要的贡献。

同时,比较基因组学的研究也为揭示生物进化的分子机制提供了重要证据。

例如,通过比较基因组序列,可以发现不同物种间的基因表达差异,这有助于我们了解生物在演化过程中的适应能力和发展方向。

此外,基因组和比较基因组学的研究也为生物多样性和物种间相互作用的研究提供了重要的支持。

例如,基因组学的研究可以帮助我们了解生物种类、物种归属、种群结构和基因维持机制等。

同时,比较基因组学的研究可以发现不同物种间的遗传变异和性状差异,为我们了解物种间的相互作用模式提供了重要的依据。

第十一章表观遗传学

第十一章表观遗传学

第十一章表观遗传学重点内容提示:一、表观遗传学表观遗传学是于遗传学相对应的一门科学,是指DNA序列不发生转变但基因表达却发生了可遗传的改变,它包括三个层次的含义:一是可遗传性,二是基因表达的可变性,三是无DNA序列的转变或不能用序列转变来讲明。

二、表观遗传修饰1.DNA甲基化。

DNA甲基化是指在DNA甲基化转移酶的作用下,将一个甲基添加在DNA分子的碱基上,最多见的是加在胞嘧啶上。

DNA甲基化是最先发觉DNA修饰途径之一,它直接制约基因的活化状态, DNA甲基化能关闭某些基因的活性,去甲基化诱导基因的从头活化和表达,对基因表达起重要调剂作用,爱惜基因组的稳固性。

DNA甲基化与肿瘤疾病的发生进展有重要的关系,抑癌基因CpG 甲基化可致使抑癌基因的表观遗传学转录失活,直接参与肿瘤的发生机制,是肿瘤研究的新型生物学指标。

2.组蛋白修饰。

组蛋白修饰包括乙酰化、甲基化和磷酸化,组成多种多样的组蛋白密码,作为一种识别标志,为其他蛋白与DNA的结合产生协同或拮抗作用。

3.DNA相关沉默。

反义RNA、非编码RNA和RNA干扰均能异染色质形成,引发RNA的相关沉默。

三、遗传印记1.遗传印记。

是指不同亲本来源的一对等位基因之间存在功能上的不同,它在长期进化中形成,哺乳动物的正常发育起着重要作用。

DNA甲基化是产生遗传印记的要紧缘故。

2.遗传印记特点。

一是遗传印记遍及基因组,二是遗传印记的内含子小,雄性印记基因重组率高于雌性印记基因。

三是印记基因组织特异性表达,四是遗传印记活着代中能够逆转。

四、X染色体失活在哺乳动物中,雌雄性个体X染色体的数量不同,这种动物一X染色体失活方式来解决X染色体剂量的不同。

在雌性哺乳动物中,两条X染色体有一个是失活的,成为X染色体剂量补充。

X染色体失活的选择和起始发生在胚胎发育的初期,此进程被称为X失活中心所操纵,是一种反义转录调控模式。

那个中心存在着X染色体失活特异性转录基因,当失活的命令下达时,那个基因酒会产生一个17kb不翻译RNA与X染色体结合,引发失活,X失活中心具有“记数”的功能,既维持每一个二倍体中仅有一条X染色体有活性,其余全数失活。

全基因组测序和比较基因组学的应用

全基因组测序和比较基因组学的应用

全基因组测序和比较基因组学的应用随着科技的不断进步,全基因组测序和比较基因组学成为了分子生物学和生物信息学领域中的热门话题,为生物科学研究提供了更多的数据和思路。

本文将阐述全基因组测序和比较基因组学的相关概念及其应用,以及它们在疾病诊断和治疗中的贡献。

一、全基因组测序全基因组测序是指对一个生物体的全部基因组进行序列分析的方法,包括染色体的DNA序列以及其中的基因。

全基因组测序主要依赖于高通量测序技术,通过将DNA样本分解成小片段,进行高通量的脱氧核苷酸(dNTP)测序,并通过计算机程序将这些片段拼接成整个基因组的序列,从而实现对整个基因组的测序。

随着全基因组测序技术的发展,越来越多的生物体的基因组被测序。

全基因组测序为基因组学、遗传学、演化生物学等领域的研究提供了丰富的数据,也促进了许多新的领域的发展,如个性化医疗、生物工程等。

二、比较基因组学比较基因组学是研究不同生物体基因组之间相似性和差异性的学科。

它通常基于全基因组测序数据,通过对两个或多个基因组的比较,识别出它们之间的相似性和差异性。

比较基因组学主要研究生物体的基因组组成、基因结构、基因家族、基因密度、进化关系等方面的差异,以了解生物的进化、适应性和演化等问题。

比较基因组学的主要应用之一是生物分类学。

通过比较基因组数据,可以识别出不同物种的基因组之间的相似性或差异性,从而确定它们的进化关系和分类关系。

此外,比较基因组学还可以用于肿瘤学、人类学、微生物学等领域的研究。

三、1. 遗传病诊断和治疗全基因组测序和比较基因组学可用于遗传病的诊断和治疗。

全基因组测序可以帮助鉴定遗传病的致病基因,通过比较不同基因组之间的差异,找到突变、重复、缺失等异常,从而发现相关的基因型和表型。

这有助于鉴定患者的病因,为制定个性化治疗方案提供了基础。

比较基因组学也有助于研究遗传病的致病机理和治疗方法。

通过比较不同物种的基因组,可以鉴定致病基因、识别细菌的耐药性和病毒的突变,从而为制定新的治疗方法提供思路。

第11章-基因组学与比较基因组学

第11章-基因组学与比较基因组学

PE Applied Biosystems
DNA模板 ATTGCAGTCGAC 生成的新链 TAACGTCAGCTG
T管: TAACGTCAGCT TAACGT T
C管: TAACGTCAGC TAACGTC TAAC
G管: TAACGTCAGCTG TAACGTCAG TAACG
A管: TAACGTCA TAA TA
遗传图谱的标记是什么呢?
标记1 标记2
标记3
染色体上的基因和DNA序列均 可作为路标, 他们由特定的DNA 顺序组成.
路标位于染色体上的位置是固 定的,不会更改的,从而而提 供了作图的依据。
遗传标记
最早的遗传标记——基因 第一代遗传标记——限制性片段长度多态性 第二代遗传标记——简单序列长度多态性 第三代遗传标记——单核苷酸多态性
根据染色体上已知基因或遗传标签的位置来确定 部分DNA片段的排列顺序,再逐步确定各片段在 染色体上的相对位置,是建立在基因组图谱基础 上的”鸟枪法” 。
教学内容
一、高通量DNA序列分析技术 二、人类基因组计划 三、比较基因组学
二、人类基因组计划
人类基因组计划 ( Human genome project ) 于 1990 年 启 动 , 我 国 于 1999 年 加 入 该 计 划,承担其中1%的任务, 即人类3号染色体短臂上 约30Mb的测序任务。
(4)研究空间结构对基因调节的作用。 (5)发现与DNA复制、重组等有关的序列。 (6)研究DNA突变、重排和染色体断裂等,了解
疾病的分子机制,为疾病的诊断、预防和治疗提供 理论依据。 (7)确定人类基因组中转座子、逆转座子和病毒 残余序列,研究其周围序列的性质。
遗传图谱
(二)人类基因组计

基因组学与比较基因组学研究

基因组学与比较基因组学研究

基因组学与比较基因组学研究随着科技日新月异的发展,我们的知识世界也变得越来越广泛而深入。

其中,基因组学和比较基因组学是当前科学领域中备受瞩目的领域。

它们不仅仅是关注人类的生命起源和进化方面的研究,而且还涉及到解决人类不同种类的疾病及其他遗传问题。

本文将介绍和探讨基因组学和比较基因组学的研究,以及研究它们所需的技术和工具。

一、基因组学的研究1.1 基因组学的概念基因组学是对一个组织、一个生物或一个群体中所有基因,以及它们的组成和功能进行研究的学科。

换句话说,基因组学是一种研究基因组及其相互关系的综合科学。

它是生物学、生化学、细胞学及遗传学等领域多学科的交叉发展,旨在揭示生物体内基因的编码组成和相互作用机制。

1.2 基因组学的研究方法基因组学通常使用分子生物学、生物信息学和计算机科学等方法进行研究。

其中,分子生物学主要是通过分离、克隆和研究DNA以及表达dNA时参与到的基因。

生物信息学则是将大量的基因数据对比、分类和注释,以便更好地理解基因组的功能和作用。

计算机科学是利用计算机技术帮助对基因组数据进行处理和解析。

1.3 基因组学的应用基因组学的应用十分广泛。

它被广泛用于生物信息学、遗传学、生物工程学、疾病诊断和治疗等领域。

例如,在基因组学的研究中,可以判断人类遗传性疾病是由哪些基因突变所引起,进而研究开发一些治疗方案和药物等。

二、比较基因组学的研究2.1 比较基因组学的概念比较基因组学是对不同基因组在结构、序列和功能上进行对比和研究的学科。

在比较基因组学中,通过比较不同物种基因组之间的差异,更好地理解每个物种的遗传性特征,以及它们之间的进化关系。

2.2 比较基因组学的意义比较基因组学在生物学上具有重要意义。

它可以更好地理解基因组的演化,尤其是生命起源和进化过程的研究。

根据不同物种基因组内的共同点和差异,可以对其进行分类和固定物种的地位。

同时,还可以通过比较不同物种基因组序列之间的差异,寻找新药物或其他生物产品。

(NEW)朱玉贤《现代分子生物学》(第5版)笔记和课后习题(含考研真题)详解

(NEW)朱玉贤《现代分子生物学》(第5版)笔记和课后习题(含考研真题)详解

4.3 名校考研真题详解 第5章 分子生物学研究法(上)——DNA、RNA及蛋白质操作技术
5.1 复习笔记 5.2 课后习题详解 5.3 名校考研真题详解 第6章 分子生物学研究法(下)——基因功能研究技术 6.1 复习笔记 6.2 课后习题详解 6.3 名校考研真题详解 第7章 原核基因表达调控 7.1 复习笔记 7.2 课后习题详解 7.3 名校考研真题详解 第8章 真核基因表达调控 8.1 复习笔记 8.2 课后习题详解 8.3 名校考研真题详解
② T2噬菌体感染大肠杆菌实验
a.在分别含有35S和32P的培养基中培养大肠杆菌。
b.用上述大肠杆菌培养T2噬菌体,分别制备含35S的T2噬菌体和32P的
T2噬菌体。
c.分别用含35S的T2噬菌体和32P的T2噬菌体感染未被放射性标记的大 肠杆菌。
d.培养一段时间后,将混合液离心,检测子代噬菌体放射性。上清液 主要是噬菌体,沉淀物主要是大肠杆菌。
(4)基因组、功能基因组与生物信息学研究
基因组计划是一项国际性的研究计划,其目标是确定生物物种基因组所 携带的全部遗传信息,并确定、阐明和记录组成生物物种基因组的全部 DNA序列。
功能基因组学相对于测定DNA核苷酸序列的结构基因组学,其研究内容 是在利用结构基因组学丰富信息资源的基础上,应用大量的实验分析方 法并结合统计学和计算机分析方法来研究基因的表达、调控与功能,以 及基因间、基因与蛋白质之间和蛋白质与底物、蛋白质与蛋白质之间的 相互作用和生物的生长发育等规律。功能基因组学的研究目标是对所有 基因如何行使其职能从而控制各种生命现象的问题作出回答。
严格地说,重组DNA技术并不完全等于基因工程,因为后者还包括其他
可能使生物细胞基因组结构得到改造的体系。

基因组与比较基因组

基因组与比较基因组

转录图
生物的性状,包括疾病,都是由功 能蛋白质决定的,而所有已知蛋白 质都是由RNA聚合酶Ⅱ指导的带有 多聚腺苷酸“尾巴”的mRNA按照 遗传密码三联子的规律产生的。
分离纯化mRNA(或cDNA),抓住了 基因组的主要成分(可转录部分)。
人类的基因转录图(cDNA图),即表 达序列标签图(EST,expressed sequence tag)是人类基因组图的雏型。
从整体上看,不同人类个体的基因是相同的, “人类只有一个基因组” 。
不同的人可能拥有不同的等位基因,这一点 决定了人们个体上的差异。
与人类登月计划相比,HGP的资金 投入少,但它对人类生活的影响都 可能更深远。随着这个计划的完成, DNA分子中储藏约有关人类生存和 繁衍的全部遗传信息将被破译,它 将帮助我们理解人类如何作为健康 人发挥正常生理功能,还将最终揭 示严重危害人类健康疾病的机理。
整个人类基因组中,有1%-5%的序 列编码了蛋白质,最多可能有(5~7) 万个蛋白质编码基因。
得到了一段cDNA或一个EST,就能 被用于筛选全长的转录本,并将该 基因准确地定位于基因组上。
大规模生产EST的程序: 分离特定组织在 某一发展阶段的总mRNA,合成cDNA并 进行序列分析。
物理图的主要内容是建立相互重叠连接 的"相连DNA片段群“
只要有一定数被确定。
遗传图
遗传图(连锁图)→DNA标志在染 色体上的相对位置(遗传距离), 遗传距离以DNA片段在染色体交换 过程中的分离频率厘摩(cM)来表示。 cM值越大,两者之间距离越远。
交换频率不会大于50%,因 为当重组率等于50%(即遗传 学距离等于50cM)时,即发生 随机交换,则两个位点之间 完全不连锁。

《现代分子生物学》教学大纲

《现代分子生物学》教学大纲

《现代分子生物学》教学大纲课程名称:现代分子生物学课程类别:专业必修课学时:48 学时学分:3学分考核方式:考试适用专业:生物技术开课学期:第5或6学期一、课程性质、目的任务分子生物学是从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。

自20世纪50年代以来,分子生物学一直是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系和蛋白质-脂质体系。

生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。

现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了分子生物学的蓬勃发展。

本课程是研究核酸等生物大分子的功能、形态结构特征及其重要性和规律性的学科,也是生物专业的主干课程,分子生物学已成为生物类各专业教学计划中重要的核心课程,因此它是十分重要的一门必修课程,也是培养造就生物技术和生命科学高层次专门人才所需基本素质的重要课程。

本门课程的主要内容包括:染色体与DNA、基因和基因组、现代分子生物学的研究方法与技术、转录、翻译、原核生物基因表达与调控、真核生物基因表达调控、发育与分子调控等,此外,还包括各种讲座。

总之,通过分子生物学知识的传授,培养学生从分子水平上去分析、理解生命现象与过程,提高学生思考与探索生命奥秘的能力,从而为生物技术的分子生物学实验提供详实的理论基础。

二、课程基本要求该课程要求学生掌握现代分子生物学基本理论和基本技术,为其它专业课的学习和今后的发展奠定基础。

在课程学习的同时,要求学生提高思想道德修养、自学能力、专业英语能力、应用知识能力、表达能力、创新能力和科研能力。

三、学时分配四、教学方法与考核(一) 教学方法1.以学科体系为主体,以应用为目的,教学过程加强针对性和实用性。

2.本课程以讲授为主、自学和讨论为辅的方式组织教学,并通过阅读主要参考书目、网上查询、资料整理和专题讨论,加深对细胞生物学了解,并掌握该学科的实验技能和操作。

基因组与比较基因组学

基因组与比较基因组学
❖ 研究空间结构对基因调节的作用。
❖ 发现与DNA复制、重组等有关的序列。
❖ 研究DNA突变、重排和染色体断裂等,了解疾病的分子机制,为 疾病诊断、预防和治疗提供理论依据。
❖ 确定人类基因组中转座子、逆转座子和病毒残余序列,研究其周 围序列的性质。
❖ 研究人类个体之间的多态性(SNP)情况,用于基因诊断、个体 识别、亲子鉴定、组织配型、发育进化等许多医疗、司法和人类 学的研究。
❖ 连锁分析是通过分析同一遗传位点在不同个体中等位基因 的不同(多态性)来研究同一染色体上两位点之间的相互 关系。
2021/4/8
18
❖ 遗传距离图的基本数据来自基因的重组。
2021/4/8
19
❖Sds绝对是假的 么么么么方面
❖ 由于不能对人类进行“选择性”婚配,而且人类子代个体 数量有限、世代寿命较长,呈共显多态性的蛋白质数量不 多,等位基因的数量不多。DNA技术的建立为人类提供了 大量新的遗传标记。遗传标记有三代:
如果该基因与某标记间不发生重组(重组率等于0),我 们就推测该标记与所研究的疾病基因可能非常接近。
2021/4/8
26
3. 物理图
❖ 物理图是指以已知核苷酸序列的DNA片段(序列标签位点 ,STS)为“路标”,以碱基对(bp,kb,Mb)作为基本 测量单位(图距)的基因组图。
❖ STS是基因组中任何单拷贝的长度在 100~500bp之间的 DNA序列,与核酸内切酶识别序列相关联。
SNP中大多数为转换,即由一种嘧啶碱基替换另一种嘧啶 碱基,或由一种嘌呤碱基替换另一种嘌呤碱基,颠换与转 换之比为1:2。
SNP有可能在密度上达到人类基因组“多态”位点数目的 极限。估计人类基因组中可能有300万个SNP位点!

第十一章基因工程和基因组学参考答案

第十一章基因工程和基因组学参考答案

第⼗⼀章基因⼯程和基因组学参考答案第⼗⼀章基因⼯程和基因组学参考答案1.什么是遗传⼯程?它在理论上和实践上有什么意义?答:遗传⼯程是将分⼦遗传学的理论与技术相结合,⽤来改造、创建动物和植物新品种、⼯业化⽣产⽣物产品、诊断和治疗⼈类遗传疾病的⼀个新领域。

⼴义的遗传⼯程包括细胞⼯程、染⾊体⼯程、基因⼯程、细胞器⼯程等。

狭义的遗传⼯程即是通常讲的基因⼯程。

本章只涉及狭义的遗传⼯程,即基因⼯程。

理论意义:遗传⼯程(基因⼯程)中的DNA重组主要是创造⾃然界中没有的DNA分⼦的新组合,这种重组不同于精典遗传学中经过遗传交换产⽣的重组。

实践意义:遗传⼯程(基因⼯程)技术的建⽴,使所有实验⽣物学领域产⽣巨⼤的变⾰。

在⼯⼚化⽣产药品、疫苗和⾷品;诊断和治疗遗传疾病;培养转基因动植物等⽅⾯都有⾮常重⼤的意义,即基因⼯程技术已⼴泛⽤于⼯业、农业、畜牧业、医学、法学等领域,为⼈类创造了巨⼤的财富。

(详见第10题)。

2.简述基因⼯程的施⼯步骤。

答:基因⼯程的施⼯由以下这些步骤:⑴.从细胞和组织中分离DNA;⑵.利⽤能识别特异DNA序列的限制性核酸内切酶酶切DNA分⼦,制备DNA⽚段;⑶.将酶切的DNA⽚段与载体DNA(载体能在宿主细胞内⾃我复制连接),构建重组DNA分⼦;⑷.将重组DNA分⼦导⼊宿主细胞,在细胞内复制,产⽣多个完全相同的拷贝,即克隆;⑸.重组DNA随宿主细胞分裂⽽分配到⼦细胞,使⼦代群体细胞均具有重组DNA分⼦的拷贝;⑹.从宿主细胞中回收、纯化和分析克隆的重组DNA分⼦;⑺.使克隆的DNA进⼀步转录成mRNA、翻译成蛋⽩质,分离、鉴定基因产物。

3.说明在DNA克隆中,以下材料起什么作⽤。

(1)载体;(2)限制性核酸内切酶;(3)连接酶;(4)宿主细胞;(5)氯化钠答:⑴. 载体:经限制性酶酶切后形成的DNA⽚段或基因,不能直接进⼊宿主细胞进⾏克隆。

⼀个DNA⽚段只有与适合的载体DNA连接构成重组DNA后,在载体DNA的运载下,才可以⾼效地进⼊宿主细胞,并在其中复制、扩增、克隆出多个拷贝。

比较基因组学PPT课件

比较基因组学PPT课件

2020/3/14
13
基因组比较作图Comparative mapping
利用共同的遗传标记(分子标记、cDNA克 隆、基因克隆)对相关物种进行遗传/物理作 图;
比较遗传标记在相关物种基因组中的分布情 况,揭示物种间DNA或DNA片段上的同线 性synteny、共线性collinearity、微共线 性microsynteny;
19
基于芯片技术的比较基因组学研究
以已知序列基因组为参考,通过芯片技术, 进行未测序基因组与参考基因组间的比较 基因组杂交分析;
检测待比较基因组中对应DNA区域的存在、 缺失、变异;
成本较低,研究结果可靠性较高,应用前 景广阔。
2020/3/14
20
基因组成的相似性
基因共线性:基因排列顺序的一致性;
物种 酵母
完成 年份
1996
线虫
1998
果蝇
2000
拟南芥
2000
人类第22染色体 1999
人类第21染色体 2000
人类全基因组
2001
(Public Sequence)
人类全基因组
2001
(Celera Sequence)
总长度 Mb 12 96 116 115 34 33 2693
2654
已完成总长 的百分数/% 93 99 64 92 70 75 84
31
模式生物具备的基本条件
容易培养,成本低廉,随时获取以供实 验研究,繁殖周期短;
能在短时间内产生大量的后代,满足研 究分析的需求;
十分方便地取得种内的遗传变异体; 已经过长期研究取得该物种的丰富背景
信息。
32
模式生物基因组研究特点

基因组学研究和比较基因组学

基因组学研究和比较基因组学

基因组学研究和比较基因组学生命科学的一个分支是基因组学。

这个词汇反应了人类最近一段时间内对生命分子的探索,它包括研究和解释DNA序列和结构。

基因组学可以用来研究生物的进化,基因和表型之间的关系,以及基因在個人和种群中的分布。

比较基因组学是一种变形,它比单纯的基因组学更广泛和更有用,因为它将同类生物之间的基因组进行比较,后者在比较过程中已经吸收了整个进化历程的影响。

就这一点而言,比较基因组学是一种演化研究的关键科学,这里的生物研究包括从简单细胞的原核生物到高级复杂的真核生物。

这种科学技术的发展是由理论和方法的发展而引起的,但也受到因素的影响,如计算机技术的进步和大规模数据处理技术的应用。

在比较基因组学的相关领域,主要应用以下三种技术:DNA微阵列技术,测序技术和大规模比对技术。

DNA微阵列技术是一种用于测定基因组中哪些基因在不同的物种中是共同存在或是特有的技术。

这个技术进行得到越来越快,并且已经在某些生物中支持了基因的发现、演变和功能。

一些最重要的生物数据资源,如ENSEMBL数据库和NCBI数据库,采用了这种技术。

测序技术是比较基因组学的重要组成部分。

这个技术可以很快地反映出整个基因组的信息,并且使我们更能深入研究物种间的相似之处及其分子级结构的差异。

虽然测序技术仍然属于高科技品类,但随着技术的改进和成本的降低,已经被广泛应用于比较基因组学的研究和相关领域。

大规模比对技术恰恰说明了计算机技术逐渐成为比较基因组学的一个核心组成部分的进程。

它是一种高效的分析技术,可以将多个不同物种的基因组信息进行比对,并用于确定同类物种之间的相似之处及其分子级的差异。

比较基因组学可以帮助我们立足自然和心理科学上来理解非常复杂的进化过程,并且可以将研究更广泛的科学体系中的问题(如医学领域中的疾病和基因与表型之间的关系。

随着技术的进步,比较基因组学将成为更广泛和更深入研究进化的有力工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10. 1. 1 人类基因组计划的科学意义 到目前为止,已经完成了酵母、线 虫、果蝇、拟南芥、人类、小鼠和 水稻等7个真核生物基因组以及大肠 杆菌等上百个原核生物基因组。
图10-1主要基因组计划到2001年2月为止的进展情况总结
人类基因组计划的科学意义在于: (1)确定人类基因组中约3-4万个编 码基因的序列及其在基因组中的物理 位置,研究基因的产物及其功能。 (2)了解转录和剪接调控元件的结 构与位置,从整个基因组结构的宏观 水平上理解基因转录与转录后调节。
产生配子的减数分裂过程中,亲 代同“号”的父源或母源染色体既能 相互配对也可能发生片段互换,而 父母源染色体等位基因互换导致子 代出现DNA“重组”的频率与这两个 位点之间的距离呈正相关,所以, 用两个位点之间的交换或重组频率 来表示其“遗传学距离”。
图10-2 遗传距离图的基本数据来自基因的重组。 注:上述4个基因都位于果蝇的X染色体上。
STRP的优点是 “多态性”与“高频 率”。由于(A)n,(CA)n,(CGG)n等 短重复序列在进化上不受选择,在 同一位点上可重复单位数量变化很 大,配对时又容易产生“错配”,使 这样的位点遍布于整个基因组。
表10-2 人类基因组中的各种主要卫星DNA比较
卫星DNA分 类 特 征
卫星DNA: 串联重复的基本单位首尾相接,在基因组中呈不均匀 分布,但主要集中于着丝粒、端粒等特定部位,高度 或中等重复,分属三个大家族。 α卫星DNA 中等重复,基本单位长171bp。 小卫星DNA 微卫星DNA 中等重复,基本单位长15~65bp。 中等重复,基本单位长2~8bp
tttccggtatttgggctttaaatccttaattatattatcttg taaaaaaaag ctactcttat aagtaacgtt ttgacccaaa ataaagtaaa gtttcgacat tttgcatata cattaagaaa ctaaataaat atactatgac ccccttcgaa aacatgtcat tcaaaataaa gtacttgtga aaagataaaa ctaaataata taaataatta cctttaaaca gaacaaaatc ttctaaaaca acatttatat tgaaattaag agtaatacat tttagcaata acaaaaaaat tcatgtacaa gatccatgta catataaatgc ctactgatat gtcactttccc caaacgtcacAtta atatctcttc ttcttttttt aacatcttaa tcttatttat gattcacaga gaaagaaaaa gagtcaaaat caaaataaca gcttttctcc acataaatcc acatgtgtgt atactggtta ctcgactcta tatatagtcc taaagctaca atgtttctcc atcaaaagta tcaaaagaaa gagaaacaac aaaagcaaat cctataatta taatcacaaaacga ATGGCGGCCGTTACTTCCTCATGCTCCACCGCGATCTCCGCTTCT TCCAAAACCCTAGCGAAGCCAGTCGCCGCAAGCTTCGCCCCTAC TAATCTCTCATTTTCAAAGCTTTCTCCTCAGTCAATCAGGGCTCG TAGATCCATCACCGTCGGCAGCGCACTAGGCGCCACCAAGGTGT CGGCTCCTCCCGCCACACATCCCGTTTCGCTCGATTTTGAGACTT CTGTCTTCAAGAAGGAGAGAGTTAACCTCGCCGGACACGAAGAG GTTCGGGTTTCTTCTAATTTTTCACTCTACTCTCAGAAATTGACTATTA CTTTTTATTTTTAAATGAATGATTTTTTTGGTTGATTTGTTGCAG
第三代DNA遗传标记,可能也是最好的 遗传标记,是分散于基因组中的单个碱 基的差异,即单核苷酸的多态性 (SNP),包括单个碱基的缺失、插入 和替换。 SNP中大多数为转换,即由一种嘧啶碱 基替换另一种嘧啶碱基,或由一种嘌呤 碱基替换另一种嘌呤碱基,颠换与转换 之比为1:2。
SNP有可能在密度上达到人类基因组 “多态”位点数目的极限。估计人类基 因组中可能有300万个SNP位点! SNP与RFLP和STRP标记的主要不同 之处在于,它不再以DNA片段的长 度变化作为检测手段,而直接以序列 变异作为标记。
图10-6 存在于人类基因组重复序列中的四类转座子序列分析。
LINEs ( long interspersed elements)可能是人类基因组中最古 老的重复序列,一般长5-6 kb,含有 RNA聚合酶II启动子序列和两个可读 框. SINEs ( short interspersed elements ) 是 非 自 主 转 座 子 , 长 约 100~400 bp,其3’末端与LINEs有同 源性,因此能依靠LINEs进行转座。
第十讲 基因组与比较基因组学 1940 年 代 第 一 颗 原 子 弹 爆 炸 , 1960年代人类首次登上月球和1990年 代提出并已基本完成的人类基因组计 划(HGP)是20世纪人类科技发展史 上的三大创举。
(b)
(a)
10. 1 人类基因组计划 基因组学这一名词是美国人 T.H.Roderick 在 1986 年 7 月 造 出 来 的 , 与 一 个 新 的 杂 志 ——Genomics 一道问世,它着眼于研究并解析生物 体整个基因组的所有遗传信息。
如果发现该基因与某个标记有一定 程度的“连锁”(重组率小于50%但 大于0),表明它可能位于这个标记 附近。 如果该基因与某标记间不发生重组 (重组率等于0),我们就推测该标 记与所研究的疾病基因可能非常接 近。
10. 1. 3 物理图(Physical Map) 人类基因组的物理图是指以已知核苷酸 序 列 的 DNA 片 段 ( 序 列 标 签 位 点 , sequence-tagged site,STS)为“路标”, 以碱基对(bp,kb,mb)作为基本测量 单位(图距)的基因组图。 物理图的主要内容是建立相互重叠连接 的“相连DNA片段群”(contigs)。
(3)从整体上了解染色体结构,了解各 种不同序列在形成染色体结构、DNA复 制、基因转录及表达调控中的影响与作 用。 (4)研究空间结构对基因调节的作用。 (5)发现与DNA复制、重组等有关的序 列。
(6)研究DNA突变、重排和染色体 断裂等,了解疾病的分子机制,为疾 病诊断、预防和治疗提供理论依据。 (7)确定人类基因组中转座子、逆 转座子和病毒残余序列,研究其周围 序列的性质。
:引物 W : 野 生 型 (wildtype)
M : 突 变 型 (mutant)
第二代DNA遗传标记利用了存在于人类基 因组中的大量重复序列: 重复单位长度在15-65个核苷酸左右的小卫 星DNA(minisatellite DNA); 重复单位长度在2-6个核苷酸之间的微卫星 DNA(microsatellite DNA),后者又称为 简 短 串 联 重 复 ( STR 、 STRP 或 SSLP , short tandem repeat polymorphism 或 者 simple sequence length polymorphism)。
图10-3 限制性片段长度多态性(RFLP)原理示意 图。
由于核苷酸序列的改变遍及整个基因 组,特别是进化中选择压力不是很大 的非编码序列之中,RFLP的出现频 率远远超过了经典的蛋白质多态性。 而且,只要选择得当,生物体内出现 共显性RFLP及RAPD分子标记的频 率较高。
图10-4 RFLP分子标 记中的显性与共显多 态性分子机制。图中 第一种类型是最常见 的显性多态性标记, 第2,3,4类都是共 显性标记。
(8)研究人类个体之间的多态性 (SNP)情况,用于基因诊断、个体 识别、亲子鉴定、组织配型、发育进 化等许多医疗、司法和人类学的研 究。
人类基因组计划的成果是多方面 的,它主要体现在鉴定基因的四张 图上。
10. 1. 2 遗传图(Genetic Map) 又称连锁图(Linkage Map),是 指基因或DNA标志在染色体上的相对 位置与遗传距离,通常以基因或DNA 片段在染色体交换过程中的分离频率 厘摩(cM)来表示。cM值越大,两 者之间距离越远。
图10-8 酵母第三号 染色体遗传图 (右)和物理图 (左)的比较。
10. 1. 4 转录图(Expression Profiling) 人类的基因转录图(cDNA图),或者基因的 cDNA 片 段 图 , 即 表 达 序 列 标 签 图 ( EST , expressed sequence tag)是人类基因组图的雏 型。 在成年个体的每一特定组织中,一般只有 10%~20%的结构基因(约1~2万个不同类型的 mRNA)表达。
酿酒酵母 Saccharomyces cerevisiae 线 虫 Caenorhabditis elegans 拟南芥 Arabidopsis thaliana 果 蝇 Drosophila melanogaster 人 类 Homo sapiens
13,116,818bp
6275
约97Mp
18891
基因组是生物体内遗传信息的集 合,是某个特定物种细胞内全部 DNA分子的总和。人类基因组包 括23对染色体,单倍体细胞中约 有30亿对核苷酸,编码了5-6万个 基因,人类基因组中携带了有关 人类个体生长发育、生老病死的 全部遗传信息。
从整体上看,不同人类个体的基 因是相同的,因此,我们说“人类 只有一个基因组”,人生来是平等 的。当然,不同的人可能拥有不 同的等位基因,这一点决定了人 与人之间个体上的差异。
115Mp
25,498
116Mp
14113
3.2×109bp
相关文档
最新文档