中考数学 教材知识梳理 第7单元 图形的变化 第28课时 视图与投影

合集下载

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结投影与视图是工程图学中的重要内容,是工程师进行设计与制造的基础。

下面是投影与视图的知识点总结。

一、投影的定义与种类1. 投影是将三维实体在二维画面上的投影。

2. 投影分为平行投影和透视投影两种。

平行投影是物体在无穷远处时的投影,保持物体形状和大小不变,适用于工程制图中的多视图投影。

透视投影是通过模拟人眼的透视原理,使物体在近处大远处小,用于绘制逼真的效果图。

二、主视图与副视图1. 主视图是从物体六个主要方向观察并绘制的视图。

2. 副视图是从物体其它非主要方向观察并绘制的视图。

3. 任何物体至少需要主视图和一个副视图来完整表示。

三、视图的投影规律1. 视图的投影规律是指根据物体的几何特性,确定其视图的位置、大小及间隔等规律。

2. 正投影规律:物体的投影与视图同侧,上投下,前投后,左投右。

3. 在主视图、俯视图和立体图中,物体的主要特征线分别为前、上、左三个面上的轮廓线。

四、视图的基本要求1. 视图的大小适中,方便观察和绘制。

2. 视图之间的间距要均匀,以突出主要的特征和轮廓线。

3. 视图应尽量减少折角,直线尽量不折断。

五、视图的选择原则1. 选择平易近人的主视图。

2. 主视图要选主要面直接对称的视图。

3. 选择于构造、加工、检验方便的视图。

4. 尽量选择存在完整轮廓线的视图。

六、常见视图1. 正投主视图:从正前方观察物体并绘制的视图。

2. 俯视图:从物体的上方直接向下观察并绘制的视图。

3. 阜视图:从物体的左前方斜向观察并绘制的视图。

4. 左视图:从物体的左侧观察并绘制的视图。

5. 右视图:从物体的右侧观察并绘制的视图。

七、主视图与副视图的绘制方法1. 主视图绘制方法:a. 确定主视图的位置,主视图应水平或竖直地绘制在图纸上。

b. 根据主视图的投影规律,绘制主视图的轮廓线。

c. 绘制主视图上的特征线、尺寸和字体。

2. 副视图绘制方法:a. 根据几何原理,确定副视图的位置和大小。

2015浙江中考试题研究数学精品复习课件第28讲 视图与投影

2015浙江中考试题研究数学精品复习课件第28讲 视图与投影

【点评】 在解答有关线段的计算问题时,一般要注意 以下几个方面:①按照题中已知条件画出符合题意的图 形是正确解题的前提条件;②学会观察图形,找出线段
之间的关系,列算式或方程来解答.
1.(1)(2012·菏泽)已知线段AB=8 cm,在直线AB上画 线段BC,使BC=3 cm,则线段AC=__11_cm或5_cm__. (2)如图,已知AB=40 cm,C为AB的中点,D为CB上一
第28讲 视图与投影
第28讲 视图与投影
1.三视图 (1)主视图:从__正面__看到的图; (2)左视图:从__左面__看到的图; (3)俯视图:从__上面__看到的图. 2.画“三视图”的原则
(1)位置:__主视图__;__左视图__;__俯 视图__. (2)大小:__长对正,高平齐,宽相等__. (3)虚实:在画图时,看得见部分的轮廓通 常画成实线,看不见部分的到圆心的距离 , r 为圆
的半径): ①点P在圆上 __d=r__; ②点P在圆内 __d<r__; ③点P在圆外 __d>r__.
1 . (2013· 丽水 ) 如图 , AB∥CD , AD 和 BC 相交于 O , ∠A=20°,∠COD=100°,则∠C的度数是( C ) A . 80° B . 70° C . 60°
点,E为DB的中点,EB=6 cm,求CD的长.
解:∵E为BD的中点,∴BD=2BE=2×6=12,又 ∵C为AB的中点,∴BC=AB=×40=20,∴CD= BC-BD=20-12=8(cm)
-3 -3 -1 0 2 ┄┄ (-3,-1) (-3,0) (-3,2)
-1 (-1,-3) ┄┄ (-1,0) (-1,2)
成是从一点出发的光线 ,像这样的光线所形成的投影称为中

中考数学第七章图形的变化第二节投影与视图课件

中考数学第七章图形的变化第二节投影与视图课件

D.球
4.(2017·路南区一模)如图为某几何体的三视图,则组
成该几何体的小正方体的个数是(
)
A
A.5
B.6
C.7
D.8
考点三 求几何体的面积或体积 (5年1考) (2017·荆州)如图是某几何体的三视图,根据图中
的数据,求得该几何体的体积为( )
A.800π+1 200 B.160π+1 700 C.3 200π+1 200 D.800π+3 000
地球在转动
乌龟在跑
手在动
请同学们看下面生活中的一些例子:
请同学们看下面生活中的一些例子:
雄鹰在展翅翱翔
请同学们看下面生活中的一些例子:
雄鹰在展翅翱翔
火箭飞向苍穹的太空
请同学们看下面生活中的一些例子:
雄鹰在展翅翱翔
7.(2014·河北)如图1是边长为1的六个小正方形组成的 图形,它可以围成图2的正方体,则图1中小正方形顶点A, B围成的正方体上的距离是( B )
8.(2017·邢台二模)如图是一个正方体的表面展开图, 在这个正方体中,与点A重合的点为( A )
A.点C和点N C.点C和点M
B.点B和点M D.点B和点N
讲:几何体的三视图 在判断几何体的三视图时,注意以下两个方面:(1)分清 主视图、左视图与俯视图的区别;(2)看得见的画实线, 看不见的画虚线. 练:链接变式训练2
1.(2016·烟台)如图,圆柱体中挖去一个小圆柱,那么 这个几何体的主视图和俯视图分别是( B )
2.(2017·长安区一模)图中所示几何体的俯视图是 (D)
(2)注意实线与虚线的区别:能看到的线用实线,看不到
的线用虚线.
4.常见几何体的三种视图
知识点三 几何体的展开与折叠 1.常见几何体的展开图

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结在我们的日常生活和学习中,投影与视图是一个重要的数学概念,它不仅在数学领域有着广泛的应用,在工程、建筑、设计等实际领域也发挥着关键作用。

接下来,让我们一起深入了解投影与视图的相关知识点。

一、投影投影是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法。

1、中心投影由同一点(点光源)发出的光线形成的投影叫做中心投影。

比如,夜晚路灯下的人影就是中心投影的例子。

其特点是:等长的物体平行于地面放置时,在灯光下,离点光源越近的物体的影子越短,离点光源越远的物体的影子越长。

2、平行投影由平行光线(太阳光线)形成的投影称为平行投影。

平行投影又分为正投影和斜投影。

正投影是指投射线垂直于投影面的平行投影。

在平行投影中,同一时刻,不同物体的物高和影长成比例。

二、视图视图是将物体按正投影向投影面投射所得到的图形。

1、三视图三视图包括主视图、俯视图和左视图。

主视图:从物体的前面向后面投射所得的视图。

俯视图:从物体的上面向下面投射所得的视图。

左视图:从物体的左面向右面投射所得的视图。

三视图的位置关系:主视图在上方,俯视图在主视图的正下方,左视图在主视图的正右方。

三视图的大小关系:长对正、高平齐、宽相等。

即主视图与俯视图的长相等,主视图与左视图的高相等,俯视图与左视图的宽相等。

2、常见几何体的三视图(1)正方体:三视图都是正方形。

(2)长方体:主视图、左视图是长方形,俯视图是长方形。

(3)圆柱:主视图、左视图是长方形,俯视图是圆。

(4)圆锥:主视图、左视图是三角形,俯视图是圆及圆心。

(5)球:三视图都是圆。

三、根据视图还原几何体根据三视图还原几何体时,要先分别根据主视图、俯视图和左视图想象几何体的前面、上面和左面的形状,然后综合起来考虑整体形状。

四、投影与视图的应用1、在建筑设计中,设计师需要通过绘制三视图来准确表达建筑物的形状和尺寸,以便施工人员能够按照设计进行施工。

2、在机械制造中,工程师需要根据零件的三视图来制造零件,确保零件的精度和质量。

2024年人教版数学九年级上册第28课时 视图与投影(PPT版)-课件

2024年人教版数学九年级上册第28课时 视图与投影(PPT版)-课件

平齐,左视图与俯视图宽相等.
3.常见几何体的三视图
几何体
主视图
左视图
正方体
圆柱
俯视图
几何体 圆锥
主视图
左视图
俯视图
球体
几何体 长方体
主视图
左视图
俯视图
三棱柱
4.计算组成几何体的小正方块个数的方法 首先可由俯视图来确定几何体的最底层形状(打基础), 再由主视图在俯视图的基础上累加小正方块(疯狂盖), 最后由左视图来排除多余的小正方块(拆违章).
第一部分 夯实基础 提分多
第七单元 图形的变化
第28课时 视图与投影
基础点巧练妙记 基础点 1 投影
1.投影:用光线照射物体,在某个平面(地面、墙壁等) 上得到的影子叫做物体的投影. 2.平行投影:由平行光线形成的投影. 3.中心投影:从一点(点光源)发出的光线形成的投影.
基础点 2 三视图
1.概念:当从某一方向观察一个物体时,所看到的平 面叫做物体的一个视图. (1)主视图:从①_正__面___看到的图叫做主视图. (2)左视图:从左面看到的图叫做左视图. (3)俯视图:从②_上__面___看到的图叫做俯视图. 2.关系:主视图与俯视图长对正,主视图与左视图高
第6题图
基础点 3 立体图形的展开与折叠
1.常见几何体的展开图
常见几何体
展开图
正方体
六个全等的正方形
图示
常见几何体
展开图
圆柱
两个同等大小的圆和一 个③_矩__形_
圆锥
一个圆和一个④_扇__形_
三棱柱
两个全等的三角形和三 个矩形
图示
2.正方体表面展开图的类型 一四一型
二三一型
三三型

九年级中考数学一轮复习课件:第28课时 尺规作图、视图与投影

九年级中考数学一轮复习课件:第28课时 尺规作图、视图与投影

成实线,看不见的轮廓线画成虚线.
例2(2015 达州)一个几何体由大小相同的小方
块搭成,从上面看到的几何体的形状图如图所示, 其中小正方形中的数字表示在该位置的小立方块 的个数,则从正面看到几何体的形状图是( D )
【思路点拨】由俯视图中每个数字是该位置小方块的个数,
可判断出主视图有3列,再根据小方块的数量判断几何体每
第一部分
考点研究
第七章 图形的变化
第28课时 尺规作图、视图与投影
考点精讲
尺规作图
尺规作图的定义:只用无刻度的直 圆规 来完成的作图方法称 尺和①______ 为尺规作图 五种基本尺规作图
尺规 作图、 视图 与投 影
三视图
1.三视图的判断 2.几种常见几何体的三视图及展开图 3.由三视图还原几何体
正方体的展开与折叠 投影
1.作一条线段等于已知线段的步骤 2.作角平分线的步骤 五种 基本 尺规 作图
3.作线段的垂直平分线的步骤
4.作一个角等于已知角的步骤 5.过一点P作已知直线AB的垂线的步骤
1.作一条线 段等于已知 线段的步骤
1.作射线AC 2.用圆规在射线AC上截取AB=a, AB即为所求线段
1.以点O为圆心,任意长为半径作弧,分别 交射线OA、OB于点C、D 2.作角的平分 线的步骤
1 CD 2.分别以点C、D为圆心,大于②______ 的 2
长为半径作弧,两弧在∠AOB的内部交于 点P
3.作射线OP,OP即为所求角平分线
3.作线段的 垂直平分 线的步骤
1 AB 2 1.分别以点A、B为圆心,以大于③______
列有几个小正方块即可.
判断小立方块组成几何体的视图:①找准所判断视 图的观察方向;②从视图观察方向看几何体: a.判断主视图时,从前往后看,几何体从左至右有x列, 每一列最高有y层,对应到方形数为y个.b.判断左视图时,从左往

课标中考数学总复习第七单元图形与变换投影与视图含尺规作图课件

课标中考数学总复习第七单元图形与变换投影与视图含尺规作图课件


物体视图称为 左视图
主视图的长与俯视图的长对正
主视图的高与左视图的高平齐 三视图 左视图的宽与俯视图的宽相等 的画法 以上规律简述为 :长对正 ,高平齐 ,宽相等 ; 与规律 注意:画三视图时看得见的轮廓线画成 实线 ,看不见的轮
廓线画成虚线
考点必备梳理
考点一
考点二
考点三
考点四
考点五
考点三常见几何体的三视图 (高频)
考点必备梳理
考题初做诊断
考法必研突破
考法1
考法2
考法3
考法4
考法5
解析:由这个几何体的三视图可知 ,这个几何体是底面半径为 2、
高为4的圆柱轴剖面的一半 ,其表面积为上、下两个相等的半径为 2
的半圆、底面半径为 2、高为4的圆柱侧面的一半以及边长为 4的
正方形组成 ,因此,其面积分别为 4π、8π和16,则该几何体的表面
考点必备梳理
考题初做诊断
考法必研突破
考法1
考法2
考法3
考法4
考法5
对应练8(2017·湖北荆门 )如图是由若干个大小相同的小正方体
所搭成的几何体的三视图 ,则搭成这个几何体的小正方体的个数是
(B )
A.6个 B.7个 C.8个D.9个 解析: 如图,以俯视图为基础 ,将另两个视图中小正方形的个数填 写在俯视图的相应位置 ,即可得小正方体的个数是 7.故选B.
解析:左视图看到中间的横线是实线 ,且以矩形竖直一对边的中 点为端点 .
考法1
考法2
考法3
考法4
考点必备梳理
考法5
考题初做诊断
考法必研突破
考法 3根据三视图还原几何体 例3(2020·山东济宁 )一个几何体的三视图如图所示 ,则该几何体 的表面积是 ( )

2019中考数学 第一部分 教材知识梳理 第七单元 第28课时 图形的平移、对称、旋转课件

2019中考数学 第一部分 教材知识梳理 第七单元 第28课时 图形的平移、对称、旋转课件
(3)分别平移关键点得到其对应点;
(4)连接对应点.
优质课件
3. 旋转作图: (1)确定旋转中心及旋转方向、旋转角; (2)找关键点;
(3)旋转关键点与旋转中心的连线,得到其对
应点;
(4)连接对应点
优质课件
常考类型剖析
类型一 图形的对称 例1 (’15青岛)下列四个图形中,既是轴对 称图形又是中心对称图形的是 (B)
优质课件
(2)【思路分析】由菱形的性质得到DE =AE =AC =AB =1,AC∥DE,再根据等腰直角三角形的性质即可
得解.
解:∵四边形ACDE 为菱形,AB =AC =1,
∴DE =AE =AC =AB =1,AC∥DE,
∴∠AEB =∠ABE,∠ABE =∠BAC =45°, ∴∠AEB =45°,∠EAB =90°,
第一部分
教材知识梳理
第七单元 图形的变化
第28课时 称、旋转 图形的平移、对
优质课件
Байду номын сангаас 中考考点清单
考点1 图形的平移
考点2 图形的对称(高频考点)
考点3 图形的旋转(高频考点)
考点4 网格中图形变换作图
优质课件
考点1 1. 定义:
图形的平移
把图形上所有的点都按同一方向移动相等 的距离叫做平移.
优质课件
(2)将△A1B1C1绕B1点顺时针旋转90°,得
△A2B1C2,请画出△A2B1C2; (3)线段B1C1变换到B1C2的过程中扫过区域 的
9 π 4
面积为_____.
优质课件
【思路分析】(1)分别将点A、B、C向上平移6 个单位,再分别向右平移3个单位,最后依次连 接两次平移后的点即可得解;(2)分别将线段

2023中考复习专用数学一轮知识点梳理七 图形与变换课件

2023中考复习专用数学一轮知识点梳理七 图形与变换课件
3.会利用基本作图作三角形:已知三边或两边及其夹角或两角及其
知识点 尺规作图
尺规作图的工具为 和 .
尺规作图的定义:用不带刻度的直尺和圆规完成的几何作图叫尺规作图.
直尺
圆规
五种常规的尺规作图:作一条线段等于已知线段.步骤如图①:作射线OP;在OP上截取 ,OA即为所求线段.
七 图形与变换
第28课时 尺规作图
1
的平分线及线段的垂直平分线.
1.会用尺规作一条线段等于已知线段、一个角等于已知角、一个角
尺过已知直线外一点作这条直线的平行线.
2.会用三角尺或量角器过一点作一条直线的垂线,会用三角尺和直
夹边作三角形;已知底边及底边上的高线作等腰三角形;已知一直角边和斜边作直角三角形.
(1) ∵ BF=CE,∴ BF+FC=CE+FC,即BC=EF.∵ AB∥DE,∴ ∠ABC=∠DEF.在△ABC和△DEF中,∴ △ABC≌△DEF (2) ① 如图,△A'BC即为所求作
第3题
A'D∥l
4. (2022·淮安二模)如图①②,在5×5的网格中,△ABC的三个顶点都在格点上.(1) 在图①中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.(2) 在图②中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).(3) 如图③,在▱ABCD中,CM⊥BD于点M.若AN⊥BD于点N,请仅用无刻度的直尺在图③中作出符合题意的点N(不要求写作法,但要保留作图痕迹).
1. (2022·安顺)如图,在△ABC中,∠ABC<90°,AB≠BC,BE是边AC上的中 线,按下列步骤作图:① 分别以点B和点C为圆心,大于BC的长为半径 作弧,两弧相交于点M,N;② 作直线MN,分别交BC,BE于点D,O;③ 连接 CO,DE.下列结论错误的是 ( ) A. OB=OC B. ∠BOD=∠COD C. DE∥AB D. △BOC≌△BDE2. (2022·连云港)如图,在▱ABCD中,∠ABC=150°.利用尺规在BC,BA上分 别截取BE,BF,使BE=BF;分别以点E,F为圆心、大于EF的长为半径作弧, 两弧在∠CBA内交于点G;作射线BG交DC于点H.若AD=+1,则BH的长为 .

初三数学:投影与视图知识点归纳

初三数学:投影与视图知识点归纳

初三数学:投影与视图知识点归纳一、知识要点1、投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。

(2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线形成的投影是平行投影(parallel projection).(3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(center projection)。

(4)正投影:投影线垂直于投影面产生的投影叫做正投影。

注:物体正投影的形状、大小与它相对于投影面的位置有关。

2、三视图(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。

将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。

一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形三视图就是主视图、俯视图、左视图的总称。

(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从加速度学习网我的学习也要加速三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

二、经验之谈:多读两遍吧!有兴趣的同学可以多画图观察。

人教版初中九年级下册数学课件 《投影》投影与视图教学课件

人教版初中九年级下册数学课件 《投影》投影与视图教学课件

3、阳光下旗杆影子长5米,一会儿旗杆影子变长
了,这种现象发C生在( )。
A、上午
B、中午
C、下午
4、一天中,阳光下物体的影子B( )最短。
A、早晨
B、正午 C、傍晚
第 26 页
练所获之 理5.(2019年成都中考) 把一个正五棱柱如图摆
放,当投射线由正前方射到后方时,它的B正投
影是( )
A
.
B.
C.
中心投影
投 影
平行投 影
正投 影
投影线互相平行, 且斜着照射投影 面
探数学新
第 20 页
知如图,把一根直的细铁丝 (记为线段AB) 放在三个不同位
置. (1) 铁丝平行于投影面;(2)铁丝倾斜于投影面;
(3) 铁丝垂直于投影面 (铁丝不一定要与投影面有交 点). 三种情形下铁丝的正投影各是什么形状?
DC
AB
DC
''
β
A'
B '
第 22 页
D
A DBC C
A
B
D C D'(C
''
')
A' B A'(
' B')
理所获新 知
不同
位置 物体平行于投影
物体

物体倾斜于投影 面
物体垂直于投 影面
线段
形状、大小 不变(全等)
大小变化


形状、大小 形状、大 不变(全等) 小均变化
线
第 23 页
练所获之
理 例 画出如图摆放的正方体在投影面P上的正投
人教版数学 九年级下册
29.1 投影

北师大版九年级数学上册《投影与视图》知识点归纳

北师大版九年级数学上册《投影与视图》知识点归纳

北师大版九年级数学上册《投影与视图》知识点归纳北师大版九年级数学上册《投影与视图》知识点归纳1、投影:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影。

影子所在的平面称为投影面。

中心投影:手电筒、路灯和台灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。

平行投影:太阳光线可以看成平行的光线,平行光线所形成的投影称为平行投影。

区分平行投影和中心投影:观察光源;观察影子。

眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。

提示:点在一个平面上的投影仍是一个点;线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度。

平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状。

正投影:平行光线与投影面垂直,这种投影称为正投影。

视图:用正投影的方法绘制的物体在投影面上的图形,称为物体的视图。

在实际生活的工程中,人们通常从正面、左面和上面三个不同方向观察一个物体,分别得到这个物体的三个视图。

这本个视图是常见的正投影,是当光线与投影垂直时的投影。

三个视图包括:主视图、俯视图和左视图。

主视图:从正面得到的视图。

反映物体的长和高俯视图:从上面视得的视图。

反映物体的长和宽左视图:从左面视得的视图。

反映物体的高和宽提示:在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。

三视图之间要保持长对正,高平齐,宽相等。

一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。

视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。

在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。

九年级数学投影和视图知识点

九年级数学投影和视图知识点

九年级数学投影和视图知识点随着科技的发展和社会的进步,我们生活中的许多事物都跟几何形体有关。

为了更好地理解和描述这些物体,我们需要掌握一些数学知识,尤其是关于投影和视图的概念。

一、什么是投影?投影是指将三维空间中的物体沿某个方向投射到二维平面上的过程。

在实际生活中,我们可以用手机或相机拍摄照片,也可以用幻灯机或投影仪将图片或视频投射到屏幕上,这些都是投影。

那么,如何计算物体的投影呢?首先,我们要确定投影的方向和投影面。

然后,通过与投影面垂直的直线或射线与物体的交点,就可以确定物体的投影。

二、什么是正投影和斜投影?在正投影中,物体与投影面垂直,也就是说,投影是垂直于投影面的。

这种投影形式常常出现在我们的日常生活中,比如我们站在墙前,头上的阴影就是一种垂直投影。

而在斜投影中,物体与投影面不垂直,投影是倾斜的。

这种投影形式更贴近我们在屏幕上所看到的图像,比如电视、电影中的画面,都是通过斜投影来展示的。

三、什么是视图?视图是指通过某种角度观察物体所得到的结果。

我们可以从不同的角度观察同一个物体,得到不同的视图。

常见的视图有正视图、侧视图和俯视图。

正视图是指从物体的正面观察,得到的视图。

正视图可以清楚地看到物体的正面形状和细节。

侧视图是指从物体的侧面观察,得到的视图。

侧视图可以清楚地看到物体的侧面形状和细节。

俯视图是指从物体的上方俯视,得到的视图。

俯视图可以清楚地看到物体的顶部形状和细节。

四、如何绘制视图?为了正确地绘制视图,我们需要了解物体的投影。

以正视图为例,可以从俯视图中获取物体在平面上的投影形状和尺寸,然后根据这些投影进行绘制。

首先,我们可以在平面上绘制出物体的投影。

然后,根据投影的形状和尺寸,再根据一定的比例关系,绘制出物体的正面形状和细节。

绘制侧视图和俯视图的方法与此类似,只需根据不同的视角和投影,绘制出对应的视图即可。

五、为什么学习投影和视图?学习投影和视图的目的是为了更好地理解和描述三维空间中的物体。

新人教版初中数学——视图与投影-知识点归纳及中考典型题解析

新人教版初中数学——视图与投影-知识点归纳及中考典型题解析

新人教版初中数学——视图与投影知识归纳及中考典型题解析一、投影1.投影在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图(1)主视图:从正面看得到的视图叫做主视图.(2)左视图:从左面看得到的视图叫做左视图.(3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法(1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.(2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图在判断几何体的三视图时,注意以下两个方面:(1)分清主视图、左视图与俯视图的区别;(2)看得见的线画实线,看不见的线画虚线.典例1【广西壮族自治区南宁市2019–2020学年七年级上学期期末数学试题】如图是从不同方向看某一几何体得到的平面图形,则这个几何体是A.圆锥B.长方体C.球D.圆柱【答案】D【解析】∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选D.【名师点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.1.如图所示的几何体的俯视图是A.B.C.D.考向二几何体的还原与计算解答此类问题时,首先要根据三视图还原几何体,再根据图中给出的数据确定还原后的几何体中的数据,最后根据体积或面积公式进行计算.典例2如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是A.B.C.D.【答案】D【解析】如图,左视图如下:,故选D.2.某一几何体的三视图均如图所示,则搭成该几何体的小正方体的个数为A.9 B.5C.4 D.33.如图是一零件的三视图,则该零件的表面积为A.15πcm2B.24πcm2C.51πcm2D.66πcm2考向三投影1.根据两种物体的影子判断其是在灯光下还是在阳光下的投影,关键是看这两种物体的顶端和其影子的顶端的连线是平行还是相交,若平行则是在阳光下的投影,若相交则是在灯光下的投影.2.光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终在物体的两侧.3.物体的投影分为中心投影和平行投影.典例3如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是A.①②③④B.④③②①C.④③①②D.②③④①【答案】C【解析】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②,故选C.【名师点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西–西北–北–东北–东”,是解题的关键.4.小明在太阳光下观察矩形木板的影子,不可能是A.平行四边形B.矩形C.线段D.梯形考向四立体图形的展开与折叠正方体展开图口诀:正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻.典例4如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是A.标号为2的顶点B.标号为3的顶点C.标号为4的顶点D.标号为5的顶点【答案】D【解析】根据正方体展开图的特点得出与标号为1的顶点重合的是标号为5的顶点.故选D.5.如图所示正方体的平面展开图是A.B.C.D.1.如图所示几何体的主视图是A.B.C.D.2.如图的几何体是由五个相同的小正方体组合面成的,从左面看,这个几何体的形状图是A.B.C.D.3.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是A.③—④—①—②B.②—①—④—③C.④—①—②—③D.④—①—③—②4.如图,某一时刻太阳光下,小明测得一棵树落在地面上的影子长为2.8米,落在墙上的影子高为1.2米,同一时刻同一地点,身高1.6米他在阳光下的影子长0.4米,则这棵树的高为A.6.2米B.10米C.11.2米D.12.4米5.如图,(1)是几何体(2)的___________视图.6.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,那么这个长方体的体积等于__________.7.如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是__________.8.一个几何体由12个大小相同的小正方体搭成,从上面看到的这个几何体的形状图如图所示,若小正方形中的数字表示在该位置小正方体的个数,则从正面看,一共能看到________个小正方体(被遮挡的不计).9.画出如图所示物体的主视图、左视图、俯视图.10.【山东省威海市乳山市2019–2020学年九年级上学期期末数学试题】数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.1.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为A.B.C.D.2.某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是A.B.C.D.3.如图是一个几何体的三视图,则这个几何体是A.三棱锥B.圆锥C.三棱柱D.圆柱4.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为A.B.C.D.5.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是A.B.C.D.6.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同7.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x8.如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.9.下列四个几何体中,主视图为圆的是A.B.C.D.10.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是A.B.C.D.11.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变12.某个几何体的三视图如图所示,该几何体是A.B.C.D.13.下列哪个图形是正方体的展开图A.B.C.D.14.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是A.B.C.D.15.在如图所示的几何体中,其三视图中有矩形的是_________.(写出所有正确答案的序号)16.如图是一个多面体的表面展开图,如果面F 在前面,从左面看是面B ,那么从上面看是面__________.(填字母)17.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为__________.1.【答案】D【解析】根据题意得:几何体的俯视图为,故选C .【名师点睛】此题考查了简单组合体的三视图,熟练掌握几何体三视图的画法是解本题的关键.2.【答案】C【解析】从主视图看第一列有两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列有一个,说明俯视图中的右边一列有一个正方体,所以此几何体共有4个正方体.故选C.3.【答案】B【解析】由三视图知,该几何体是底面半径为3cm、高为4cm的圆锥体,则该圆锥的母线长为(cm),∴该零件的表面积为π•32+12•(2π•3)•5=9π+15π=24π(cm2),故选B.4.【答案】D【解析】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选D.【名师点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.5.【答案】B1.【答案】C【解析】从正面看,共有两列,第一列有两个小正方形,第二列有一个小正方形,在下方,只有选项C符合,故答案选择C.【名师点睛】本题考查的是三视图,比较简单,需要熟练掌握三视图的画法.2.【答案】D【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D【名师点睛】本题考查了简单几何体的三视图,从左边看得到的图是左视图.3.【答案】B【解析】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边;影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案,故选B【名师点睛】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键.4.【答案】D【解析】设从墙上的影子的顶端到树的顶端的垂直高度是x米,则1.60.4 2.8x,解得:x=11.2,所以树高=11.2+1.2=12.4(米),故选D.【名师点睛】本题考查的是投影的知识,解本题的关键是正确理解题意、根据同一时刻物体的高度与其影长成比例求出从墙上的影子的顶端到树的顶端的垂直高度.5.【答案】俯【解析】在图中(1)是几何体(2)的俯视图.6.【答案】24cm3【解析】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故答案为:24cm3.7.【答案】园【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“创”与“园”是相对面.8.【答案】8【解析】一共看到的图形是3列,左边一列看到3个,中间一列看到2个,右边一列看到3个.则一共能看到的小正方体的个数是:3+2+3=8.故答案为:8.9.【解析】主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,据此画出看到的图形如图所示.10.【答案】3.45米【解析】延长DH交BC于点M,延长AD交BC于N.可求 3.4BM =,0.9DM =. 由1.50.92MN =,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=. 由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为3.45米.【名师点睛】考核知识点:平行投影.弄清平行投影的特点是关键.1.【答案】A【解析】它的俯视图为,故选A .【名师点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键. 2.【答案】B【解析】从正面看去,一共两列,左边有2竖列,右边是1竖列.故选B .【名师点睛】本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力. 3.【答案】B【解析】由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选B .【名师点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 4.【答案】D【解析】从上面看可得四个并排的正方形,如图所示:,故选D .【名师点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 5.【答案】B【解析】该几何体的左视图只有一列,含有两个正方形.故选B .【名师点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.6.【答案】C【解析】图①的三视图为:图②的三视图为:,故选C.【名师点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.7.【答案】A【解析】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选A.【名师点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.8.【答案】C【解析】几何体的主视图为:,故选C.【名师点睛】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.9.【答案】D【解析】A.主视图为正方形,不合题意;B.主视图为长方形,不合题意;C.主视图为三角形,不合题意;D.主视图为圆,符合题意,故选D.【名师点睛】此题考查了简单几何体的三视图,解决此类图的关键是由三视图得到立体图形.10.【答案】C【解析】几何体的俯视图是:,故选C.【名师点睛】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.11.【答案】A【解析】将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,故选A.【名师点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.12.【答案】D【解析】由三视图可知:该几何体为圆锥.故选D.【名师点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.13.【答案】B【解析】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【名师点睛】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.14.【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选B.【名师点睛】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.15.【答案】①②【解析】长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【名师点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.16.【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.【名师点睛】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.17.【答案】cm2【解析】该几何体是一个三棱柱,底面等边三角形的边长为2 cm,三棱柱的高为3,所以其左视图的面积为cm2),故答案为cm2.【名师点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.①
B.②
C.③
D.④
图1 图2
(一) 2016中考真题
3.(2016凉山州)如图,是由若干个大小相同的 正方体搭成的几何体的三视图,该几何体所 用的正方体的个数是( A )
A.6
B.4
C.3
D.2
(一) 2016中考真题
4.(2016自贡)如图是几何体的俯视图,所表示数 字为该位置小正方体的个数,则该几何体的主 视图是图中的( B )
返回
(三) 中考题型突破
题组一 几何体的三视图
1. (2016扬州)图2中,不是如图1所示几何体的主视图、左视
图、俯视图之一的是( A )
图1
图2
(三) 中考题型突破
2.(2016西宁二模)如图所示的两个几何体都是由若干 个相同的小正方体搭成的,在它们的三视图中, 相同的视图是( B ) A.主视图 B.左视图 C.俯视图 D.三视图
(一) 2016中考真题
2016中考真题
1.(2016襄阳)一个几何体的三视图如图所示, 则这个几何体是( D )
A.球体 C.棱柱
B.圆锥 D.圆柱
(一) 2016中考真题
2. (2016河北)图1和图2中所有的正方形都全等,将图1
的正方形放在图2中的①②③④某一位置,所组成的
图形不能围成正方体的位置是( A)
第七单元 图形的变化
第28课时 视图与投影
2016中考真题 中考考点梳理 中考题型突破
第一部分 教材知识梳理
中考考点梳理
考点1 投影
考点2 几何体的三
视图
考点3 立体图形的 展开与折叠
温馨提示:点击文字链接进入
第一部分 教材知识梳理
中考题型突破
题组一
几何体的三 视图
题组二 几何体的展 开与折叠
温馨提示:点击文字链接进入
叫做物体的一个视图
主视 在正面内由__前__向__后__观察物体所得到的视图叫

做主视图
左视 在侧面内由_左__向__右___观察物体所得到的视图叫

做左视图
俯视 在水平面内由__上__向__下__观察物体所得到的视图

叫做俯视图
(二) 中考考点梳理
2.三种视图的关系 (1)主视图可反映出物体的长和高,俯视图可反映出物
(三) 中考题型突破
规律点拨
当某个几何体是由若干个完全相同的小正方体 搭建而成时,根据其视图猜想该几何体的形状时,其 思路可简记为:俯视图打基础,主视图疯狂盖,左视 图拆违章.
返回
(三) 中考题型突破
题组二 几何体的展开与折叠
1. (2016连云港)如图是一个正方体的平面展开图,把 展开图折叠成正方体后,“美”字一面相对面上的 字是( D ) A.丽 B.连 C.云 D.港
“1”与“6”相对 “2”与“4”相对 “3”与“5”相对
“1”与“5”相对 “2”与“4”相对 “3”与“6”相对
(二) 中考考点梳理
续表: (3)“二二二”型:
(4)“三三”型:
“1”与“4”相对 “2”与“5”相对 “3”与“6”相对
“1”与“3”相对 “2”与“5”相对 “4”与“6”相对
返回
(二) 中考考点梳理
考点1 投影
平行投 由平行光线照射在物体上所形成的投影,叫

做平行投影
投影线垂直于投影面时产生的投影叫做正投
正投影

中心投 由同一点发出的光线照射在物体上所形成的

投影,叫做中心投影
返回
(二) 中考考点梳理
考点2 几何体的三视图
1.视图与几何体三视图的概念
从某一角度观察一物体时,所看到的平面图形 视图
几何体
主视图
左视图
俯视图
返回
(二) 中考考点梳理考点3 Nhomakorabea立体图形的展开与折叠
1.常见几何体的展开图
几何体
展开图
图示(选其一种)
两个_圆___和一个_矩__形__
一个_圆___和一个_扇__形__
两个全等的三角形和三 个矩形
(二) 中考考点梳理
2.正方体表面展开图的类型 (1)“一四一”型:
(2)“一三二”型:
(三) 中考题型突破
正方体的表面展开图,相对的面之间一定相隔一 个正方形,“美”与“港”是相对面,“丽”与“连” 是相对面,“的”与“云”是相对面.
(三) 中考题型突破
2.(2016承德一模)如图1所示的正方体盒子外表面上 画有3条粗黑线,将这个正方体盒子的表面展开 (外表面朝上),展开图可能是图2中的( D )
体的长和宽,左视图可反映出物体的高和宽. (2)在画三视图时,主、俯视图要__长__对__正__,主、左视
图要__高__平__齐__,俯、左视图要__宽__相__等__,看得见部 分的轮廓线要画成__实__线__,看不见部分的轮廓线要 画成__虚__线__.
(二) 中考考点梳理
3.常见几何体的三视图
图1 图2
(三) 中考题型突破
方法点拨
识别几何体的展开图的一般方法: (1)首先要掌握立体图形的组成,有几条棱,几个面; (2)寻找相邻的面来确定立体图形的组成特征; (3)画出平面图形求解.
第一部分 教材知识梳理
温馨提示: 请完成《练测考》P187习题.
相关文档
最新文档