多层片式陶瓷电容器..

合集下载

片式多层陶瓷电容器使用规范

片式多层陶瓷电容器使用规范
1.范围:
此规格书适用于下列规格的片式多层陶瓷电容器(英文缩写 MLCC):
C0603NPO301J500NT
2. 产品的型号规格:
C 0603 ┬┬ ①①
NPO ┬ ③
301 J ┬┬ ④④
500 N T ┬ ┬┬ ⑥⑦⑧
① C:
表示片式多层陶瓷电容器;
① 0603: 表示产品的尺寸规格;
③ NPO: 表示介质的温度特性;
1
3. 技术规格和试验方法:
3.1 外观:
3.1.1 要求: 瓷体和端电极无明显伤痕。 3.1.2 试验方法: 在 10 倍显微镜下目测。
3.2 尺寸规格:
3.2.1 要求: 产品的外形和尺寸应符合图 1 及表 1 的要求。 3.2.2 试验方法:使用精度不低于 0.01 mm 的量具测量。
3.3 工作环境:
外观: 无可见损伤。 容量变化:
NP0(C0G、C0H): ∆C/C≤±5%
损耗角正切 (tgδ):
NP0(C0G、C0H): tgδ≤20×10-4
绝缘电阻 (Ri):
NP0(C0G、C0H): Ri≥2500MΩ
外观: 无可见损伤。 容量变化:
NP0(C0G、C0H): ∆C/C≤±7.5%
损耗角正切(tgδ):
4. 包装、运输、贮存: 4.1 包装:
4.1.1 包装类型: 带式包装(标准载带圆盘包装)。
标准编带包装每盘: 0603 产品为 4,000 粒。 第一次包装:每 5 盘装入 1 纸盒(0603 产品共计 20,000 粒) 第二次包装:将第一次包装好的包装盒装入纸质包装箱,每个纸箱最多装 12 盒(0603 产品总计 240,000 粒),箱内剩余空隙部位用轻质辅材填满。 以上包装形式亦可根据用户需要包装。

什么是多层片式瓷介电容器((MLCC)

什么是多层片式瓷介电容器((MLCC)

什么是多层片式瓷介电容器((MLCC)
多层瓷介电容器(MLCC)---简称片式电容器,是由印好电极(内电极)的陶
瓷介质膜片以错位的方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在
芯片的两端封上金属层(外电极),从而形成一个类似独石的结构体,故也叫
独石电容器。

片式电容器除有电容器“隔直通交”的通性特点外,其还有体积小,比容大,寿命长,可靠性高,适合表面安装等特点。

•随着世界电子行业的飞速发展,作为电子行业的基础元件,片式电容器也以惊人的速度向前发展,•
每年以10%~15%的速度递增。

目前,世界片式电容的需求量在2000 亿支以上,70%出自日本,其次是欧美和东南亚(含中国)。

随着片容产品可靠性和集成度的提高,其使用的范围越来越广,•广泛地应用于各种军民用电子整机和电子设备。

如电脑、电话、程控交换机、精密的测试仪器、雷达通信等。

片式电容器的基本结构简单的平行板电容器的基本结构是由一个绝缘的中间
介质层加外两个导电的金属电极,基本结构如下:
因此,多层片式陶瓷电容器的结构主要包括三大部分:陶瓷介质,金属内电极,金属外电极。

而多层片式陶瓷电容器它是一个多层叠合的结构,简单地说
它是由多个简单平行板电容器的并联体。

图3-实物结构图
片式电容的发展趋势
为了满足电子整机不断向小型化、大容量化、•高可靠性和低成本的方向发展。

多层片式电容器也随之迅速向前发展:种类不断增加,•体积不断缩小,性能不断提高,技术不断进步,材料不断更新,•轻薄短小系列产品已趋向于。

MLCC片式多层陶瓷电容器工艺技术(doc 35页)

MLCC片式多层陶瓷电容器工艺技术(doc 35页)
▉ MLCC 的分类: 根据所采用陶瓷介质材料的类型,MLCC 可划分为两大类: 1 类陶瓷介质 MLCC 具有极高的稳定性,其电容量几乎不随时间、交流信号、外加直流偏压的变 化而改变,同时具有极低介质损耗,即高 Q 值。适用于对容量精度和应用频 率要求较高的谐振电路。根据电容量的温度系数又可分为温度稳定型与温度 补偿型两种。、 2 类陶瓷介质 MLCC
C = εr×ε0×A×n / T
The rated voltage depends on the structure of the device, the thickness and strength of the dielectric Figure 1 shows the structure of a multi-layer capacitor.
General Introduction Multi-layer ceramic chip capacitor is a kind of ceramic dielectric capacitor with small size, high capacitance per volume, high accuracy, suited surface mounted technology (SMT). It is widely used in electronic circuitry, mounted printed circuit board, and hybrid IC. These different functions require specific capacitor properties.
MLCC 片式多层陶瓷电容器工艺 技术(doc 35 页)
简介 Brief Introduction
▉ MLCC 简介: 片式多层陶瓷电容器(MLCC)是适合于表面贴装技术(SMT)的小尺寸、

多层陶瓷片式电容

多层陶瓷片式电容

多层陶瓷片式电容多层陶瓷片式电容是一种常用的电子元件,广泛应用于电子设备中。

它具有体积小、容量大、质量轻、稳定性好等特点,被广泛应用于通信、计算机、汽车、医疗等领域。

本文将从多层陶瓷片式电容的结构、工作原理、特点及应用等方面进行介绍。

多层陶瓷片式电容由许多薄片状的陶瓷层和金属电极交替堆叠而成。

这些陶瓷层通常由氧化铁、氮化铁、氧化锆等材料制成,而金属电极则由铜、铝等导电材料制成。

这种层叠结构使得多层陶瓷片式电容能够在相对较小的体积中实现较大的电容量。

多层陶瓷片式电容的工作原理是基于电容器的原理。

当电容器两端施加电压时,金属电极上的电子会被电场作用而移动,形成电流。

而陶瓷层则起到绝缘的作用,阻止电流的流失。

由于多层陶瓷片式电容中陶瓷层的数量较多,因此电容量较大。

多层陶瓷片式电容具有许多特点。

首先,它具有良好的温度稳定性和频率特性,能够在不同的温度和频率下保持较稳定的电容值。

其次,多层陶瓷片式电容的损耗角正切值较小,能够提供较低的功率损耗。

此外,它还具有较高的绝缘电阻和较低的介质损耗,能够有效防止电流泄漏和能量损耗。

多层陶瓷片式电容在各个领域都有广泛的应用。

在通信领域,它常被用于电路板上的滤波器、耦合器等电子元件中,用于滤除噪声和提高信号质量。

在计算机领域,多层陶瓷片式电容被广泛应用于内存模块中,用于存储和传输数据。

在汽车领域,它常被用于汽车电子系统中,如发动机控制单元、车载娱乐系统等,用于提供稳定的电源和信号传输。

在医疗领域,多层陶瓷片式电容被应用于医疗设备中,如心脏起搏器、血压监测器等,用于提供稳定的电源和信号传输。

多层陶瓷片式电容是一种重要的电子元件,具有体积小、容量大、质量轻、稳定性好等特点。

它在通信、计算机、汽车、医疗等领域有广泛应用。

随着科技的不断进步,多层陶瓷片式电容的性能将进一步提高,应用领域也将更加广泛。

我们相信,在未来的发展中,多层陶瓷片式电容将发挥更大的作用,为人们的生活带来更多的便利和创新。

片式多层陶瓷电容器简介介绍

片式多层陶瓷电容器简介介绍

应用领域
通信设备
用于信号处理、滤波、去耦等电路中,提高 信号质量。
汽车电子
用于汽车发动机控制、安全气囊等汽车电子 系统中。
消费电子
广泛用于智能手机、平板电脑、数码相机等 电子产品中。
工业控制
用于工业自动化设备、电机驱动控制等电路 中。
02
片式多层陶瓷电容器的制造工 艺
片式多层陶瓷电容器的制造工艺
智能化与自动化
随着智能化和自动化技术的不断 发展,片式多层陶瓷电容器的生 产工艺也在不断改进,提高生产 效率和产品质量。
技术挑战与解决方案
技术挑战
片式多层陶瓷电容器的技术挑战主要 包括提高性能、减小体积、降低成本 等方面。
解决方案
针对这些挑战,企业可以通过研发新 材料、优化生产工艺、提高生产效率 等方式来应对。同时,加强与高校、 科研机构的合作也是解决技术难题的 重要途径。
它利用陶瓷介质的高介电常数特性,实现小型化、高容量的电容器。
特性
高容值
由于采用多层叠加结构,片式 多层陶瓷电容器的容值较高。
小型化
体积小巧,有利于电子设备的 小型化和集成化。
高频特性好
具有较低的等效串联电阻(ESR )和等效串联电感(ESL),适 用于高频电路。
可靠性高
经过严格的质量控制和可靠性 测试,具有较长的使用寿命。
• 片式多层陶瓷电容器(MLCC)是一种电子元件,广泛应用于各类电子设备中,具有小型化、高性能、高可靠性的特点。 MLCC由多层陶瓷介质和金属电极叠合而成,具有高介电常数、低损耗、温度稳定性好等优点。
03
片式多层陶瓷电容器的性能参 数
片式多层陶瓷电容器的性能参数
• 片式多层陶瓷电容器(MLCC)是一种电子元件,广泛应 用于各类电子设备中,作为微型、高精度、高可靠性的电 容元件。它由多层陶瓷介质和金属电极叠加而成,具有体 积小、容量大、成本低、一致性好等优点。

MLCC—搜狗百科

MLCC—搜狗百科

MLCC—搜狗百科 MLCC是⽚式多层陶瓷电容器英⽂缩写.(Multi-layer ceramic capacitors)⼀、瓷介的分类 陶瓷电容⼀般是以其温度系数作为主要分类。

Class I - ⼀类陶瓷(超稳定)EIA称之为COG 或NPO。

⼯作温度范围 -55℃~+125℃,容量变化不超过±30ppm/℃。

电容温度变化时,容值很稳定,被称作具有温度补偿功能,适⽤于要求容值在温度变化范围内稳定和⾼Q值的线路以及各种谐振线路。

Class II/III - ⼆/三类陶瓷(稳定)EIA标称的X7R表⽰温度下限为-55℃;上限温度为+125℃的⼯作温度范围内,容量最⼤的变化为 ±15%,Z5U、Y5V分别表⽰⼯作温度10~+85℃和-30~+85℃;容量最⼤变化为+22~-56%和30~82%,同属于⼆类陶瓷。

优点是体积利⽤率⾼,即在外型尺⼨相同时能提供更⾼的容值,适⽤于⾼容值和稳定性能要求不太⾼的线路。

 ⼆、瓷介代号陶瓷介质的代号是按其陶瓷材料的温度特性来命名的。

⽬前国际上通⽤美国EIA标准的叫法,⽤字母来表⽰。

常⽤的⼏种陶瓷材料的含义如下:Y5V:温度特性Y代表-25℃; 5代表+85℃;温度系数V代表-80%~+30%Z5U:温度特性Z代表+10℃; 5代表+85℃;温度系数U代表-56%~+22%X7R:温度特性X代表-55℃; 7代表+125℃温度系数R代表 ± 15%NP0:温度系数是30ppm/℃(-55℃~+125℃)三、⼀般电性能1、介电常数不同介质的类别有不同的表现效果。

环境因素,包括温度、电压、频率和时间(⽼化),对不同介质的电容有不同的影响。

介质常数(K值)越⾼,稳定性能、可靠性能和耐⽤性能便越差。

现代多层陶瓷电容器介质最常⽤有以下三类。

· COG或NPO(超稳定) K值10~100· X7R(稳定)K值2000~4000· Y5V或Z5U(⼀般⽤途)K值5000~250002、绝缘电阻(IR)即介质直流电阻,通常测量⽅法是以额定电压将电容充电⼀分钟,电容充电以后测量其漏电电流。

多层陶瓷片电容器说明书

多层陶瓷片电容器说明书

1. ScopeThis specification is applied to Multilayer Ceramic Chip Capacitor(MLCC) for use in electric equipment for the voltage is ranging from 4V to 50V.The series suitable for general electrics circuit, telecommunications, personal computers and peripheral, power circuit and mobile application. (This product is compliant with the RoHS & HF.)2. Parts Number Code3. Nominal Capacitance and Tolerance3.1 Standard Combination of Nominal Capacitance and ToleranceClass CharacteristicTolerance Nominal CapacitanceⅡX5RK (± 10.0 %)E-3, E-6 series3.2 E series(standard Number) Standard No.Application CapacitanceE- 3 1.02.24.7E- 6 1.0 1.52.23.34.76.8E-12 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 E-241.0 1.2 1.5 1.82.2 2.73.3 3.94.75.66.8 8.2 1.1 1.31.62.02.43.0 3.64.35.16.27.5 9.14. Operation Temperature RangeClassCharacteristic Temperature Range Reference Temp.Ⅱ X5R (B)-55 ~ +85℃℃25℃5. Storage ConditionStorage Temperature :5 to 40℃ Relative Humidity :20 to 70 % (1) (2) (3) (4) (5)(6)(7)(6)Rated VoltageCode Rated Voltage (Vdc)01616(1)ProductProduct Code C Multilayer Ceramic Chip Capacitor (3)Temperature CharacteristicsCode Temperature CharacteristicTemperature Range TemperatureCoefficientB X5R -55℃~+85℃ ± 15%(4)Capacitance unit :pico farads(pF) Code Nominal Capacitance (pF) 104 100,000.0※. If there is a decimal point, it shall be expressed by an English capital letter R(5)Capacitance ToleranceCode Tolerance Nominal Capacitance K± 10.0 %More Than 10 pF(7)TappingCode Type TTape & Reel(2)Chip Size Code Length×Width unit : mm(inch)02010.60× 0.30 (.024× .011)(8)(9)(8)ThicknessCode Thickness T (mm)S0.30±0.03(9)Special CodeCode TypeFSpecial Code6. Dimensions6.1 Configuration and Dimension :Unit:mmTYPE LW TB (min)BW (min) 02010.60± 0.030.30± 0.030.30± 0.030.200.106.2 Termination Type :External Electrodes BarrierInner ElectrodesPolymer Electrodes (If applicable)7. PerformanceFig.1P.C. Board for Bending Strength TestMaterial : Glass Epoxy Substrate: Solder ResistTest SubstrateMaterial : Glass Epoxy Substrate: Copper (Thickness : 0.035mm)Thickness : 1.6 mmUnit:mmType A B C 0201 0.2 0.9 0.4 0402 0.5 1.5 0.6 0603 1.0 3.0 1.0 0805 1.2 4.0 1.6 1206 2.2 5.0 2.0 1210 2.2 5.0 2.9 1808 3.5 7.0 2.5 1812 3.5 7.0 3.7 2208 4.5 8.0 2.5 2211 4.5 8.0 3.0 22204.58.05.68. Packing8.1 Bulk PackingAccording to customer request. 8.2 Chip Capacitors Tape Packing8.3 Material And QuantityTape Material 0201 0402 0603/0805 ≦T 0.33mm ≦T 0.55mm ≦T 1.00mm T >1.00mm Paper 15,000 pcs/Reel 10,000 pcs/Reel 4,000 pcs/Reel NAPlasticNA NA NA 3,000 pcs/ReelTape Material 1206≦T 1.00mm 1.00mm <≦T 1.25mmT >1.25mmPaper 4,000 pcs/ReelNANAPlastic NA3,000 pcs/Reel 2,000 pcs/ReelTape Material 1812/2211/2220 1825/2225 2208 T ≦2.20mm T >2.20mm T ≦2.20mm T >2.20mm T ≦2.20mm Paper NA NA NA NANAPlastic 1,000 pcs/Reel 700 pcs/Reel 700 pcs/Reel400 pcs/Reel 1,000 pcs/Reel NA :Not Available8.4 Cover Tape Reel Off Force8.4.1 Peel-Off Force5 g·≦f Peel-≦Off Force 70 g·f 8.4.2 Measure MethodTape Material 1808/1210≦T 1.25mm1.25mm <≦T2.40mmT >2.40mmPaper NANANAPlastic 3,000 pcs/Reel1,000/2,000 pcs/Reel500/1,000 pcs/Reel8.5 Paper TapeUnit:mm8.6 Plastic TapeUnit:mm TYPE A B C DE 0201 0.37± 0.1 0.67± 0.1 4.00± 0.1 2.00± 0.052.00± 0.10402 0.61± 0.1 1.20± 0.1 0603 1.10± 0.2 1.90± 0.2 4.00± 0.10805 1.50± 0.2 2.30± 0.2 1206 1.90± 0.2 3.50± 0.2 1210 2.90± 0.2 3.60± 0.2 TYPE FG H It0201 1.75± 0.103.50± 0.058.0± 0.30 φ1.50 +0.10/-0 1.10 max.0402 0603 0805 1206 1210Type A B C D E F 0805 1.5±0.2 2.3±0.2 4.0± 0.12.0± 0.054.0± 0.11.75± 0.11206 1.9±0.2 3.5±0.2 1210 2.9±0.2 3.6±0.2 1808 2.5±0.2 4.9±0.2 1812 3.6±0.2 4.9±0.2 8.0± 0.11825 6.9±0.2 4.9±0.2 2208 2.5±0.2 6.1±0.2 2211 3.2±0.2 6.1±0.2 2220 5.4±0.2 6.1±0.2 22256.9±0.26.1±0.28.7 Reel DimensionsReel Material :PolystyreneType G H IJ t O 0805 3.5± 0.058.0± 0.3φ1.5+0.1/-03.0 max.0.3 max.1.0± 0.11206 1210 1808 5.5± 0.05 12.0 ± 0.3 4.0 max. 1.5± 0.11812 1825 2208 2211 2220 2225Type AB C DE W 0201 φ382 max φ50 min φ13± 0.5φ21± 0.82.0±0.510± 0.150402 0603 0805 1206 1210 1808 φ178±2.0 φ60±2.0 13±0.31812 1825 2208 2211 2220 2225Unit:mmPrecautionary Notes:1. StorageStore the capacitors where the temperature and relative humidity don’t exceed 40°C and 70%RH. Werecommend that the capacitors be used within 12 months from the date of manufacturing. Store the products in the original package and do not open the outer wrapped, polyethylene bag, till just before usage. If it is open, seal it as soon as possible or keep it in a desiccant with a desiccation agent.2. Construction of Board PatternImproper circuit layout and pad/land size may cause excessive or not enough solder amount on the PC board. Not enough solder may create weak joint, and excessive solder may increase the potential of mechanical or thermal cracks on the ceramic capacitor. Therefore we recommend the land size to be as shown in the following table: 2.1 Size and recommend land dimensions for reflow soldering2.2 Mechanical strength varies according to location of chip capacitors on the P .C. board.Design layout of components on the PC board such a way to minimize the stress imposed on the components, upon flexure of the boards in depanelization or other processes.Component layout close to the edge of the board or the “depanelization line” is not recommended. Susceptibility to stress is in the order of: a>b>c and d>eEIA Code Chip (mm) Land (mm) L W A B C D E 0201 0.60 0.30 0.2~0.3 0.2~0.4 0.2~0.4 -- -- 0402 1.00 0.50 0.3~0.5 0.3~0.5 0.4~0.6 -- -- 0603 1.60 0.80 0.4~0.6 0.6~0.7 0.6~0.8 -- -- 0805 2.00 1.25 0.7~0.9 0.6~0.8 0.8~1.1 -- -- 1206 3.20 1.60 2.2~2.4 0.8~0.9 1.0~1.4 1.0~2.0 3.2~3.7 1210 3.20 2.50 2.2~2.4 1.0~1.2 1.8~2.3 1.0~2.0 4.1~4.6 1808 4.60 2.00 2.8~3.4 1.8~2.0 1.5~1.8 1.0~2.8 3.6~4.1 1812 4.60 3.20 2.8~3.4 1.8~2.0 2.3~3.0 1.0~2.8 4.8~5.3 1825 4.60 6.35 2.8~3.4 1.8~2.0 5.1~5.8 1.0~4.0 7.1~8.3 2208 5.70 2.00 4.0~4.6 2.0~2.2 1.5~1.8 1.0~4.0 3.6~4.1 2211 5.70 2.80 4.0~4.6 2.0~2.2 2.0~2.6 1.0~4.0 4.4~4.9 2220 5.70 5.00 4.0~4.6 2.0~2.2 3.5~4.8 1.0~4.0 6.6~7.1 2225 5.70 6.354.0~4.62.0~2.2 5.1~5.8 1.0~4.07.1~8.32.3 Layout Recommendation3. Mounting3.1 Sometimes crack is caused by the impact load due to suction nozzle in pick and place operation.In pick and place operation, if the low dead point is too low, excessive stress is applied to component. This maycause cracks in the ceramic capacitor, therefore it is required to move low dead point of a suction nozzle to the higher level to minimize the board warp age and stress on the components. Nozzle pressure is typically adjusted to 1N to 3N (static load) during the pick and place operation.3.2 Amount of Adhesivea0.2mm min. b 70 ~ 100 µm cDo not touch the solder landExample : 0805 & 12064. Soldering4.1. Wave SolderingMost of components are wave soldered with solder at Peak Temperature.. Adequate care must be taken to prevent the potential of thermal cracks on the ceramic capacitors. Refer to the soldering methods below for optimum soldering benefits.Recommend flow soldering temperature ProfileRecommended solder compositions Sn-37Pb (Pb - Sn Solder)Sn-3.0Ag-0.5Cu (Lead Free Solder)To optimize the result of soldering, proper preheating is essential: 1) Preheat temperature is too lowa. Flux flows to easilyb. Possibility of thermal cracks2) Preheat temperature is too higha. Flux deteriorates even when oxide film is removedb. Causes warping of circuit boardc. Loss of reliability in chip and other componentsCooling Condition:Natural cooling using air is recommended. If the chips are dipped into a solvent for cleaning, the temperature difference (ΔT) between the solvent and the chips must be less than 100°C.4.2 Reflow SolderingPreheat and gradualincrease in temperature to the reflow temperature is recommended to decrease the potential of thermal crack on the components. The recommended heating rate depends on the size of component, however it should not exceed 3°C/Sec.Recommend reflow profile for Lead-Free soldering temperature Profile (J-STD-020D)Soldering Method Change in Temp.( )℃1206 and Under Δ≦T 190 ℃1210 and Over Δ≦T 130 ℃Soldering Method Peak Temp.( ℃) / Duration (sec)1206 and Under ∆T ≤ 100~130 max. Pb-Sn Solder 250℃(max.) / 3sec(max.) Lead Free Solder 260℃(max.) / 5sec(max.) ※ The cycles of soldering : Twice (max.)Soldering T e m p e r a t u r e (°C )T e m p e r a t u r e (°C )4.3 Hand SolderingSudden temperature change in components, results in a temperature gradient recommended in the following table, and therefore may cause internal thermal cracks in the components. In general a hand soldering method is not recommended unless proper preheating and handling practices have been taken. Care must also be taken not to touch the ceramic body of the capacitor with the tip of solder Iron.Soldering Method Change in Temp.( )℃1206 and Under Δ≦T 150 ℃1210 and Over Δ≦T 130 ℃How to Solder Repair by Solder Iron1) Selection of the soldering iron tipThe required temperature of solder iron for any type of repair depends on the type of the tip, the substrate material, and the solder land size.2) recommended solder iron conditiona.) Preheating Condition:Board and components should be preheated sufficiently at 150°C or over,and soldering should be conducted with soldering iron as boards and components are maintainedat sufficient temperatures.b.) Soldering iron power shall not exceed 30 W.c.) Soldering iron tip diameter shall not exceed 3mm.d.) Temperature of iron tip shall not exceed 350°C to perform the process within 5 seconds.(refer to MIL-STD-202G)f.) Do not touch the ceramic body with the tip of solder iron. Direct contact of the soldering iron tip to ceramicbody may cause thermal cracks.g.) After soldering operation, let the products cool down gradually in the room temperature.5. Handling after chip mounted5.1 Proper handling is recommended, since excessive bending and twist of the board, depends on the orientationof the chip on the board, may induce mechanical stress and cause internal crack in the capacitor.Temperature(°C)200→Higher potential of crack Lower potential of crack ╳5.3 Mechanical stress due to warping a (a) Crack occurrence ratio will be in (b) Crack occurrence ratio will be in :Tensile Stress ╳6. Handling of Loose Chip Capacitor 6.1 If dropped the chip capacitor may c6.2 In piling and stacking of the P .C. bo may hit the chip capacitor mounted7. Safekeeping condition and period For safekeeping of the products, we re under humidity of 20 to 70% RH. The sing and torsion.be increased by manual separation.be increased by tensile force , rather than compressiv s○ :Compressive Stress tor may crack. .C. boards after mounting for storage or handling, the unted on another board to cause crack.we recommend to keep the storage temperature betwe The shelf life of capacitors is 12 months. ressive force.ess, the corner of the P .C. boardbetween +5 to +40°C and Crack。

中国MLCC (片式多层陶瓷电容器)的发展史

中国MLCC (片式多层陶瓷电容器)的发展史
不断改进的陶瓷技术极大地提高了电路和功能组件的高频特性。
多层陶瓷电容器(MLC)的起源可以追溯到二战期间玻璃釉电容器的诞生。由于性能优异的高频电容器与大功率发射电容器对云母介质的需求巨大,而云母矿产资源稀缺以及战争的影响,美国陆军通信部门资助DupONt公司陶瓷实验室开展了喷涂玻璃釉介质和丝网印刷银电极经叠层后共烧,再烧附端电极的独石化(Monolithic)工艺研究,并获得多项技术专利。经介质配方改进提高介电常数和降低损耗,玻璃釉电容器已完全可以取代云母电容器。
2.MLCC多次洗牌
经历了多次洗牌,日系企业仍然占据市场领先地位。
20世纪90年代中后期,日系大型MLCC制造企业全面抢滩中国市场,先后建立北京村田、无锡村田、上海京瓷、东莞太阳诱电、东莞TDK等合资或独资企业。在这期间,克服了困扰十余年的可靠性缺陷,以贱金属电极(BME)核心技术为基础的低成本MLCC开始进入商业实用化。以天津三星电机为代表的韩资企业也开始成为一支新兴力量。
新旧世纪之交,飞利浦在产业顶峰放弃并出让被动元件事业部,拉开了中国台湾岛内MLCC业界全面普及BME技术的序幕。国巨、华新、达方、天扬等台系企业的全面崛起,彻底打破了日系企业在BME制造技术的垄断,高性价比MLCC为IT与A&V产业的技术升级和低成本化作出了重大贡献。同时,台系企业开始将从后至前的各道工序制程不断向大陆工厂转移。
3.中国大陆MLCC技术获突破
大陆电容器产业现已基本实现了MLCC主流产品本地化供应局面。
在MLCC发展进程中,需特别强调的是我国大陆科技工作者的历史贡献。在二战后,前苏联研制出的与美国类似的玻璃釉电容器技术传入我国大陆,形成了一定的生产规模。为进一步改进性能,扩大产能,20世纪60年代中国大陆产业界开始尝试用陶瓷介质进行轧膜成型、印刷叠压工艺制造独石结构的瓷介电容器。为适应多层共烧工艺要求,采用传统陶瓷电容器介质材料于1300℃以上高温烧结需采用Au-Pd-Pt三元贵金属电极系统,因成本太高,仅能维持极少量军品需求。以原电子工业部7所、715厂、华南工学院等单位为龙头的若干单位,先后于1967年和1969年完成了900℃左右低温烧结的2类和1类独石瓷介电容器的研制。前者以Smolenskii首先提出的Pb(Mg1/3Nb2/3)O3为主晶相。后者包括MgO-Bi2O3-Nb2O5和ZnO-Bi2O3-Nb2O5系,以及高介大温度系数Pb(Mg1/2W1/2)O3系统。上述系统在我国大陆实现工业化生产达20年。

多层片式陶瓷电容器

多层片式陶瓷电容器

多层片式陶瓷电容器执行标准总规范:GB/T2693-2001《电子设备用固定电容器第1部分:总规范》分规范:GB/T9324-1996《电子设备用固定电容器第10部分:分规范》GB/T9325-1996《电子设备用固定电容器第10部分:空白详细规范》分类介绍a、电解质种类容量温度特性是选用电介质种类的一个重要依据。

NPO(CG):I类电介质,电气性能最稳定,基本上不随温度、电压、时间的改变;属超稳定型、低损耗电容材料类型,适用于对稳定性、可靠性要求较高的高频、特高频、甚高频的电路。

产品应用:振荡器、混频器、中频/高频/甚高频/超高频放大器、低噪声放大器、时间电路、高频滤波电路、高频耦合。

X7R(2X1):II类电介质,电气性能较稳定,随温度、电压、时间的改变,其特有性能变化并不显著,属稳定型电容材料类型,适用于隔离、耦合、旁路、滤波电路及可靠性要求较高的中高频电路。

产品应用:电源(滤波、旁路)电路、时间电路、储能电路、中频/低频放大器(隔直、耦合、阻抗匹配),高频开关电源(S.P.S)、DC/DC变换器、滤波、旁路电路、隔直、阻抗匹配电路。

Y5V(2F4):III类电介质,具有较高的介电常数,常用于生产比容比较大的、标称容量较高的大容量电容产品;由于其特有的电介质性能,因而能造出容量比NPO更大的电容器。

属低频通用型电容材料类型,由于成本较低,广泛用于对容量、损耗要求偏低的电路。

产品应用:电源滤波电路、隔直、阻抗匹配电路。

b、电容量与偏差电容量与偏差的选择取决于电路的要求,特别提示,在相同尺寸和容量规格下,偏差较大的电容器的价格相对便宜。

c、电压额定电压的选择也取决于电路本身的要求,电容的耐压虽然在设计时已有一定的安全系数,但电容器额定电压的选择仍须高于实际工作电压。

d、片状电容器的端头电极:片状电容器端头电极的选择至关重要!全银端头:生产工艺简单、成本较低,耐焊性较差、端头物理强度也低,焊接时温度要适当,焊接速度要快,否则会出现银锡熔融现象而损坏端头。

贴片叠层瓷介电容器(SMD贴片电容)详细介绍

贴片叠层瓷介电容器(SMD贴片电容)详细介绍

北京芯联科泰电子有限公司贴片叠层瓷介电容器(SMD贴片电容)详细介绍:贴片电容全称:多层(积层,叠层)片式陶瓷电容器,也称为贴片电容,片容。

英文缩写:MLCC。

基本概述贴片电容(多层片式陶瓷电容器)是目前用量比较大的常用元件,就AVX公司生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。

下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。

不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,其他公司的产品请参照该公司的产品手册尺寸贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容的系列型号有0402、0603、0805、1206、1210、1808、1812、2010、2225、2512,是英寸表示法, 04 表示长度是0.04 英寸,02 表示宽度0.02 英寸,其他类同型号尺寸(mm)英制尺寸公制尺寸长度及公差宽度及公差厚度及公差0402 1005 1.00±0.05 0.50±0.05 0.50±0.050603 1608 1.60±0.10 0.80±0.10 0.80±0.100805 2012 2.00±0.20 1.25±0.20 0.70±0.20 1.00±0.20 1.25±0.201206 3216 3.00±0.30 1.60±0.20 0.70±0.20 1.00±0.20 1.25±0.201210 3225 3.00±0.30 2.54±0.30 1.25±0.30 1.50±0.301808 4520 4.50±0.40 2.00±0.20 ≤2.001812 4532 4.50±0.40 3.20±0.30 ≤2.502225 5763 5.70±0.50 6.30±0.50 ≤2.503035 7690 7.60±0.50 9.00±0.05 ≤3.00命名贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求。

MLCC规格书

MLCC规格书

0805
2012
2.00±0.20
1206
1210 1808 1812 2220 2225
3216
3225 4520 4532 5750 5763
3.20±0.30
3.20±0.30 4.50±0.40 4.50±0.40 5.70±0.50 5.70±0.50
尺寸(mm)
W 0.30±0.03 0.50±0.05 0.80±0.10
4
6.3
10
16
1808
25
(4532)
50
100
250
500
1000
2000
3000
4000
电容量范围
---------0.5PF---33000PF 0.5PF---33000PF 0.5PF---33000PF 0.5PF---33000PF 0.5PF---12000PF 0.5PF----3300PF 0.5PF----2200PF 0.5PF---1000PF
and microwave application requiring high Q, low ESR, and high resonant frequency.
产品结构图 FORMANCE CHARACTERISTICS
产品型号代码 ORDERING CODE
常规产品代码:
例 EX: CB
① HQ 产品代码:
Page 7 of 28

常规COG产品介质电容器容值范围
材质类型
尺寸
耐压值(V)
4
6.3
10 16
25
1812
50
(4532)
100
250
500

多层片式陶瓷电容器选用得基本知识

多层片式陶瓷电容器选用得基本知识

6.MLCC 使用注意事项 检测:检测方法要正确,容量会因检测设备的不同而有偏差; 搬运与储存:注意防潮,Y5V 与 X7R 产品存放时间太长,容量变化较大。 焊接:片式瓷介电容器的端头可适用于多种焊接方法。通常推荐具有抗侵蚀的三层镀 镍阻挡层端电级;对环氧粘接,建议使用钯-银端电极。无论哪一种焊接方法均 需注意预热,尤其是对大规格产品。 清洗:焊料会一定情度影响绝缘电阻,保证清洗。
0805 2.03±0.30 1.27±0.20 1.27 1825 4.50±0.38
1206 3.20±0.30 1.52±0.25 1.52 2220 5.69±0.38
1210 3.20±0.30 2.54±0.30 1.91 2225 5.59±0.38
1808 4.50±0.38 2.13±0.30 1.78 3035 7.49±0.38
II 类介电陶瓷 X7R
Y5V(Z5U)
主要极化类型 极化率对比(є 值) 电场响应速度
离子极化
较小<100
很快
铁电畴
较大 1000~5000
较慢
铁电畴
很大>10000

内电极:它与陶瓷介质交替叠层,提供电极板正对面积; PME-Ag/Pd :主要在 X7R 和 Y5V 中高压 MLCC 产品系列中,材料成本高。 BME-Ni:目前大部分产品均为 Ni 内电极,材料成本低,但需要还原气氛烧结。
端电极: 基 层:铜金属电极或银金属电极,与内电极相连接,引出容量。 阻挡层:镍镀层,热阻挡作用,可焊的镍阻挡层能避免焊接时 Sn 层熔落。 焊接层:Sn 镀层,提供焊接金属层。
3.MLCC 的设计制造 A. 材料选用 瓷粉:它是产品质量水平高低的决定性因素,采用技术不成熟的瓷粉材料会存在重大的 质量事故隐患。 进口:北美中温烧结瓷粉、日本高温烧结瓷粉均较成熟。 国产材料:I 类低 K 值瓷粉较成熟。 三巨电子科技公司均采用美国进口瓷粉设计制造 COG、X7R 类中高压 MLCC 产品, 低压产品选用日本进口瓷粉设计制造。

多层陶瓷片式电容

多层陶瓷片式电容

多层陶瓷片式电容1. 介绍多层陶瓷片式电容是一种常见的 passives 部件,用于各种电子设备中,如电源管理、通信设备、计算机和消费类电子产品等。

本文将详细探讨多层陶瓷片式电容的结构、工作原理、特点以及在不同应用中的优势。

2. 结构2.1 外观多层陶瓷片式电容通常由多个陶瓷层和金属电极组成,外观呈矩形或方形,容量范围从几皮法拉到几微法拉不等。

其尺寸一般小于传统的电解电容器。

2.2 材料陶瓷片式电容通常由高介电常数的陶瓷材料制成,如二氧化铁、二氧化钛等。

这些材料具有优异的绝缘性能和高温稳定性,能够满足各种应用的要求。

2.3 内部结构多层陶瓷片式电容的内部结构由交替排列的陶瓷层和金属电极组成。

陶瓷层可以看作是绝缘层,而金属电极用来引导电流。

电极通过多个孔穿过陶瓷层,形成电容器的结构。

3. 工作原理多层陶瓷片式电容的工作原理基于电介质的极化现象。

当电压施加在电容器的两个不同的端口上时,陶瓷材料中的电介质会极化,导致电荷在电容器内部的陶瓷层和金属电极之间移动。

这种电荷的分布在电压变化时发生变化,从而导致电容器存储和释放电荷的能力。

4. 特点多层陶瓷片式电容具有以下一些特点: 1. 高精度:制造过程精确,使得电容器能够达到较高的精度。

2. 高频特性:陶瓷片式电容的快速响应和低失真使其在高频电路中得到广泛应用。

3. 耐高温:陶瓷材料具有很好的高温稳定性,能够在高温环境下正常工作。

4. 无极性:与电解电容器不同,多层陶瓷片式电容没有极性限制,可以在电路中的任何方向连接。

5. 应用多层陶瓷片式电容由于其优异的性能,在各种电子设备中被广泛应用,主要包括以下几个方面: 1. 电源管理:多层陶瓷片式电容被用作稳压器和滤波器,用于稳定电源电压和滤除噪声。

2. 通信设备:多层陶瓷片式电容在无线通信中扮演重要角色,例如用于滤波、解调和射频调谐等。

3. 计算机:多层陶瓷片式电容被广泛应用于计算机内存模块、主板和硬盘驱动器等电路中。

MLCC片式多层陶瓷电容器可靠性测试技术规格、测试方法资料

MLCC片式多层陶瓷电容器可靠性测试技术规格、测试方法资料

C≤10uF: 测试频率:1KHZ±10% 测试电压:1.0±0.2Vrms Test Frequency:1KHZ±10% Test Voltage:1.0±0.2Vrms
C>10uF: X7R、Y5V、X5R: 测试频率:120±24HZ 测试电压:0.5±0.1Vrms Test Frequency:120±24HZ Test Voltage:5±0.1Vrms
项目 Item
技术规格 Technical tion
测试方法 Test Method and Remarks
潮湿实验 Moidture Resistance
低压产品寿命 实验
Life Test
I 类:≤±2%或±1pF,
取两者之中较大者
II 类:X5R,X7R:≤±10%
△C/C
Y5V:≤±30% Class I:≤2%或±1pF
可焊性 Solderability
耐焊接热 Resistanceto Soldering Heat
不应有介质被击穿或损伤 No breakdown or damage.
上锡率应大于 95% 外观:无可见损伤 At least 95% of the terminal electrode is eovered by new solder. Visual Appearance:No visible damage.
抗弯曲强度 Resistance to Flexure of Substrate
(Bending Stength)
端头结合强度 Termination Adhesion
温度循环 Temperature
Cycle
△C/C
≤±12.5%
外观:无可见损伤 Appearance:No visible damage.

多层片式陶瓷电容器(MLCC)应用注意事项

多层片式陶瓷电容器(MLCC)应用注意事项
裂纹
过量焊锡产生大的张力使得 电容器断裂
最大量
过量的焊锡
适量的焊锡
最小量
强度过低会引起焊接失败 焊锡不足 或使贴片电容器从P.C板上 剥离
4.5 手工烙铁焊 1) 选择合适的烙铁头 烙铁头温度因烙铁自身类型、P.C板的材料及焊盘尺寸不同而有所不同。 烙铁头温度愈高焊接速度就愈快,但其热冲击可能会导致贴片电容器破 裂。建议以下条件: 推荐烙铁焊条件: 手工焊接方法
MLCC应用注意事项
程志秋
厦门华信安电子科技有限公司
一. MLCC及其结构
1. 什么是MLCC?
MLCC----多层片式陶瓷电容器 (Multi-Layer Ceramic Chip Capacitor)
2. MLCC的结构
贴片电阻的结构
3. MLCC的结构特点
3.1 电气性能的特点
① 无引线结构,杂散电容小、精度高; ② 无引线结构,附加电感小、工作频率高; ③ 多层叠片结构,尺寸小、容量大。
0.3~0.5 0.6~0.8 0.9~1.2 2.0~2.4 2.0~2.4 3.1~3.7
0.35~0.45
4.1~4.8
0.6~0.8 0.7~0.9 1.0~1.2 1.0~1.2 1.2~1.4 1.2~1.4
0.4~0.6 0.6~0.8 0.9~1.2 1.1~1.5 1.9~2.5 2.4~3.2
PCB设计总原则
总的原则是在设计PCB Layout时,要考虑到在贴片、焊接、分板、 测试、装配、运输等各制程中MLCC尽可能受到较小的应力作用, 确保MLCC在使用过程中不会损坏。
什么是应力?
应力定义为“单位面积上所承受的附加内力”。
为了达到以上目的,在设计PCB时,必须注意以下几个方面: ① 焊盘尺寸 ② 禁止共用焊盘 ③ MLCC的排列方向

一张图看懂片式电容器

一张图看懂片式电容器
新材料在线® 免责声明
1. 本文仅代表作者本人观点,新材料在线®对文中陈述、观点判断保持中 立,不对所包含内容的准确性、可靠性或 完整性提供任何明示或暗示 的保证。本报告内容及观点也不构成任何投资建议,报告中所引用信息 均来自公开资料,请读者仅作参考,并请自行承担全部责任。
2. 本文部分数据、图表或其他内容来源于网络或其他公开资料,版权归属 原作者、原出处所有。任何涉及商业盈利目的均不得使用,否则产生的 一切后果将由您自己承担。
国内的下降速率小于全球平均水平,中国市场具有较大的 盈利潜力。
全球MLCC平均价格(单位:美元/千只)
3.4
3.2
3.17
3.0
2.8
2.6
2.4
2.2 2011
2.99 2012
2.81 2013
2.65 2014
中国MLCC平均价格(单位:元/千只)
20
19.6
19
18.8
18
18
17.3
17
2013
2014
需求量 增长率
sources:火炬电子招股书
Copyrights © . All Rights Reserved
0192 MLCC行业利润水平及趋势分析
陶瓷电容器厂商产能的提高,工艺的成熟、成本的降低等 诸多因素的影响,MLCC的平均利润水平逐年下降。
11%
6%
6%
10%
21% 13%
20%
日本村田 韩国三星电机 TDK 台湾国巨 太阳诱电 华新科技 京瓷 达方 深圳宇阳 禾伸堂 其他
Copyrights © . All Rights Reserved
0196 国内MLCC产品厂商
军用市场:

多层片式陶瓷电容器(MLCC)的研究进展及发展趋势

多层片式陶瓷电容器(MLCC)的研究进展及发展趋势

多层片式陶瓷电容器(MLCC)的研究进展及发展趋势多层片式陶瓷电容器(MLCC)是片式元件的一个重要门类,由于具有结构紧凑、体积小、比容高、介电损耗低、价格便宜等诸多优点,被大量应用在计算机、移动电话、收音机、扫描仪、数码相机等电子产品中。

MLCC特别适合片式化表面组装,可大大提高电路组装密度,缩小整机体积,这一突出特性使MLCC成为当今世界上发展最快、用量最大的片式电子元件。

MLCC的应用领域决定了其介质材料必须具有以下性能:(1)高介电常数MLCC的比容与材料的介电常数关系如下:C为电容,V为体积,C/V为比电容,t为介电层厚度,ε为介电常数。

在介电层厚度确定的情况下,材料的介电常数越高,电容器比电容越大。

介电材料的介电常数越高,越易于实现电容器的小型化,这是目前电容器的一个发展方向,自从MLCC问世以来,其比容一直不断上升,介电层的厚度不断下降。

如图1所示。

(2)良好的介温特性介温特性用来描述电容随温度变化情况。

一般来说,在工作状态下,电容器的电容随温度的变化越小越好。

由于电容随温度发生变化来源于介质材料介电常数的变化,因此要求节电材料具有良好的介温特性。

(3)高绝缘电阻率(4)介电损耗小,抗老化1.研究进展MLCC用高介电常数的介电材料可以归结为以下三个体系:BaTiO3系材料;(Ba,Ca)(Ti,Zr)O3系材料;复合含Pb 钙钛矿系材料。

1.1BaTiO3系材料BaTiO3系材料是最早研究的用于MLCC的介电材料,也是最早实现商业化的MLCC用介电材料。

从20世纪60年代初期到70年代末,为了实现MLCC贱金属化,降低电容器的成本,人们对BaTiO3系材料的研究多集中在抗还原方面。

常用的手段是向BaTiO3中添加过渡元素的氧化物,这些元素的离子在还原气氛下俘获电子发生变价,从而提高还原烧结BaTiO3材料的绝缘电阻。

但是由于受主掺杂BaTiO3材料中氧空位的迁移,使用后不久,材料的绝缘电阻就大幅下降,MLCC的性能严重劣化。

MLCC片式多层陶瓷电容器介绍

MLCC片式多层陶瓷电容器介绍

端電極漿料:
形成外電極
1.金屬粉 2. 電子玻璃 3. 溶劑 4.有機載體
16
MLCC介紹---產品技術趨勢
MLCC介紹---產品技術趨勢
2014年
2015年~
Miniaturization
0201 01005
008004
為應對0屏1屏2屏越來越薄的趨勢,通過降低單層厚度、增加堆疊層數來降低尺寸
MLCC簡介
1
講義大綱
➢ 常見電容器 ➢ 電容特性比較 ➢ MLCC介紹 ➢ DISC CAP&MLCC比較 ➢ MLCC發展趨勢 ➢ MLCC在終端產品上應用 ➢ 失效分析
2
電容器分類
3
電容特性比較
WV (VDC)
Al CAP優點:容量大,中高壓,便宜
缺點:尺寸大, 使用壽命短,
MLCC
頻率特性較差 電路應用: 對空間要求不高的電路中
終端產品:數碼相機(框)/
Tan-Cap優點:尺寸小,ESR低、壽命較長 缺點:容量相對E-Cap較小、電壓較低
鉭電容
(普通鉭電容&Polymer鉭電)
伺服器/電話/手機/ 打印機/E-BooK/電動 車/公交車/火車
電路應用:主要以儲能、濾波、穩壓功能 終端產品:NB,E-book,PDA,XDSL (對空間
環境條件
内部電極:Ni
取決於價格成本
介電材料:BaTiO3
取決於電容容值與溫度特性
MLCC介紹-基本結構(3)
NME Noble Metal Electrode
Sn
Ni
BME Base Metal Electrode
Ag Cu
PdAg or Pd
Ni
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多层片式陶瓷电容器
执行标准
总规范:GB/T2693-2001《电子设备用固定电容器第1部分:总规范》
分规范:GB/T9324-1996《电子设备用固定电容器第10部分:分规范》GB/T9325-1996《电子设备用固定电容器第10部分:空白详细规范》
分类介绍
a、电解质种类
容量温度特性是选用电介质种类的一个重要依据。

NPO(CG):I类电介质,电气性能最稳定,基本上不随温度、电压、时间的改变;属超稳定型、低损耗电容材料类型,适用于对稳定性、可靠性要求较高的高频、特高频、甚高频的电路。

产品应用:振荡器、混频器、中频/高频/甚高频/超高频放大器、低噪声放大器、时间电路、高频滤波电路、高频耦合。

X7R(2X1):II类电介质,电气性能较稳定,随温度、电压、时间的改变,其特有性能变化并不显著,属稳定型电容材料类型,适用于隔离、耦合、旁路、滤波电路及可靠性要求较高的中高频电路。

产品应用:电源(滤波、旁路)电路、时间电路、储能电路、中频/低频放大器(隔直、耦合、阻抗匹配),高频开关电源(S.P.S)、DC/DC变换器、滤波、旁路电路、隔直、阻抗匹配电路。

Y5V(2F4):III类电介质,具有较高的介电常数,常用于生产比容比较大的、标称容量较高的大容量电容产品;由于其特有的电介质性能,因而能造出容量比NPO更大的电容器。

属低频通用型电容材料类型,由于成本较低,广泛用于对容量、损耗要求偏低的电路。

产品应用:电源滤波电路、隔直、阻抗匹配电路。

b、电容量与偏差
电容量与偏差的选择取决于电路的要求,特别提示,在相同尺寸和容量规格下,偏差较大的电容器的价格相对便宜。

c、电压
额定电压的选择也取决于电路本身的要求,电容的耐压虽然在设计时已有一定的安全系数,但电容器额定电压的选择仍须高于实际工作电压。

d、片状电容器的端头电极:片状电容器端头电极的选择至关重要!
全银端头:生产工艺简单、成本较低,耐焊性较差、端头物理强度也低,焊接时温度要适当,焊接速度要快,否则会出现银锡熔融现象而损坏端头。

钯全银端头:针对全银的缺点而改进,其耐焊性能、端头强度均获改善,但可焊性随存放时间而改变。

三层电镀端头:(银、镍、锡)耐焊性性能优越,端头物理强度高,可焊性好。

适用于自动贴片机焊接、波峰焊接、再流焊接及手工焊接等诸多焊接工艺,符合SMT操作条件。

通用型NPO(COG)片容
NPO(COG):通用型COG片容属于I类高频电容器,其电容量非常稳定,几乎不随温度、电压和时间的变化而变化。

尤其适用于高频电子线路。

特性:具有高的电容量稳定性,在-55℃~125℃工作范围内,其温度系数为0±30ppm/℃、0±60ppm/℃。

叠层独石结构,具有高可靠性。

优良的焊接性和耐焊性,适用于回流焊和波峰焊。

应用:适用于各种高频电子线路。

尺寸规格:
0603 0.06×0.03(英寸) 1.6×0.8(mm)
0805 0.08×0.05(英寸) 2.0×1.25(mm)
1206 0.12×0.06(英寸) 3.2×1.6(mm)
1210 0.12×0.10(英寸) 3.2×2.5(mm)
1812 0.18×0.12(英寸) 4.5×3.2(mm)
2225 0.22×0.25(英寸) 5.7×6.4(mm)
3035 0.30×0.35(英寸) 7.6×9.0(mm)
标称容量(PF):102 10×102 103 10×103
误差:
B ±0.10PF
C ±0.25PF
D ±0.50PF
F ±1.0%
G ±2.0%
J ±5.0%
K ±10%
M ±20%
端头材料:
S 全银
N 三层电镀额定电压(V):160 16×100 250 25×100 500 50×100 630 63×100 101 10×101 201 20×101 501 50×101 102 10×102 202 20×102
通用型X7R片容
通用型X7R片容属于II类低频电容器,其电容量相对稳定。

特性:具有较高的电容量且较稳定,在-55℃~125℃工作范围内,其温度特性为±15%。

叠层独石结构,具有高可靠性。

优良的焊接性和耐焊性,适用于回流焊和波峰焊。

应用:适用于各种滤波,耦合电路。

尺寸规格:
0603 0.06×0.03(英寸) 1.6×0.8(mm)
0805 0.08×0.05(英寸) 2.0×1.25(mm)
1206 0.12×0.06(英寸) 3.2×1.6(mm)
1210 0.12×0.10(英寸) 3.2×2.5(mm)
1812 0.18×0.12(英寸) 4.5×3.2(mm)
2225 0.22×0.25(英寸) 5.7×6.4(mm)
3035 0.30×0.35(英寸) 7.6×9.0(mm)
标称容量(PF):
102 10×102
224 22×104
误差:
K ±10%
M ±20%
S +50%/-20%端头材料:
S 全银
N 三层电镀额定电压(V):160 16×100 250 25×100 500 50×100 630 63×100 101 10×101 201 20×101 501 50×101 102 10×102 202 20×102
通用型Y5V片容
通用型Y5V片容属于II类低频电容器,其电容量受湿度、电压、时间变化大。

特性:在-25℃~85℃工作范围内,其温度特性为+30%,-80%。

叠层独石结构,具有高可靠性。

优良的焊接性和耐焊性,适用于回流焊和波峰焊。

应用:适用于各种滤波线路。

尺寸规格:
0603 0.06×0.03(英寸) 1.6×0.8(mm)
0805 0.08×0.05(英寸) 2.0×1.25(mm)
1206 0.12×0.06(英寸) 3.2×1.6(mm)
1210 0.12×0.10(英寸) 3.2×2.5(mm)
1812 0.18×0.12(英寸) 4.5×3.2(mm)
2225 0.22×0.25(英寸) 5.7×6.4(mm)
3035 0.30×0.35(英寸) 7.6×9.0(mm)
标称容量(PF):
102 10×102
224 22×104
误差:
K ±10%
M ±20%
S +50%/-20%
Z +80%/-20%
P +100%/0
端头材料:
S 全银
N 三层电镀
额定电压(V):
160 16×100
250 25×100
500 50×100
630 63×100
101 10×101
201 20×101
501 50×101
102 10×102
202 20×102
火炬产品外形尺寸/容量范围/额定电压
NPO外形尺寸/容值范围/额定电压:
电容值:0R5、1R0、1R2、1R5、1R8、2R2、2R7、3R3、3R9、4R7、5R6、6R8、8R2、100、120、150、180、220、270、330、390、470、560、680、820、101、121、151、181、221、271、331、391、471、561、681、821、102、122、152、182、222、272、332、392、472、
X7R、X5R外形尺寸/容值范围/额定电压:
电容值:221、271、331、391、471、561、681、821、102、122、152、182、222、272、332、392、472、562、682、822、103、123、153、183、223、273、333、393、473、563、683、823、104、124、154、184、224、274、334、394、474、564、684、824、105、125、155、
X7R、X5R外形尺寸/容值范围/额定电压:
电容值:222、272、332、392、472、562、682、822、103、123、153、183、223、273、333、393、473、563、683、823、104、124、154、184、224、274、334、394、474、564、684、824、105、125、155、185、225、275、335、395、475、565、685、825、106、126、156、。

相关文档
最新文档