模拟退火算法与遗传算法性能比较

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟退火算法与遗传算法性能比较

摘要:模拟退火算法与遗传算法是两种非常重要的多目标优化算法。其原理简单,对优化目标函数解析性没有要求,因此在工程问题中被广泛应用。本文介绍了这两种优化算法的原理,并分析了两种算法的性能并讨论了应用过程中的关键问题,对两种算法的合理选取及改进具有参考价值。

关键字:模拟退火,遗传算法,优化

1.前言

对于多目标优化问题,传统的做法是全局搜索,即“穷举法”。这种通过搜索整个解空间的方法虽然能获得全局最优解,但运算量非常大,当优化空间的维度非常高时,该方法在计算上不可行。通过利用目标函数的解析性质以及借助实际问题的约束条件能部分降低搜索空间,但任不能解决高维问题优化。面对复杂问题,求得最优解是很困难的,在有限时间内求得满意解是可能的。获取高维优化问题满意解的常用方法是迭代运算,但通常迭代运算容易陷入局部最优陷阱,造成“死循环”。模拟退火算法及遗传算法是两种原理简单的启发式智能搜索算法,均具有逃离局部陷阱的能力,是工程应用中快速获取满意解的常用算法,对其性能比较对于正确使用这两种智能优化算法具有重要意义。

2.算法介绍

2.1.模拟退火算法

模拟退火算法是一种随机搜索算法,Kirkpatrick[1]于1983年首次将该算法应用于多目标优化。该算法模拟冶金上的退火过程而得名,其基本思想是:对当前合理解增加扰动产生新解,评价新解对目标函数的改进情况,若小于零,则接受新解为新的当前解,否则以概率接受新解为新的当前解。新的当前解将将继续优化,直到没有显著改进为止。

模拟退火算法使用过程中以下细节影响其全局搜索性能。初始温度T选择越高,则搜索到全局最优解的可能性也越大,但计算复杂度也显著增大。反之,能节省时间,但易于陷入局部最优。依据解的质量变化概率选择温度下降策略能增强算法性能。每次温度降低迭代次数及算法的终止可由给定迭代次数内获得更优解的概率而确定。

2.1.遗传算法

遗传算法最早由Holland等[2]提出,该算法模拟遗传变异与自然选择机制,是一种通过交换机制,重组基因串的概率搜索算法,其基本思想是:分析解空间大小及精度要求,确定合理解唯一编码形式。合理解转化成的编码即为染色体,随机选取的多个初始染色体构成初始种群。会依据评价函数计算种群中每个个体

的适应值,适应值大的个体被选中参与繁殖、交叉及变异的概率更大,即适应值越大的个体具有更多的后代。这一过程不断反复,后期产生的种群将比早期种群更加适应环境。经染色体解码,从而获得最优解或近似最优解。

遗传算法使用过程中影响算法效率的主要因素包括:和理解的编码形式,初始种群的选定,评价函数即适应度函数的设计,及选择算子、交叉算子及变异算子的确定。保持种群的多样性及合理选择个体间的竞争机制能有效防止种群“早熟”或者不收敛。如对早期种群中适应值非常高的个体,须加以抑制,否则该个体将大量繁殖,减少种群的多样性,从而过早收敛。而搜索后期,平均适应度附件的个体以及适应值最大的个体繁殖后代的概率相同,使收敛停滞。

2.性能比较

两种算法原理简单利于程序化,实际应用范围广,求得全局最优解的概率大。其共同点是:两者概率搜索算法,搜索进程都具有非确定性。均需要平衡局部搜索与全局搜索,从而避免过早陷入局部搜索。算法的鲁棒性强,对目标函数及约束函数的形式没有严格要求,不需要其可导、连续等解析性质。两种算法均易于与其它启发式算法相融合。

模拟退火是采用单个个体进行优化,算法非常简单,可用于复杂的非线性问题的优化。采用较慢的退火过程,解的优化更不易陷入局部极小,然而较慢的退火过程会让收敛速度非常慢。模拟退火算法虽然能以一定概率接受较差解,从而具有跳出局部最优解的能力,但该算法对整个解空间的覆盖不够,最终解对初始参数的设置依赖性较大。模拟退火算法则具有较强的局部优化能力,但容易陷入局部极小值[3]。

遗传算法是一种群体性算法,初始种群的好坏对解的收敛性及优化结果优劣有着重要影响。遗传算法全局搜索能力极强,能快速获得解空间的全体解集合;群体性算法具有内在的并行性,采用分布式并行计算非常方法。遗传算法的主要缺陷是局部搜索能力差,尤其是在优化后期搜索效率较低,增加了优化时间消耗。遗传算法存在的另一个问题是该算法需要对问题进行编码,求解结束时需要对问题解码,交叉率与变异率以及全体规模等参数的选择对算法性能影响很大,而合适值的选择通常对经验要求较高。对于结构复杂的组合优化问题,搜索空间大,不合适参数的选择会让优化陷入“早熟”。

两种算法均易于与其它算法结合,因此结合两种算法的优点对复杂优化问题的求解值得深入研究。

References:

1.Kirkpatrick,S. and M.P. Vecchi,Optimization by simmulated annealing. science,1983. 220(4598):p. 671-680.

2.Goldberg,D. and J. Holland,Genetic Algorithms and Machine Learning.

Machine Learning,1988. 3(2-3):p. 95-99.

3.李红军,模拟退火遗传算法的性能评价. 湖南城市学院学报,2003(03):p. 111-113.

相关文档
最新文档