函数图象教学设计 (4)
二次函数图像和性质教学设计【优秀3篇】
二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。
4.4.2对数函数图象及性质教学设计-2024-2025学年高一上学期数学人教A版2019必修一
4.4.2对数函数图象及性质(人教版)一、对数函数图象及性质1.学情分析(1)心理上:高一年级的学生已入校两个月,在学习情绪和学习态度上也相对稳定。
此时学生渴望知识和学习情绪也都很高涨,主动积极。
厌倦教师的单独说教,希望能创设自行思考探索的空间,给他们发表自己见解和表现才华的机会。
(2)知识上:学生已学习了一次函数、反比例函数、二次函数、幂函数、指数函数等初等函数,已对函数的相关概念、研究方法有了一定的了解和掌握,学生已经明白对数函数与指数函数的关系,可以通过类比的方法研究学习。
2.教材分析本节选自人教版高一数学必修第一册(2019A)4.4.2。
主要内容是学习对数函数的图象、性质及初步运用。
本节课是继学习指数函数后,学习的另一重要函数。
对数函数与指数函数有许多相似之处,教材通过类比的方法,利用探究指数函数的模式和方法设计探索对数函数图象与性质的过程。
让学生对建立和研究一个具体的函数的方法有较完整的认识,注重通过数形结合的方法研究函数的性质,深化由特殊到一般的转化思想,培养数学抽象等数学学科核心素养。
二、教学设计(一)教学课题:对数函数图象及性质(二)教学目标1.掌握对数函数图象及其性质;2.会利用对数函数的图象及性质,求对数函数的定义域,能解决实际问题;3.渗透类比应用意识,培养归纳思维和逻辑推理能力。
(三)教学重点与难点1.重点:对数函数的图象与性质;2.难点:对数函数的性质。
(四)学法与教法1.学法:通过类比指数函数图象及性质的研究过程,推导对数函数图象及性质;2.教法:启发式教学与讲授式教学相结合。
(五)选择媒体传统媒体与现代媒体相结合。
(六)课型与教学形式1.课型:综合型。
2.教学形式:启发式教学与讲授式教学相结合。
(七)教学流程1.复习旧知回顾对数函数的概念,指数函数图象与性质的研究方法。
【设计意图:通过已经讲述过的指数函数图象与性质的研究方法,让学生联系、类比已学知识,结合对数函数的概念,推导整理出对数函数的图象与性质,对一个函数的图象与性质研究过程有更深层次的理解,并能从其中观察到对数和指数函数的关系。
苏科版数学九年级下册5.2《二次函数的图象和性质》教学设计4)
苏科版数学九年级下册5.2《二次函数的图象和性质》教学设计4)一. 教材分析苏科版数学九年级下册5.2《二次函数的图象和性质》是本节课的主要内容。
教材从学生已有的知识出发,通过观察、实验、探究等活动,引导学生认识二次函数的图象和性质,从而加深对二次函数的理解。
本节课的内容对于学生来说是比较抽象的,需要通过大量的实践活动来理解和掌握。
二. 学情分析学生在学习本节课之前,已经学习了二次函数的定义和标准式,对于二次函数有一定的了解。
但是,对于二次函数的图象和性质,大部分学生可能会感到比较抽象和难以理解。
因此,在教学过程中,需要引导学生通过观察、实验、探究等活动,来理解和掌握二次函数的图象和性质。
三. 教学目标1.理解二次函数的图象和性质,能够熟练地运用二次函数的图象和性质解决实际问题。
2.培养学生的观察能力、实验能力和探究能力。
3.提高学生对数学的兴趣和信心。
四. 教学重难点1.二次函数的图象和性质的理解和掌握。
2.如何运用二次函数的图象和性质解决实际问题。
五. 教学方法1.观察法:引导学生观察二次函数的图象,从而理解二次函数的性质。
2.实验法:让学生通过实际操作,探究二次函数的性质。
3.探究法:引导学生通过问题探究,深入理解二次函数的图象和性质。
4.讲解法:对于一些难以理解的概念和性质,采用讲解法进行解释。
六. 教学准备1.PPT课件:制作相关的PPT课件,以便于教学。
2.练习题:准备一些相关的练习题,以便于巩固所学知识。
3.教学工具:准备一些教学工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入二次函数的图象和性质。
例如:一个抛物线形的水池,求水池的深度。
2.呈现(10分钟)利用PPT课件,呈现二次函数的图象和性质。
通过观察和讲解,让学生理解二次函数的图象和性质。
3.操练(10分钟)让学生通过实际操作,探究二次函数的性质。
可以让学生用尺子和圆规,画出二次函数的图象,并观察其性质。
4.4.2对数函数的图像和性质教学设计2024-2025学年高一上数学人教A版(2019)必修第一册
教学设计课程基本信息学科数学年级高一学期第一学期课题 4.4.2 对数函数的图像和性质教科书书名:普通高中教科书数学必修第一册 A 版出版社:人民教育出版社教学目标1.掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题2.经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的联系。
培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
3.在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养学生的数学应用的意识,探索数学。
教学内容教学重点:1.掌握对数函数的图像和性质,对数函数与指数函数之间的联系,不同底数的对数函数图象之间的联系;2.理解与掌握反函数的概念。
教学难点:1.对数函数的图像与指数函数的关系;2.不同底数的对数函数之间的联系。
教学过程一、温顾知新问题1 对数函数的概念是什么?问题2 怎样研究指数函数的?我们主要研究它的哪些性质?二、新识探究与研究指数函数一样,我们首先画出其图像,然后借助图像研究其质.由浅入深,我们先最简单的开始。
(合作探究一)画出x y 2log =的图像和x y 21log =的图像问题3 我们知道,底数互为倒数的两个指数函数的图象关于y 轴对称.对于底数互为倒数的两个对数函数,比如x y 2log =和x y 21log = ,它们的图象是否也有某种对称关系呢?可否利用其中一个函数的图象画出另一个函数的图象?(合作探究二)底数互为倒数的两个对数函数的图象关于x 轴对称 问题4底数a (a >0,且a ≠1)的若干个不同的值,在同一直角坐标系内画出相应对数函数的图象.观察这些图象的位置、公共点和变化趋势,有哪些共性?由此你能概括出对数函数x y a log =的值域和性质吗?(合作探究三) 根据图像,类比研究指数函数性质的方法你能归纳对数 函数的哪些图像特征和性质?完成下列表格。
数学教案高中函数图像
数学教案高中函数图像教学目标:学生能够掌握各种函数的图像特征,能够准确地绘制函数的图像。
教学重点和难点:掌握各类函数的图像特征,理解函数图像的规律性。
教学准备:教师准备幻灯片、黑板、彩色粉笔、教材、作业本等。
教学过程:一、引入学习(5分钟)教师通过简单的例子引入学生,让学生了解学习高中函数图像的重要性和意义。
二、讲解函数图像的基本特征(15分钟)1. 直线函数:y = kx + b- 当k>0时,函数图像是一条斜率为正的直线,向上倾斜;- 当k<0时,函数图像是一条斜率为负的直线,向下倾斜;- 当b>0时,函数图像与x轴平行,但在y轴的位置不同;- 当b<0时,函数图像与x轴交于一点,该点为y轴截距。
2. 二次函数:y = ax^2 + bx + c- 当a>0时,函数图像开口向上,顶点在下方;- 当a<0时,函数图像开口向下,顶点在上方。
3. 指数函数:y = a^x- 当a>1时,函数图像递增,经过(0,1)点;- 当0<a<1时,函数图像递减,经过(0,1)点。
4. 对数函数:y = loga(x)- 函数图像经过(1,0)点;- 当0<a<1时,函数图像斜率为正,向右上倾斜;- 当a>1时,函数图像斜率为负,向左上倾斜。
三、练习与讨论(20分钟)教师让学生分组进行练习,根据给定的函数绘制函数图像,并相互讨论、比较图像的差异和特点。
四、总结巩固(10分钟)教师总结各种函数图像的特征和规律性,强化学生对函数图像的理解和记忆。
五、作业布置(5分钟)教师布置相关的作业,让学生巩固学习成果。
教学反思:通过本节课的学习,学生能够初步掌握各类函数图像的特征,能够准确地绘制函数图像,提升了学生对函数图像的理解和应用能力。
初中数学_函数的图象教学设计学情分析教材分析课后反思
《函数的图象》教学设计教学目标1.通过画图象,理解并感知函数图象的定义。
2.会观察、分析函数图象信息,解决实际问题。
3.提高识图能力、分析函数图象信息能力。
教学重点:把实际问题转化为函数图象,再根据函数图象来研究实际问题。
教学难点:通过观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想.教学过程设计:(一)知识背景导入变化与对应(二)展示学习目标(三)复习巩固1.课件出示问题2.引导学生回顾知识点(四)创设情境,感觉新知(1)函数的图象的定义1.活动一:出示摩天轮,让学生思考如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?2.动画播放:将每对t和h的数据作为点的坐标,在以t为横轴、h为纵轴的直角坐标系中描出各点,并将描出的点用平滑的曲线依次连接起来3.学生思考:其中对于给定的每一个时间 t,高度 h对应有几个值?4.从而总结函数图像定义:归纳总结:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的_________.5.巩固练习达标测试第4题(2)函数图像的意义活动二:下图是下图反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系.你从图象中得到了哪些信息?思路导引:找出函数的图象所要表达的数字信息.【规律总结】读取图象所表达的信息应注意:(1)弄清坐标轴和图象上的点所表示的意义.(2)图象上的最高点和最低点往往有特殊意义.(3)上升(下降)线表示函数值随自变量的增大而增大(减小),水平线表示函数值不随自变量的变化而变化.(在本次活动中教师应重点关注:(1)有些问题中的函数关系很难列式子表示,但是可以用图像直观地来反映。
(2)看图象时应注意的问题。
)活动三:分析图象解决实际问题如图所示,小明家、食堂、图书馆在同一条直线上。
小明从食堂吃早餐,接着去图书馆读报,然后回家。
6.3一次函数的图像》教学设计-优秀教案
6.3一次函数的图像(1)班级姓名学号【学习目标】1. 了解画函数图象的一般步骤,能熟练地作出一次函数的图象知道一次函数的图象是一条直线。
2. 会选取两个适当的点画一次函数的图象。
会根据坐标判断所给的点是否在所给的图象上。
【重点难点】教学重点:掌握一次函数的图象的画法。
教学难点:会选取两个适当的点画一次函数图象。
【教学过程】一、温故知新:(1) 一次函数的定义:(2) 正比例函数的定义:(3) 函数有几种表达形式?(4) 函数图像的概念:把一个函数的自变量与对应的因变量的值作为点的坐标和坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像.那么一次函数的图象是怎样的?(导入新课)二、创设情境点燃一支香,感受它的长度随时间的变化而变化.观察上面的图片,说一说获得哪些信息?(设计意图:通过生活中的情景引入新课,提高学生的学习兴趣.)探究活动一1.将你的观察结果填在书中的表格内.2.如果用y (cm)表示香的长度、x(min)表示香燃烧的时间,你能写出y与x之间的函数表达式吗?3.操作:依次连接图片中香的顶端,你有什么发现?4.你能用平面直角坐标系,揭示图片中的信息吗?要求:学生在观察、思考的基础上填表,并与同学交流各时刻香的状态.点燃时间/分0 5 10 15 20香的长度/cm 16 12 8 4 0由图片知,点燃后香的长度越来越短,平均每分钟缩短0.8cm ,直至燃尽.所以y 与x 之间的函数表达式为y =16-0.8x (0≤x ≤20).依次连接图片的顶端,发现在一条直线上.(设计意图:通过连接图片中香的顶端,联系平面直角坐标系中的描点,引导学生初步思考一次函数的图像是否是一条直线,引导学生的探究意识,同时为学习图像的画法作必要的铺垫.)5.以x 轴表示点燃时间,以y 轴表示香的长度,建立直角坐标系,并分别描点(0,16)、 (5 ,12)、(10 ,8)、(15 ,4)、(20,0).问题:这5个点的坐标都满足y =16-0.8x 吗?这个一次函数的图像是什么?由此猜测… 要求:学生在学案上描点画图.学生讨论交流.(设计意图:将生活中的实际问题用数学的眼光,严谨的态度分析解决,引导学生利用适当的工具科学、合理地抓住其数学本质.)探究活动二按下列步骤,在平面直角坐标系中,画一次函数(1)y = -x 21(2)y = -x+3的图像 解:(1)列表1: 列表2:(2)描点:以表中各对x 、y 的值为点的坐标,在直角坐标系内描出相应的点. (3)连线:顺次连接描出的各点.x… -2 -1 0 1 2 … y=-x 21 ……x … -2 -1 0 1 2 … y =-x +3……议一议:(1)满足关系式的x ,y 所对应的点(x ,y )都在函数图象上吗?(2)函数的图象上的点(x ,y )都满足关系式吗?(3)画一次函数图像的一般步骤 (4)你能用更简便的方法作出它的图像吗?说说你的想法. (5)通常取哪两点比较方便? ①观察y=-x 21的图像可知:它的图像是一条 ,过坐标系中点 ,并经过点 , 它经过 象限.②观察y=-x+3的图像可知:它的图像是一条 ,与x 轴交于点 ,与y 轴交于点 , 它经过 象限.(设计意图:学生模仿上例,自己尝试画图,并与小组内的同学交流,对比,总结方法.学生经历画图的过程,感受画图的方法,引导学生经历作图的过程,思考每个步骤之间的联系,掌握利用描点法画出函数图像,关注其中的细节.)小结:①作一次函数图像的步骤:②由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定图像 上 的位置,再过这两点画直线即可.③一次函数y kx b =+(k 、b 为常数,且0k ≠)的图像是经过点(0, )和( ,0)的一条 .④作正比例函数y =kx (k ≠0)的图象时,一般找(0, )(1, )两点.(设计意图:学生结合自己的观察和动手实践的经验回答.根据基本事实,“两点确定一条直线”,画一次函数图像时,只要先确定这个图像上两个点的位置,再过这两点画直线就可以了.在巩固画图过程的基础上,引导学生思考如何简化作图的过程,培养学生勤学好思的良好习惯.)三、例题分析例 已知一次函数y=-3x+3:(1)画出一次函数的图象; (2)写出这个函数的图象与x 轴,y 轴的交点的坐标__________,___________;(3)若(2,a+3)在函数图象上,求a 的值. (4)判断点(71,42)是否在所画的图象上?(设计意图:学生利用总结的方法,画图实践.通过带入函数表达式结合观察图像做出判断.巩固画一次函数图像的技能.体会“数形结合”的思想方法.)四、课堂练习1.下列两点在函数y =-2x +3图像上的是 ( ).A .原点和点(1,1);B .点(1,1)和点(2,3);C .点(0,3)和点(1,1);D .点(0,3)和点(2,3). 要求:学生解答,互相交流方法.2. 在同一坐标系中(1)画出一次函数y =-2x 、y =-2x-2、y =-2x+2的图象 (2)如果(a ,4)在y =-2x +2的图象上,求a 的值。
初中函数图像优质课教案
初中函数图像优质课教案知识与技能:1. 了解一次函数、正比例函数、反比例函数的定义和性质。
2. 学会用描点法、解析法画出一次函数、正比例函数、反比例函数的图像。
3. 能够分析实际问题,选择合适的函数模型。
过程与方法:1. 通过观察、实验、探究等方法,发现一次函数、正比例函数、反比例函数的图像特点。
2. 学会用数形结合的思想方法分析函数问题。
情感态度价值观:1. 培养学生的团队合作精神,提高学生解决实际问题的能力。
2. 培养学生对数学的兴趣,激发学生学习函数的积极性。
二、教学内容:1. 一次函数的定义和性质。
2. 正比例函数的定义和性质。
3. 反比例函数的定义和性质。
4. 用描点法、解析法画一次函数、正比例函数、反比例函数的图像。
5. 实际问题中的函数模型选择。
三、教学过程:1. 引入:通过生活中的实例,引导学生思考函数的概念和作用。
2. 讲解:讲解一次函数、正比例函数、反比例函数的定义和性质,引导学生通过实验、观察发现函数图像的特点。
3. 实践:让学生动手用描点法、解析法画出一次函数、正比例函数、反比例函数的图像,培养学生的动手能力。
4. 应用:分析实际问题,让学生选择合适的函数模型,培养学生的应用能力。
5. 总结:通过总结,使学生对一次函数、正比例函数、反比例函数的概念、性质和图像有更深刻的理解。
四、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究。
2. 利用现代教育技术,如多媒体、网络等资源,提高教学效果。
3. 注重个体差异,因材施教,让每个学生都能在课堂上得到锻炼和发展。
4. 创设生动活泼的课堂氛围,鼓励学生积极参与,培养学生的创新精神。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、思维品质和合作能力。
2. 作业完成情况:检查学生对函数概念、性质和图像的理解和应用能力。
3. 实践报告:评估学生在实际问题中选择合适的函数模型的能力。
4. 学生自评、互评和他评:了解学生的学习情况,提高学生的自我认知和评价能力。
函数的图像教学设计
函数的图像教学设计Image teaching design of function函数的图像教学设计前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和针对教学对象是高中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文下载后内容可随意修改调整及打印。
教学目标(一)知道函数图象的意义;(二)能画出简单函数的图象,会列表、描点、连线;(三)能从图像上由自变量的值求出对应的函数的近似值.教学重点和难点重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象.难点:对已知图象能读图、识图,从图象解释函数变化关系.教学过程设计(一)复习1.什么叫函数?2.什么叫平面直角坐标系?3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?4.如果点A的横坐标为3,纵坐标为5,请用记号表示点A (答:A(3,5)).5.请在坐标平面内画出A点.6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序数对一一对应)(二)新课我们在前几节课已经知道,函数关系可以用解析式表示.像y=2x+1就表示以x为自变量时,y是x的函数.这个函数关系中,y与x的对应关系,我们还可以用在坐标平面内画出图象的方法表示.具体做法是第一步:列表.(写出自变量x与函数值的对应表)先确定x 的若干个值,然后填入相应的y值. (这种用表格表示函数关系的方法叫做列表法)第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点.也就是由表中给出的有序实数时,在直角坐标中描出相应的点.第三步:连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1图象. 例1 在同一直角坐标系中画出下列函数式的图像:(1) y=-3x; (2)y=-3x+2; (3) y=-3x-3.分析:按照列表、描点、连线三步操作. 它们的图象分别是图13-25中的(1),(2),(3).例2 某化我厂1月到12日生产某种产品的统计资料如下:(1)在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画出对应的点.把12个点画在同一直角坐标系中.(2)按照月份由小到大的顺序,把每两个点用线段连接起来.(3)解读图像:从图说出几月到几月产量是上升的、下降的或不升不降的.(4)如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?解:(1),(2)见图13-26.(3)产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升.产量下降:8月到9月,9月到10月.产量不升不降:2月到3月;6月到7月,7月到8月.(4)过x轴上的4.5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4.5,所以4月15日的产量约为4.5吨.(三)课堂练习已知函数式y=-2x.用列表(x取-2,-1,0,1,2),描点,连线的程序,画出它的图象.(四)小结到现在,我们已经学过了表示函数关系的方法有三种:1.解析式法——用数学式子表示函数关系.2.列表法——通过列表给出函数y与自变量x的对应关系.3.图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系描出对应的点.所有这些点的集合,叫做这个.用图象来表示函数y与自变量x对应关系.这三种表示函数的方法各有优缺点.1.用解析法表示函数关系优点:简间明了.能从解析式清楚看到两个变量之间的全部相依关系,并且适合于进行理论分析和推导计算.缺点:在求对应值时,有进要做较复杂的计算.2.用列表法表示函数关系优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便.缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律.3.用图象法表示函数关系优点:形象直观.可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化.缺点:从自变量的值常常难以找到对应的函数的准确值.函数的三种基本表示方法,各有各的优点和缺点.因此,要根据不同问题与需要,灵活地采用不同的方法.在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图像.(五)作业1.在图13-27中,不能表示函数关系的图形有().(A)(a),(b),(c)(B)(b),(c),(d)(C)(b),(c)(e)(D)(b),(d),(e)2.函数的图象是图13-28中的().3.矩形的周长是12cm,设矩形的宽为x(cm),面积为y (cm2).(1)以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围;(2)列表、描点、连线画出此函数的图象.4.(1)画出函数y=- x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图);(2)判断下列各有序实数地是不是函数.y=- x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相庆坐标的点是否在你所画的函数图像上:5.画出下列函数的图象:(1) y=4x-1; (2)y=4x+1.6.图13-29是北京春季某一天的气温随时间变化的图象.根据图象回答,在这一天:(1)8时,12时,20时的气温各是多少;(2)最高气温与最低气温各是多少;(3)什么时间气温高,什么时间气温最低.7.画出函数y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点);8.画出函数的图象(先填下表,再描点,然后用平滑曲线顺序连结各点):作业的答案或提示1.选(C).因为对应于x的一个值的y值不是唯一的.2.选(D).当x<0时,|x|=-x,所以 ,当x>0时,|x|=x,所以3.(1) y=x(6-x)其中0<x<6,(图13-30).5.见图13-32.6.(1) 8时约5℃,12时约11℃,20时约10℃.(2)最高气温为12℃,最低气温为2℃.(2)(2) 14时气温最高,4时气温最低.7.课堂教学设计说明1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应.把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法.2.本课的目标是使学生会画函图象,并会解读图象,即会从图象了解到抽象的数量关系.为此,先在复习旧课时,着重提问会标平面上的点与有序实数对一一对应.接着在新课开始时介绍了画函数图象的三个步骤.3.教学设计中的例3,即训练学生从已有数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力.对函数图象功能有一个完整的认识.4.在小结中,介绍了函数关系的三种不示方法,并说明它们各自的优缺点.有利于对函数概念的透彻理解.5.作业中的第1~3题,对训练函数概念及函数图象很有帮助.第1题,目的要说明,对于x的一个值,必须是唯一的值与之对应.而(b),(c),(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数.本题还训练解读形的能力.第2题,训练学生分类讨论的数学思想,在去掉绝对值符号对,必须分x≥0与x<0讨论.第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力.-------- Designed By JinTai College ---------。
人教版数学八年级下册19.1.3《函数的图象》教学设计3
人教版数学八年级下册19.1.3《函数的图象》教学设计3一. 教材分析《函数的图象》是人教版数学八年级下册19.1.3的内容,本节内容是在学生已经掌握了函数的概念、性质以及函数的表示方法的基础上进行学习的。
函数的图象是函数的一种形象表示,通过函数的图象可以直观地了解函数的性质和特点。
本节内容主要包括函数图象的性质、函数图象的画法以及函数图象的应用。
二. 学情分析学生在学习本节内容之前,已经掌握了函数的基本概念和性质,对于函数的表示方法也有一定的了解。
但是学生对于函数图象的画法和性质的理解可能还不够深入,需要通过本节内容的学习来进一步掌握。
同时,学生对于函数图象的应用可能还不够熟练,需要通过本节课的学习和实践来提高。
三. 教学目标1.了解函数图象的性质,能够识别和描述函数图象的特点。
2.学会函数图象的画法,能够独立地画出给定函数的图象。
3.掌握函数图象的应用,能够通过函数图象解决一些实际问题。
四. 教学重难点1.函数图象的性质的理解和描述。
2.函数图象的画法的掌握。
3.函数图象的应用的熟练程度。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题引导学生思考和探索,激发学生的学习兴趣和积极性。
2.采用案例教学法,通过具体的案例让学生了解和掌握函数图象的性质和画法。
3.采用小组合作学习法,让学生通过合作交流,共同解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和实例,用于引导学生学习和实践。
2.准备教学课件和教学素材,用于辅助教学。
3.准备练习题和测试题,用于巩固和检查学生的学习效果。
七. 教学过程1.导入(5分钟)通过提出问题引导学生思考和探索,激发学生的学习兴趣和积极性。
问题:你们听说过函数图象吗?函数图象有什么作用呢?2.呈现(10分钟)通过教学课件和教学素材,呈现函数图象的性质和画法。
性质:函数图象有四个基本特点,分别是单调性、连续性、周期性和奇偶性。
画法:函数图象的画法有三种,分别是描点法、连线法和变换法。
2024《函数的图象》说课稿范文
2024《函数的图象》说课稿范文明年我将要讲授的内容是《函数的图象》,下面我将从以下几个方面进行阐述。
一、说教材1、《函数的图象》是人教版高中数学选修1教材中的一部分。
它是在学生已经学习了函数基本概念和函数图像的基础上进行教学的,是高中数学领域中的重要知识点,而且函数的图象在实际问题中有着广泛的应用。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解函数图象的基本特征,掌握函数图象与函数关系的变化规律。
②能力目标:在函数图象的绘制和分析中,培养学生观察、推理和问题解决的能力。
③情感目标:在函数图象的学习中,让学生体会数学在实际问题中的应用和意义。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解函数图象的基本特征,掌握函数图象与函数关系的变化规律。
难点是:能够准确地绘制函数的图象,能够通过观察函数图象来推断函数关系的性质。
二、说教法学法根据学生的特点和教学目标,我将采用探究式教学法和问题解决法。
通过引导学生自主探索和思考,培养学生解决问题的能力。
学法是:自主学习法,合作学习法。
三、说教学准备在教学过程中,我将使用多媒体辅助教学,以图像和实例的形式呈现教学素材。
同时,准备了足够的绘图工具和实例问题,以便学生进行练习和探究。
四、说教学过程新课标要求教学活动是师生互动的过程,为了落实这一要求,我设计了如下教学环节。
环节一、谈话引入,导入新课。
课堂伊始,我会通过展示几张函数图象的问题给学生,让学生观察和分析这些图象的特点。
我会适时追问:你们从这些图象中能得到什么信息?这里运用了什么知识?让学生感知函数图象是函数关系的可视化表达方式。
由此引入今天的课题:函数的图象。
设计意图:以问题引入的方式,既激发了学生的好奇心,又调动了学生主动思考的欲望。
环节二、检验课前自学成果。
在课前我会布置一道问题让学生自主学习。
问题是:如何根据函数的表达式绘制函数的图象?我会在课堂上让学生交流和讨论他们的学习成果。
教案数学高中函数图像
教案数学高中函数图像
教学重点和难点:函数的图像概念和性质;绘制一元二次函数、绝对值函数、指数函数、对数函数的图像。
教学准备:黑板、彩色粉笔、教材、教学PPT。
教学过程:
一、导入
教师通过引导学生回顾函数的概念和性质,引出本节课的主题——函数的图像。
二、讲解
1. 函数的图像概念和性质:函数的图像是由函数的自变量和因变量按照一定规律对应所得到的图形。
图像的性质包括对称性、增减性、奇偶性等。
2. 绘制一元二次函数的图像:通过讲解一元二次函数的一般式和顶点式,并结合实例进行绘图。
3. 绘制绝对值函数、指数函数、对数函数的图像:讲解这些特殊函数的性质和图像特点,引导学生绘制图像。
三、练习
老师布置练习题,让学生通过计算和绘图来加深对函数图像的理解和掌握。
四、拓展
引导学生思考如何利用函数图像解决实际问题,例如通过函数图像分析函数的性质、求解方程等。
五、总结
总结本节课的重点内容,强调函数图像的重要性和应用价值。
六、作业
布置作业:练习册上的相关题目,让学生巩固和深化所学内容。
教学反思
通过本节课的教学,学生能够掌握函数图像的基本原理和方法,并能够独立绘制一些常见函数的图像。
同时,通过练习和实例分析,学生能够运用函数图像解决实际问题,提高了他们的数学建模能力。
《一次函数的图象和性质》教学设计(优秀7篇)
《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。
能够用一次函数的知识解决实际问题。
过程与方法:掌握用待定系数法求函数解析式的一般方法。
情感态度与价值观:继续渗透数形结合的数学思想。
教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。
难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。
高中数学_函数的图象及性质教学设计学情分析教材分析课后反思
函数的图象与性质一、教学目标1.知识与技能(1)掌握图象的两种作图方法:描点法和图象变换法.(2)利用函数的图象和性质解决相关问题.2.过程与方法通过归纳总结形成知识体系,通过小组交流合作探究,提升解决函数问题的能力。
3.情感、态度与价值观体会数学数形结合思想,培养学生的数学的直观想象素养二、教学重难点函数图像的变换,利用函数性质识图,数形结合用图三、教学过程(一).回顾高考1.函数()2e ex xf xx--=的图象大致为()A.B. C. D.2.函数422y x x=-++的图像大致()3.函数y=2x2–e|x|在[–2,2]的图像大致为()A B C D4.函数y =1+x +2sin xx 的部分图像大致为( )A B C D5.函数sin21cos x y x=-的部分图像大致为( )(二).知识回顾1.基本初等函数的图象① ② ③ ④(.0)y kx b A k =+≠ log (0).1x a B y a a =>≠且2(.0)y ax bx c a C =++≠0.(1)x y a a D a =>≠且⑤ ⑥ ⑦ ⑧c .os E y x = .F y x α= s .in G y x = (.0)k y x x H =≠2.图象变换(1)对称变换①y =f(x)--------- →y =-f(x); ②y =f(x)---------→ y =f(-x);③y =f(x)---------→ y =-f(-x);④y =f(x)---------→ y =|f(x)|.⑤y =f(x)---------→ y =f(|x|)(2)平移变换(3)伸缩变换①y =f(x) ―――――――――――――――――――――→a>1,横坐标缩短为原来的1a 倍,纵坐标不变0<a<1,横坐标伸长为原来的1a倍,纵坐标不变 y = _____ ②y =f(x)―――――――――――――――――――→a>1,纵坐标伸长为原来的a 倍,横坐标不变0<a<1,纵坐标缩短为原来的a 倍,横坐标不变y =_____ (三).题型总结题型一 函数图象的辨识【例1】(2018年全国Ⅲ卷)函数422y x x =-++的图像大致( )小结:【试一试】(3)(4)见回顾高考题型二 函数图象及性质的应用【例2】 (1)函数f(x)=2ln x 的图象与函数g(x)=x 2-4x +3的图象的交点个数为( )A .3 B .2 C .1 D .0小结:【试一试】(1)已知函数y=f(x)的周期为2,当x∈[-1,1]时,f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有 ( )A.10个 B.9个 C.8个D.7个(2)方程x2-2|x|-3=a有四个不同的实数解,则a的取值范围是_____小结:【例3】函数1 1yx=-的图象与函数2siny xπ=(-2≤x≤4)的图象所有交点的横坐标之和等于______(四).巩固练习1.函数f(x)=sin xln(x+2)的图象可能是()2.已知函数f (x)的图象如图所示,则f(x)的解析式可以是()(2题图)(4题图)A.f(x)=ln|x|x B.f(x)=e xx C.f(x)=1x2-1 D.f(x)=x-1x3.设f(x)=|lg(x-1)|,若0<a<b且f(a)=f(b),则ab的取值范围是________.4.已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是__________.5.已知函数f(x)=⎩⎪⎨⎪⎧|x|,x≤m,x2-2mx+4m,x>m,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________.6.已知f(x)=|x2-4x+3|.(1)作出函数f(x)的图象;(2)求函数f(x)的单调区间,并指出其单调性;(3)求集合M={m|使方程f(x)=m有四个不相等的实根}.四.板书设计五.作业:函数的图象导学案六.教学反思由于本班学生的学习基础比较薄弱,在讲题的过程中还是有点过多干预学生,在以后的教学中,我会掌握好生生合作、师生合作的度,引导学生后放手给学生,结合学生实际,灵活处理课堂。
4.2 对数函数的图象和性质 课时一等奖创新教学设计
4.2 对数函数的图象和性质课时一等奖创新教学设计4.4.2 对数函数的图象和性质(一)教学内容对数函数的图象和性质(二)教学目标1 掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2 能够用对数函数的性质去解决问题。
(三)教学重点及难点1.教学重点对数函数的图像、性质及其应用2.教学难点对数函数图像和性质与底数a的关系。
(四)教学过程设计问题1 :我们已经学习对数函数的概念,类比指数函数的学习过程,我们可以怎样研究对数函数?师生活动:(1)学生思考后回答。
先作函数图象,然后根据图象研究函数性质(包括定义域、值域、单调性、奇偶性、特殊点、图象的其他变化特征等方面)。
追问1:如何得到对数函数的图象?由特殊到一般的研究方法。
追问2:选取哪些特殊的对数函数来研究?追问3:通过什么方法得到这个对数函数的图象?学生小组内进行讨论,上台展示。
x … 1 2 4 ……2[ -1 0 1[来源:] 2 …设计意图:培养学生的能力,达到对函数概念以及指数函数的巩固的目的,并为本节课的研究理清思路。
问题2:我们知道,底数互为倒数的两个指数函数的图象关于y 轴对称.对于底数互为倒数的两个对数函数,比如和的图像,它们的图象是否也有某种对称关系呢?可否利用其中一个函数的图象画出另一个函数的图象?师生活动:(1)学生分组讨论思考后回答。
利用换底公式,可以得到,因为点(x,y)与(x,-y)关于x轴对称,所以图象上任意一点P(x,y)关于x轴的对称点Q(x,-y)都在的图象,反之亦然。
由此可知,底数互为倒数的两个对数函数的图象关于x轴对称。
根据这种对称性就能利用的图象画出的图象(2)追问1:函数以及的图象关于轴对称,可以解释吗?利用换底公式可以解释。
在函数的图象上任取一点(x1,y1),则,所以点(x1,-y1)在函数的图象上。
又点(x1,y1)和点(x1,-y1)关于轴对称,所以这两个函数图象关于轴对称。
《一次函数的图象和性质》教学设计优秀5篇
《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。
二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。
本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。
本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。
为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。
2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。
3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。
4.理解一次函数的代数表达式与图象之间的一一对应关系。
教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。
教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。
三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。
第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
《正弦函数、余弦函数的图象》教学设计
《正弦函数、余弦函数的图象》教学设计正弦函数、余弦函数的图象一、教学目标 (一)学习目标1.会用单位圆中的三角函数线画出正弦函数图象.2.会用“五点法”作出正弦函数和余弦函数简图.3.掌握作正弦函数和余弦函数图象的特征,能利用其解决三角不等式等问题. (二)学习重点正弦函数和余弦函数图像的作法. (三)学习难点1.用单位圆中的正弦线作正弦函数的图像.2.运用图象变换法作余弦函数图象. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第30页到32页.(2)想一想:用三角函数线如何画正弦函数的图象. (3)画一画:三角函数线. 2.预习自测(1)给定角α,画出它的的正弦线、余弦线.(2)任意给定一个实数x ,有 唯一确定的值 x sin (或x cos )与之对应,由这个对应法则所确定的函数sin y x =(或cos y x =)叫作正弦函数(或余弦函数),其定义域为R .(3)用五点法作图,在正弦函数]2,0[,sin π∈=x x y 的图象上,起关键作用的5个点为:()0,0 、_,12π⎛⎫ ⎪⎝⎭____、___(),0π___、___3,12π⎛⎫- ⎪⎝⎭____、___()2,0π__.(二)课堂设计 1.知识回顾(1)正弦线、余弦线:设任意角α的终边与单位圆相交于点()P x y ,,过P 作x 轴的垂线,垂足为M ,则有向线段 PM 叫做角α的正弦线,有向线段 OM 叫做角α的余弦线.(2)函数图像的画法(描点法):列表、描点、连线. 【设计意图】回顾旧知,让探究始于思维邻近发展区. 2.问题探究探究一 如何得到正弦函数sin y x =的图象?学生方法:列表描点法.(步骤:列表,描点,连线)如果我们仍用描点法来画正弦函数图象,由于对于角的每一个取值,在计算相应的函数值时,都是利用计算机或数学用表得来的,大多是近似值,因此不易描出对应点的准确位置,画出的图象不够准确.为此我们应考虑其他方法来作正弦函数的图象. 【设计意图】利用已有知识经验解决新问题. (一)正弦函数的图象(1)几何法:用单位圆中的正弦线----几何画法;第一步:列表.在平面内建立一平面直角坐标系,然后在直角坐标系的x 轴上任意取一点1O ,以1O 为圆心作单位圆,从⊙1O 与x 轴的交点A 起把⊙1O 分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确).过⊙1O 上的各分点作x 轴的垂线,可以得到对应于0、6π、、、…2π等角的正弦线(例如有向线段1O B 对应于2π角的正弦线).第二步:描点.把x 轴上从0到2π这一段(2π≈6.28)分成12等份(例如,从原点起向右的第四个点,就是对应于2π角的点),把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合(例如,把正弦线1O B 向右平移,使点1O 与x 轴上的点2π重合).第三步:连线.把这些正弦线的终点用平滑曲线连接起来.xy2π3π2ππ2BO 1OA我们看到的这段光滑曲线就是函数sin y x =在[]0,2x π∈上的函数.因为终边相同的角有相同的三角函数值,所以函数sin y x =在221(0)x k k k Z k ππ∈∈≠[,+],且上的图象与函数sin y x =在[]0,2x π∈上的图象的形状完全一样,只是位置不同,于是我们只要将函数sin y x =,[]0,2x π∈的图象向左、右平行移动(每次π2个单位长度),就可以得到正弦函数sin y x =在x R ∈上的图象.xy5π4π3π2ππ-π-3π-2π-4x-5πO这时,我们看到的这支曲线就是正弦函数sin y x =在整个定义域上的图象,我们也可把它称为正弦曲线.【设计意图】让学生体会原有的描点法的优缺点:精确度较高但步骤繁琐.思考:用前面的方法来作图象,虽然比较精确,但不太实用,我们该如何快捷地画出正弦函数的图象呢?(2) 用五点法作正弦函数的简图在函数]2,0[,sin π∈=x x y 的图象上,起着关键作用的点只有以下五个:3()(,)()0()(,01,0212,0)2ππππ, , , -, ,事实上,描出这五个点后,函数]2,0[,sin π∈=x x y 的图象的形状就基本上确定了.因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑曲线将它们连接起来,就可得到函数的简图.今后,我们将经常使用这种近似的“五点(画图)法”.【设计意图】让学生通过前面作的正弦函数的图象,捕捉这种周期函数图象的关键信息,归纳简图作法的关键节点与图象大致走势,培养学生的图形直观,归纳总结的能力. 探究二 如何得到余弦函数cos y x =的图象?(二)余弦函数的图象●活动①:你能根据诱导公式,以正弦函数的图象为基础,通过适当的图形变换得到余弦函数的图象吗?(1)图象变换法:利用图象平移,sin()cos 2x x π+=,将正弦函数sin y x =的图象向左平移2π个单位即可得到余弦函数cos y x =的图象.由诱导公式可知:()sin()2=cossin 2y x x x ππ==++余弦函数cos y x x R =∈,与函数2)sin(y x x R π=∈+,是同一个函数.而2)sin(y x x R π=∈+,的图象可通过将正弦曲线向左平行移动2π个单位长度而得到.现在看到的曲线也就是余弦函数cos y x =在x R ∈上的图象,即余弦曲线. (2)五点法:●活动②:类似于正弦函数图象的5个关键点,请找出余弦函数的5个关键点,并填入下表,然后作出]2,0[,cos π∈=x x y 的简图x x cos同样,可发现在函数]2,0[,cos π∈=x x y 的图象上,起着关键作用的点是以下五个:0,1013()(,)()(,)()02,122ππππ, , ,-, , 与画函数]2,0[,sin π∈=x x y 的简图类似,通过这五个点,可以画出函数]2,0[,cos π∈=x x y 的简图.●活动③ 巩固基础,检查反馈 例1用“五点法”作出下列函数的简图(1) []12sin 0,2y x x π=∈+,; (2) []2cos 0,2.y x x π=+∈, 【知识点】五点法作三角函数的图象 【数学思想】数形结合x yx y o【思路点拨】在[]0,2 π上找出五个关键点,用光滑的曲线连接即可. 【解题过程】(1)列表:x 0 2ππ 32π 2π sin x 0 1 0 -1 0 12sin x +131-11在直角坐标系中描出五点 ()30,1,3,1,1,2,122()()ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭, , , ,,然后用光滑曲线顺次连接起来,就得到[]12sin 0,2y x x π+∈=,的图象.(2)列表:x 0 2ππ32π2π cos x 1 0 -1 0 1 2cos x +32123描点连线,如图【设计意图】(1)巩固新知;(2)从层次上逐层深化、拾级而上,为往后学习三角函数图像的变换打下一定的基础. 同类训练用五点法作函数2cos()3y x π=+的简图.【知识点】五点法作()cos y A x ωϕ=+的函数图像 【数学思想】数形结合,函数复合 【思路点拨】令03x π+=,2π,π,32π,2π可得275-,36363x πππππ=, , , 【解题过程】(1)列表:3x π+2π π32π2π x 3π-6π 23π 76π 53π2cos 3x π⎛⎫+ ⎪⎝⎭2 0-2 0 2(2)描点连线xy5π37π62π3π6-π3O【设计意图】 在例1的基础上做变式拓展,培养整体思想与复合函数的思想. ●活动4 强化提升、灵活应用例3 画出sin y x =的简图,并根据图像写出12y ≥时x 的集合. 【知识点】三角函数线和三角函数图像的应用 【数学思想】数形结合【思路点拨】利用正弦函数与余弦函数图象或单位圆寻求满足条件的取值.【解题过程】利用“五点法”作出sin y x =的简图,过点10,2⎛⎫⎪⎝⎭作x 轴的平行线,在[]0,2π上直线12y =与正弦曲线交于1,62π⎛⎫ ⎪⎝⎭,51,62π⎛⎫ ⎪⎝⎭两点.在[]0,2π内,满足12y ≥时x 的集合为566x x ππ⎧⎫≤≤⎨⎬⎩⎭.因此,当x R ∈时,若12y ≥,则x 的集合为522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【答案】522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【设计意图】让学生经历利用三角函数图像和三角函数线解决实际问题,在这一过程中巩固新知,感受数形结合的魅力.例3 判断方程 04xcos x -=根的个数.【知识点】三角函数图像的应用 【数学思想】函数方程与数形结合【思路点拨】当求解的方程不是普通方程时,经常采用数形结合法求解,即分别画出两个函数图象来求方程解的个数.【解题过程】设()() 4xf xg x cos x =,=,在同一直角坐标系中画出()()f x g x 与的图象,如图:由图可知,()()f x g x 与的图象有三个交点,故方程 04xcos x -=有三个根.【设计意图】让学生经历利用三角函数图像和三角函数线解决实际问题,在这一过程中巩固新知,感受数形结合的魅力. 3. 课堂总结 知识梳理(1) 正弦函数图象的几何作图法.(2) 正弦函数图象的五点作图法(注意五点的选取). (3) 由正弦函数图象平移得到余弦函数的图象. 重难点归纳(1)正、余弦函数图象的简单应用.(难点) (2)正、余弦函数图象的区别与联系.(易混点) (三)课后作业 基础型 自主突破1.下列叙述正确的是( )①,]02[y sinx x π∈=,的图象关于点()0P π,成中心对称; ②,]02[y cosx x π∈=,的图象关于直线x π=成轴对称; ③正、余弦函数的图象不超过直线11y y =和=-所夹的范围. A.0 B.1个 C.2个 D.3个【知识点】正弦函数、余弦函数的图象的认识.【解题过程】分别画出函数,]02[y sinx x π∈=,和,]02[y cosx x π∈=,的图象,由图象观察可知①②③均正确.【思路点拨】分别画出正弦函数、余弦函数的图象即可. 【答案】D.2.用五点法作函数2sin 1y x =-的图象时,首先应指出的五点的横坐标可以是( ) A.322ππππ0,, ,,2; B.3424ππππ0, , , ,; C.ππππ0, , 2, 3,4; D.26323ππππ0, ,,,. 【知识点】五点法作图的应用【解题过程】与作函数sin y x =的图象所取的五点的横坐标一样. 【思路点拨】 结合五点法作函数sin y x =的图象即可解答. 【答案】A.3.将余弦函数cos y x = 的图象向右至少平移m 个单位,可以得到函数sin y x =-的图象,则m =( ) A.2π B. π C. 32π D. 34π 【知识点】图象变换的应用【解题过程】根据诱导公式得,33sin cos cos 22y x x x ππ⎛⎫⎛⎫=-=-=-⎪ ⎪⎝⎭⎝⎭,故欲得到sin y x =-的图象,需将cos y x =的图象向右至少平移.,32π个单位长度.【思路点拨】 利用诱导公式或函数图象左右平移方法即可解答 【答案】C.4.函数sin []0,2y x x π=∈,的图象与直线12y =-的交点有( )A.1个B.2个C.3个D.4个 【知识点】正弦函数图象的应用 【数学思想】数学结合【解题过程】在[]0,2π内使1sin 2x =-的角71166x ππ为和所以sin []0,2y x x π=∈,的图象与直线12y=-有2个交点.【思路点拨】画出sin[]0,2y x xπ=∈,的图象与直线12y=-即可解答【答案】B5. 用“五点法”作出函数(sin02)y x xπ=-≤≤的简图.【知识点】“五点法”作图【数学思想】【解题过程】列表,描点、连线,如图所示.【思路点拨】利用关键的“五点”作图【答案】上图所示能力型师生共研6.函数cos cos0,2[]y x x xπ=∈+,的大致图象为()【知识点】函数图象的应用【数学思想】分类讨论思想【解题过程】由题意得32cos,02,2230,22x x xxyπππππ≤≤≤≤<<⎧⎪=⎨⎪⎩或【思路点拨】函数解析式含绝对值,一般原则去绝对值符号,画出分段函数图象,图象问题的选择题也可利用函数性质,例如单调性,对称性等解答.【答案】D7.求函数2sin1y x=+的定义域.【知识点】函数图象的应用【数学思想】数形结合 【解题过程】要使2sin 1y x =+有意义,则必须满足2sin 10x +≥,结合正弦曲线或三角函数线,如图所示:【思路点拨】利用正弦函数图象或三角函数线法.【答案】722,66x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭8.方程2co 0s x x -=的实数解的个数是__________.【知识点】余弦函数图象应用【数学思想】数形结合思想【解题过程】作函数2cos y x y x ==与的图象,如图所示,由图象,可知原方程有两个实数解.【思路点拨】作函数2cos y x y x ==与的图象.【答案】2自助餐1.以下对于正弦函数sin y x =的图象描述不正确的是( )A.在2,22[]x k k k πππ∈∈Z +,上的图象形状相同,只是位置不同B.关于x 轴对称C.介于直线11y y =和=-之间D.与y 轴仅有一个交点【知识点】正弦函数图象的应用.【解题过程】逐一判断.【思路点拨】利用正弦函数图象【答案】B2.用“五点法”作函数cos 2y x =的图象时,首先应描出的五个点的横坐标是()A.322ππππ0, , , ,2B.3424ππππ0, , , , C.0234ππππ,, , , D.26323ππππ0,, , , 【知识点】“五点法”作余弦函数图象.【数学思想】转化与化归思想 【解题过程】令320222x ππππ=, , , 和,得30,424x ππππ=, , , 【思路点拨】利用作余弦函数图象的关键五点.【答案】B3.点,2M m π⎛⎫- ⎪⎝⎭在函数sin y x =的图象上,则m 等于( )A.0B.1C.-1 D .2【知识点】正弦函数的图象.【数学思想】【解题过程】由题意sin 1 1.2m m m π=∴-∴-,=,=-【思路点拨】点代入函数解析式.【答案】C4.在[]0,2π内,不等式3sin 2x <-的解集是( )A.(0,)πB. 4,33ππ⎛⎫ ⎪⎝⎭C. 45,33πππ⎛⎫⎪⎝⎭ D. 5,23ππ⎛⎫⎪⎝⎭【知识点】正弦函数的图象应用.【数学思想】数形结合思想【解题过程】画出[]sin 0,2y x x π=∈,的草图如下:【思路点拨】画出草图解不等式.【答案】C。
4.4三角函数的图象与性质(教学设计)-中职2024年《数学》(高教版)
§4.4三角函数的图象与性质一.学习要求:1. 认识三角函数的周期性和最小正周期。
2. 学会用五点法作三角函数的图象。
3. 学会用数形结合思想观察三角函数的图象性质。
4. 会用三角函数的值求角。
二.学习重点、难点:重点:三角函数的周期性和周期,能用五点法作三角函数的图象。
难点:对三角函数的周期性的理解,能正确地作出正弦函数和余弦函数在[]π2,0上的图象。
三.学时安排共5学时第一学时:认识正弦函数与余弦函数的周期性并能正确作出它们的图象。
第二学时:会用图象认识正弦函数与余弦函数的性质并能求出它的最值。
第三学时:会用三点两线法作出正切函数一个周期内的图象;能根据图象认识正切函数的性质。
第四学时:学会用五点作图法作出正弦型函数的图象并从图象中得出一些简单的性质。
第五学时:学会已知α的一个三角函数值,在指定的区间内求出它对应的一个角,并能求出R ∈α时角的集合。
四.学习过程第一学时(一)课前尝试 1.学习方法:利用正弦函数、余弦函数的图象采取自主探索形式获得规律和相关结论. 2.尝试练习(1)._______sin ,____,416sin ____,42sin ____,42sin ____,4sin的最小正周期是由此可得x ,y ==⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+= πππππππ(2)列表并作出函数y=sinx,[]π2,0∈x 的图象.(3)函数y=2sinx+1的最大值是____,最小值是_____.(A) (4)写出一个三角函数解析式,使它的最大值为5.(二)课堂探究 1.探究问题(1)在前面探索中得出的结论是________________.(2)已知y=sinx,[]π2,0∈x 的图象,请作出函数y=sinx,R x ∈上的图象.(3)由(2)得函数y=sinx 的最小正周期是_____,用同样的方法你能得出y=cosx的最小正周期为_______. 2.知识链接:(1)举例说明生活中的周期现象.(2)你能同样的方法作出y=-sinx 图象吗?为什么?请尝试作出它的图象. 3.拓展练习(1)用列表、描点、连线的方法作出函数y=cosx 的图象 。
函数的图像教案初中
教案:函数的图像教学目标:1. 理解函数的概念,掌握函数的表示方法。
2. 学会绘制简单的函数图像,并能分析图像的性质。
3. 能够运用函数图像解决实际问题。
教学重点:1. 函数的概念和表示方法。
2. 函数图像的绘制和分析。
教学难点:1. 函数图像的绘制和分析。
教学准备:1. 教学课件或黑板。
2. 函数图像的示例。
教学过程:一、导入(5分钟)1. 引入函数的概念,引导学生思考生活中的函数例子,如温度随时间的变化等。
2. 介绍函数的表示方法,如函数表格、解析式等。
二、新课(20分钟)1. 讲解函数图像的概念,引导学生理解函数图像是对函数值与自变量之间关系的直观表示。
2. 演示如何绘制一些简单的函数图像,如线性函数、二次函数等。
3. 引导学生通过观察函数图像,分析函数的性质,如单调性、奇偶性等。
三、练习(15分钟)1. 让学生独立完成一些函数图像的绘制,并分析其性质。
2. 引导学生运用函数图像解决实际问题,如找出函数的零点、最大值等。
四、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数图像的概念和性质。
2. 强调函数图像在实际问题中的应用价值。
教学延伸:1. 引导学生进一步学习复杂函数的图像,如三角函数、指数函数等。
2. 让学生尝试运用计算机软件绘制函数图像,提高作图能力。
教学反思:本节课通过讲解和练习,让学生掌握了函数的概念和表示方法,学会了绘制和分析函数图像。
在教学过程中,要注意引导学生观察和思考函数图像的性质,培养学生的空间想象能力。
同时,结合实际问题,让学生体验函数图像在解决问题中的作用,提高学生的数学应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.1.3函数图像(1)【课题】:函数的图像(1)【教学时间】:1课时【学情分析】:本课设计的学生的数学学习内容都是他们熟知的或发生在身边的事实,是现实而有意义并富有挑战性的.这些内容有利于学生联系实际,主动进行观察、实验、猜测、验证、推理与交流等数学活动。
通过一些现实生活中用图象来反映的问题实例,让学生经历将实际问题抽象为数学问题的过程.选用学生熟悉的实际生活背景,引导学生逐步获得图象所传达的信息,逐渐熟悉图象语言.通过创设问题情境,以生活中的“商场营业额”向学生提供形成函数思想的充分的活动机会,激发学生的学习积极性,帮助他们在自主探索与合作交流的过程中真正理解函数图象并形成函数思想.另外,本课在设计中还注意了问题的层次性,由浅入深,逐层递进,从基本问题到简单的开放性问题,以“问题串”的形式让不同的学生都能有所收获,有所成功.这也充分体现了新课程教学面向全体学生,让不同的学生在学习上都能得到发展的目的.【教学目标】(1)知识与技能目标:a.初步学会用列表、描点、连线画函数图象.b.学会观察、分析函数图象信息.(2)过程与方法目标:在探究问题的过程中会应用数形结合的思想分析问题(3)情感与态度目标:a.体会数学方法的多样性,提高学习兴趣.b.认识数学在解决问题中的重要作用从而加深对数学的认识.【教学重点】:观察分析图象信息.【教学难点】:分析概括图象中的信息.【教学突破点】:理解变化与对应的内涵.【教法、学法设计】:自主─探究、归纳─总结.【课前准备】:课件【教学过程设计】:一、创设情境,探求新知一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个值,y都有唯一确定的值与其对应,那么我们就说,x是自变量,y是x的函数.对于很难用式子表示的函数关系,我们可以用图来直观地反映.即使能用式子表示的函数关系,也能用画图表示则会使函数关系更清晰.情景1:某超市利用下面的图象向上层领导汇报一周以来的营业额,情景2:下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值.学生活动设计:观察、交流、讨论教师活动设计:通过引导,让学生感受到图象的直观性和便利性设置问题情境、激发学生的学习兴趣和学习欲望0 101011 12 13 14 15 16 17152025营业额/万日期/日●●●●●●●二、讲授新知(初步接触利用描点法画函数图象)情景2:(课本例题)正方形的边长x与面积S的函数关系式为S=x2,其中自变量的取值范围是x>0.我们还可以利用在坐标系中画图的方法来表示S与x的关系.x 0.5 1 1.5 2 2.5 3 3.5S学生活动设计:独立思考填表以及画图结果:这样的点有无数多个,如果全描出来太麻烦,也不可能.我们只能描出其中一部分,然后想象出其他点的位置,用光滑曲线连接起来.这样我们就得到了一幅表示S与x关系的图.图中每个点都代表x的值与S的值的一种对应关系.如点(2,4)表示x=2时S=4.教师活动设计:引导学生概括:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横坐标、纵坐标,那么坐标平面内有这些点组成的图形,就是这个函数的图象(graph). •上图中的曲线即为函数S=x2(x>0)的图象.挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验三、运用新知,体验成功活动1:例1:下图是自动测温仪记录的图象,•它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?结论:(让学生先观察讨论,分小组发表自己小组对图象信息的理解)1.一天中每时刻t都有唯一的气温T与之对应.可以认为,气温T是时间t的函数.2.这天中凌晨4时气温最低为-3℃,14时气温最高为8℃.3.从0时至4时气温呈下降状态,即温度随时间的增加而下降.从4时至14•时气温呈上升状态,从14时至24时气温又呈下降状态.4.我们可以从图象中直观看出一天中气温变化情况及任一时刻的气温大约是多少.5.如果长期观察这样的气温图象,我们就能得到更多信息,掌握更多气温变化规律.通过动手实践,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示所得到的信息。
活动2:课本P101的例2学生活动设计:学生独立思考,给出结论教师活动设计:引导学生、培养学生如何正确观察函数图象并且由图象得到正确的结论结论:(让学生先观察讨论,分小组发表自己小组对图象信息的理解)1.由纵坐标看出,菜地离小明家1.1千米;由横坐标看出,•小明走到菜地用了15分钟.2.由平行线段的横坐标可看出,小明给菜地浇水用了10分钟.3.由纵坐标看出,菜地离玉米地0.9千米.由横坐标看出,•小明从菜地到玉米地用了12分钟.4.由平行线段的横坐标可看出,小明给玉米地锄草用了18分钟.5.由纵坐标看出,玉米地离小明家2千米.由横坐标看出,•小明从玉米地走回家用了25分钟.所以平均速度为:2÷25=0.08(千米/分钟).活动3:课本P103的思考题学生活动设计:学生独立思考,给出结论教师活动设计:引导学生、培养学生如何正确观察函数图象并且由图象得到正确的结论活动4:俊宇某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况如图所示:①图象表示了哪两个变量的关系?②10•时和13时,他分别离家有多远?③他可能在什么时间内休息,并吃午餐?学生单独思考,给出结论四、概括梳理,形成系统(小结)围绕下面两点,以师生共同交流的方式进行归纳:(1)函数图象会使函数关系更为清晰,怎样画出函数的图象呢?(2)如何根据函数图象中获得的信息来研究实际问题?1、进一步加深对函数图象的理解.通过总结与归纳,完善学生已有的知识结构。
五、布置作业课本P107/72.图表示一辆汽车的速度随时间变化的情况:①汽车行驶了多长时间?它的最高时速是多少?②汽车在哪些时间段保持匀速行驶?时速分别是多少? ③出发后8分钟到10分钟之间可能发生了什么情况? ④用自己的语言大致描述这辆汽车的行驶情况.课堂练习:一、选择题:1.某个月来从化市遭受暴雨袭击,流溪河水位上涨.明明以警戒水位为原点,用折线统计图表示某一天河水水位情况.请你结合折线统计图判断下列叙述不正确的是( ).A .8时水位最高B .这一天水位均高于警戒水位C .8时到16时水位都在下降D .P 点表示12时水位高于警戒水位0.6米2.小明和小叶进行百米赛跑,小明比小叶跑得快,如果两人同时起跑,小明肯定赢.现在小明让小叶先跑若干米,图中,分别表示两人的路程与小明追赶小叶的时间的关系,由图中信息可知,下列结论中正确的是( ).A .小明先到达终点B .小叶的速度是8米/秒C .小叶先跑了10米D .小叶的速度是10米/秒3.一个装有进出水管的水池,单位时间内进、出水量都是一定的.已知水池的容积为800升,又知单开进水管20分可把空水池注满;若同时打开进、出水管,10分可把满水池的水放完,现已知水池内有水200升,先打开进水管3分钟,再打开出水管,两管同时开放,直至把水池中的水放完,则能确定反映这一过程中水池的水量(升)随时间(分)变化的函数图象是( ).s /t /秒48 12 16 20 24 0.20.40.60.81.0水位/米 P 320 200O3 8 Q /升t /分A .200Q /升/分B .320 200Q /升 320 200Q /升二、填空题: 1.甲、乙两人在一次赛跑中,路程与时间的关系如下图所示,•那么可以知道:①这是一次________米赛路;②甲、乙两人先到达终点的是_________;•③在这次赛跑中甲的速度为________,乙的速度为________.2.如上图所示,表示的是某航空公司托运行李的费用y (元)与托运行李的质量x (千克)的关系,由图中可知行李的质量只要不超过_________千克,•就可以免费托运. 3.某通信公司推出上网包月制,每月收取费用y(元)与上网时间x (h )的关系如下图所示,根据图像回答:(1)若某人6月份上网40h ,则他应该付上网费 . (2)如若这个人7月上网60h ,应付上网费 。
三、解答题:下图表示的是,小明放学回家途中骑车速度与时间的关系.你能想像出他回家路上的情景吗?答案:一、1.C2.D3.A 二、1.100米跑,甲,325米/秒、8米/秒 2.20 3.60元,80元三、小明放学回家先是加速然后匀速最后减速运动备课资源:一、填空1.甲、乙两人在一次赛跑中,路程与时间的关系如图所示,•那么可以知道:①这是一次________米赛路;②甲、乙两人先到达终点的是_________;•③在这次赛跑中甲的速度为________,乙的速度为________.时间速度 60 y (元)x (h ) 80 30 o 40 602.如图所示,表示的是某航空公司托运行李的费用y (元)与托运行李的质量x (千克)的关系,由图中可知行李的质量只要不超过_________千克,•就可以免费托运.二、选择1.某个月来从化市遭受暴雨袭击,流溪河水位上涨.明明以警戒水位为原点,用折线统计图表示某一天河水水位情况.请你结合折线统计图判断下列叙述不正确的是( ).A .8时水位最高B .这一天水位均高于警戒水位C .8时到16时水位都在下降D .P 点表示12时水位高于警戒水位0.6米2.小明和小叶进行百米赛跑,小明比小叶跑得快,如果两人同时起跑,小明肯定赢.现在小明让小结论中正确的是( ).A .小明先到达终点B .小叶的速度是8米/秒C .小叶先跑了10米D .小叶的速度是10米/秒3.一个装有进出水管的水池,单位时间内进、出水量都是一定的.已知水池的容积为800升,又知单开进水管20分可把空水池注满;若同时打开进、出水管,20分可把满水池的水放完,现已知水池内有水200升,先打开进水管3分钟,再打开出水管,两管同时开放,直至把水池中的水放完,则能确定反映这一过程中水池的水量(升)随时间(分)变化的函数图象是( ).4.一天,小芳感冒发烧了,早晨他烧得厉害,吃过药后感冒好多了,•中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么发烫了.图中能基本反映出亮亮这一天(0~24时)•体温的变化情况的是( )s /米t /秒0 4 8 12 16 20 24 0.20.4 0.60.8 1.0水位/米 P320 200O3 8 Q /升t /分A .200Q /升/分B .320 200OQ /升 /分D.320 200O311 Q /升t /分C .5.某产品的生产流水线每小时可生产200件产品,生产前没有产品积压,生产3小时后安排工人装箱,若每小时装产品210件,未装箱的产品数量为y,•生产时间为t,那么y与t的大致图象只能是图中的()6.如图,向高为H的圆柱形空水杯里注水,表示注水量y与水深x的关系的图象是()7.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶,•过了一段时间,汽车到了下一个车站,乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,则图中近似地刻画出汽车在这段时间内的速度变化情况的是()三、解答1.情景1中能够得到一些怎样的结论2.课本P1041的练习3. 某商店售货时,在进价的基础上加一定利润,其数量x与售价y如下表表示.请你根据表中所提供的信息,列出售价y数量x(千克)售价y(元)1 8+0.42 16+0.83 24+1.24 32+1.65 40+2.0……4.?0 时间速度。