solidworks:hands on,使用Flow Simulation开始您的流体分析

合集下载

solidworks flow simulation 操作方法

solidworks flow simulation 操作方法

solidworks flow simulation 操作方法【实用版3篇】目录(篇1)一、solidworks flow simulation 操作方法简述1.solidworks flow simulation 简介2.操作方法的主要步骤3.操作方法的优点和局限性二、具体操作步骤1.创建仿真模型2.设定仿真条件3.进行仿真计算4.分析仿真结果5.调整模型参数,重新进行仿真计算三、操作方法的优点和局限性1.优点2.局限性正文(篇1)solidworks flow simulation 是一款广泛应用于流体仿真分析的软件,它的操作方法主要分为以下几个步骤:1.创建仿真模型:首先,我们需要根据实际物理系统,在 solidworks 中建立仿真模型。

这个模型应该尽可能地准确,以便于进行后续的仿真计算。

2.设定仿真条件:接下来,我们需要设定仿真条件,包括流体的物理性质、流速、压力等参数。

这些参数将直接影响仿真的结果。

3.进行仿真计算:在设定好仿真条件后,我们可以开始进行仿真计算。

这个过程需要一定的时间和计算资源,需要耐心等待。

4.分析仿真结果:在仿真计算完成后,我们可以得到仿真结果,包括流体流动的速度、压力、温度等参数。

我们需要对这些参数进行分析,以了解实际物理系统的性能。

5.调整模型参数,重新进行仿真计算:如果分析仿真结果发现模型的参数需要调整,我们可以根据需要进行调整,然后重新进行仿真计算。

solidworks flow simulation 的优点在于它能够快速地进行流体仿真分析,并且能够得到较为准确的结果。

目录(篇2)1.solidworks flow simulation 操作方法介绍2.操作步骤详解3.操作技巧总结正文(篇2)一、solidworks flow simulation 操作方法介绍solidworks flow simulation 是一款专业的流体模拟软件,可应用于机械设计、汽车设计、航空航天等领域。

学习使用SolidWorksFlowSimulation进行流体分析

学习使用SolidWorksFlowSimulation进行流体分析

学习使用SolidWorksFlowSimulation进行流体分析Chapter 1: Introduction to SolidWorks Flow SimulationSolidWorks Flow Simulation is a powerful computational fluid dynamics (CFD) tool that allows engineers and designers to analyze the behavior of fluid flow and heat transfer within their designs. It is an integrated feature of SolidWorks, a popular 3D CAD software widely used in various industries.The purpose of this chapter is to provide a brief overview of SolidWorks Flow Simulation, its capabilities, and its benefits for engineers and designers.1.1 What is SolidWorks Flow Simulation?SolidWorks Flow Simulation is a CFD software package that enables engineers to simulate and analyze fluid flow, heat transfer, and related phenomena. It uses mathematical equations and numerical methods to solve complex fluid dynamics problems.1.2 Why Use SolidWorks Flow Simulation?There are several reasons why engineers and designers choose to use SolidWorks Flow Simulation:- Improved Design Efficiency: By simulating fluid flow and heat transfer early in the design process, engineers can identify and resolvepotential issues before physical prototypes are built. This saves time and reduces costs.- Accurate Results: SolidWorks Flow Simulation uses validated numerical algorithms to provide accurate results. It considers factors such as turbulence, flow rates, pressure drops, and thermal effects.- Visualization: SolidWorks Flow Simulation provides interactive 3D visualizations of fluid flow patterns, velocity vectors, temperature distributions, and other parameters. This helps engineers better understand the behavior of their designs.- Optimization: SolidWorks Flow Simulation offers optimization capabilities, allowing engineers to automatically find the best design parameters for their fluid systems. This can lead to improved performance and efficiency.1.3 Applications of SolidWorks Flow SimulationSolidWorks Flow Simulation has a wide range of applications in various industries, including:- Automotive: Analyzing airflow around vehicles, optimizing cooling systems, and improving aerodynamics.- Aerospace: Evaluating aircraft wing designs, studying fluid flow in jet engines, and optimizing heat transfer in spacecraft.- HVAC: Simulating air conditioning systems, optimizing ventilation design, and analyzing thermal comfort.- Electronics: Studying the cooling of electronic components, evaluating heat sink designs, and analyzing airflow in computer servers.Chapter 2: Getting Started with SolidWorks Flow SimulationChapter 2 provides a step-by-step guide on how to get started with SolidWorks Flow Simulation. It covers the basic workflow, setup, and analysis of a typical fluid flow problem.2.1 Creating a StudyThe first step in using SolidWorks Flow Simulation is to create a new study. This involves defining the fluid domain, selecting the appropriate fluid type, and specifying the boundary conditions.2.2 Meshing the GeometryAfter creating a study, the next step is to generate a mesh for the geometry. Meshing is the process of dividing the fluid domain into a network of small cells or elements. A finer mesh provides higher accuracy but requires more computational resources.2.3 Defining Boundary ConditionsBoundary conditions define the inputs and outputs of the fluid flow problem. This includes specifying the inlet velocity or pressure, outlet conditions, wall properties, and any additional constraints or assumptions.2.4 Solving the Flow ProblemOnce the geometry is meshed and the boundary conditions are set, SolidWorks Flow Simulation can solve the flow problem. This involves solving the Navier-Stokes equations, which describe the conservation of mass, momentum, and energy.2.5 Analyzing the ResultsAfter the flow problem is solved, engineers can analyze the results using various post-processing tools. This includes visualizing flow patterns, velocity profiles, pressure distributions, temperature gradients, and other relevant parameters.Chapter 3: Advanced Features and TechniquesChapter 3 explores some of the advanced features and techniques available in SolidWorks Flow Simulation. These features allow engineers to handle more complex fluid flow problems and obtain more detailed insights.3.1 Turbulence ModelingTurbulence modeling is crucial in accurately simulating turbulent flow, which is common in many real-world scenarios. SolidWorks Flow Simulation provides various turbulence models, such as the k-epsilon model and Reynolds stress model, to capture turbulence effects.3.2 Multiphase FlowMultiphase flow refers to the simultaneous flow of multiple fluid phases, such as gas-liquid, liquid-solid, or gas-liquid-solid. SolidWorksFlow Simulation offers tools to model and analyze multiphase flow phenomena, such as cavitation, droplet dynamics, and particle transport.3.3 Heat Transfer AnalysisSolidWorks Flow Simulation includes comprehensive heat transfer analysis capabilities. Engineers can analyze conduction, convection, and radiation heat transfer within their designs. This is particularly useful in evaluating thermal management solutions and optimizing heat dissipation.3.4 Fluid-Structure Interaction (FSI)Fluid-structure interaction occurs when the fluid flow affects the structural behavior of a design, and vice versa. SolidWorks Flow Simulation allows engineers to perform FSI analysis, enabling them to study the interaction between fluid forces and structural responses.Chapter 4: Case Studies and Real-Life ExamplesChapter 4 presents several case studies and real-life examples that demonstrate the practical applications of SolidWorks Flow Simulation. These examples cover a diverse range of industries and showcase the capabilities and benefits of the software.4.1 Automotive Cooling System OptimizationThis case study focuses on optimizing the cooling system of a car engine. By simulating the airflow around the radiator, fan, and othercomponents, engineers can identify design improvements that enhance cooling efficiency and reduce engine overheating.4.2 HVAC System Design OptimizationIn this example, SolidWorks Flow Simulation is used to optimize the design of an HVAC system in a commercial building. By analyzing air distribution, temperature gradients, and ventilation effectiveness, engineers can improve occupant comfort and energy efficiency.4.3 Electronics Cooling AnalysisThis case study demonstrates the thermal analysis of an electronic circuit board. SolidWorks Flow Simulation helps engineers evaluate heat sink designs, optimize airflow through the components, and ensure proper cooling of sensitive electronic devices.Chapter 5: ConclusionIn conclusion, SolidWorks Flow Simulation is a valuable tool for engineers and designers involved in fluid flow and heat transfer analysis. It provides a comprehensive set of features and capabilities that enable users to simulate, analyze, and optimize their designs.By integrating SolidWorks Flow Simulation into the design process, engineers can gain valuable insights, improve design efficiency, and make informed decisions that lead to better performing and more reliable products.Whether in automotive, aerospace, HVAC, or electronics industries, SolidWorks Flow Simulation offers a powerful solution for fluid analysis, contributing to safer, more efficient, and more innovative designs.。

solidworks_flow_simulation中文教程

solidworks_flow_simulation中文教程

目录第一阶段:球阀设计打开模型……………………………………………………………………………1-1创建b 项目…………………………………………………………………1-2边界条件……………………………………………………………………………1-5定义工程目标…………………………………………………………………………1-7求解……………………………………………………………………………………1- 8监测求解过程…………………………………………………………………………1-8调整模型透明度………………………………………………………………………1-10切面云图……………………………………………………………………………1-10表面云图………………………………………………………………………………1-11等值图………………………………………………………………………………1-12流动迹线图…………………………………………………………………………1-13 XY 图………………………………………………………………………………1-15表面参数………………………………………………………………………………1-16分析球形部分中一个设计变化……………………………………………………… 1-16复制项目……………………………………………………………………………1-19分析b 应用中的一个设计变化……………………………………………1-19第一阶段:耦合热交换打开模型………………………………………………………………………………2-1 准备模型……………………………………………………………………………2-2 创建b 项目………………………………………………………………… 2-3 定义风扇………………………………………………………………………………2-6 定义边界条件…………………………………………………………………………2-8 定义热源………………………………………………………………………………2-9 创建新材料…………………………………………………………………………2-10 定义固体材料…………………………………………………………………………2-10 定义工程目标…………………………………………………………………………2-11 定义体积目标…………………………………………………………………… 2-11 定义表面目标…………………………………………………………………… 2-13定义全局目标…………………………………………………………………… 2-14改变几何求解精度…………………………………………………………………2-15 求解…………………………………………………………………………………2-16 观察目标………………………………………………………………………………2-16 流动迹线图…………………………………………………………………………2-17 切面云图……………………………………………………………………………2-19 表面云图……………………………………………………………………………2-22第一阶段:多孔介质打开模型………………………………………………………………………………3-2 创建b 项目…………………………………………………………………3-2 定义边界条件…………………………………………………………………………3-4 创建一个等向性的多孔介质………………………………………………………3-5 定义多孔介质-等向性………………………………………………………3-7 定义表面目标………………………………………………………………………… 3-7 定义方程目标………………………………………………………………………3-8 求解……………………………………………………………………………………3-9 观察目标……………………………………………………………………………… 3-10 流动迹线图…………………………………………………………………………… 3-10 复制项目……………………………………………………………………………… 3-11 创建一个单向性的多孔介质………………………………………………………… 3-12 定义多孔介质-单向性……………………………………………………………… 3-12 比较等向性和单向性多孔介质……………………………………………………… 3-13确定水力损失模型描述……………………………………………………………………………4-2 创建项目……………………………………………………………………………… 4-3 定义边界条件………………………………………………………………………… 4-7 定义表面目标………………………………………………………………………… 4-8 运行计算……………………………………………………………………………… 4-9 监测计算……………………………………………………………………………… 4-10 复制项目……………………………………………………………………………… 4-10 创建切面云图………………………………………………………………………… 4-11创建全局目标………………………………………………………………………… 4-15 计算器使用…………………………………………………………………………… 4-16 改变几何参数………………………………………………………………………… 4-18圆柱体阻力系数创建项目…………………………………………………………………………… 5-2 定义2D 流动平面………………………………………………………………… 5-6 定义全局目标……………………………………………………………………… 5-7 定义方程目标……………………………………………………………………… 5-7 复制项目并且创建一个新例子…………………………………………………… 5-8 改变项目设置………………………………………………………………………5-9 改变方程目标………………………………………………………………………5-10 创建模板…………………………………………………………………………… 5-10 以模板方式创建一个项目………………………………………………………… 5-11 求解一系列项目…………………………………………………………………… 5-12 获取结果…………………………………………………………………………… 5-12 热交换系数打开模型…………………………………………………………………………… 6-2 创建项目…………………………………………………………………………… 6-3 对称边界条件……………………………………………………………………… 6-5 定义流体子区域…………………………………………………………………… 6-6 定义边界条件……………………………………………………………………… 6-7 定义固体材料……………………………………………………………………… 6-10 定义体积目标……………………………………………………………………… 6-11 运行求解…………………………………………………………………………… 6-11 观察目标…………………………………………………………………………… 6-12显示流动迹线图…………………………………………………………………… 6-14 计算表面参数……………………………………………………………………… 6-16 计算热交换系数…………………………………………………………………… 6-18 定义参数显示范围…………………………………………………………………6-18网格优化问题描述…………………………………………………………………………… 7-2 模型定义…………………………………………………………………………… 7-3 定义项目……………………………………………………………………………7-3 边界条件……………………………………………………………………………7-3 手动设置最小网格间隙尺寸……………………………………………………… 7-7 关闭自动网格定义…………………………………………………………………7-9 生成网格如下所示,约75000网格单元使用Local Intial Mesh 选项…………………………………………………7-10 定义控制平面………………………………………………………………………7-12 再创建一个局部初始网格…………………………………………………………7-14EFD Zooming的应用问题描述……………………………………………………………………………8-1 两种使用b 进行求解问题的方式…………………………………………8-3 EFD Zooming 方法步骤……………………………………………………………8-3 EFD Zooming 第一阶段………………………………………………………8-4 EFD Zooming 项目第一阶段…………………………………………………8-4 EFD Zooming 第二阶段………………………………………………………8-8 EFD Zooming 项目第二阶段…………………………………………………8-8 改变散热器……………………………………………………………………8-14 复制项目到存在的模型定义…………………………………………………8-14局部初始化网格方法………………………………………………………………8-15 使用局部初始化网格方法的b 项目(Sink No1) …………………… 8-15 使用局部初始化网格方法的b 项目(Sink No2) …………………… 8-18 结果………………………………………………………………………………… 8-18纺织机械问题描述…………………………………………………………………………… 9-1 模型定义…………………………………………………………………………… 9-2 定义项目…………………………………………………………………………… 9-3 边界条件…………………………………………………………………………… 9-3 定义旋转壁面……………………………………………………………………… 9-4 初始条件-旋转…………………………………………………………………… 9-5 定义目标…………………………………………………………………………… 9-6 结果-光滑表面…………………………………………………………………… 9-7 显示粒子流和流动迹线……………………………………………………………9-8 模拟粗糙旋转壁面………………………………………………………………… 9-10 改变壁面粗糙度…………………………………………………………………… 9-10 结果-粗糙壁面…………………………………………………………………… 9-11圆形通道中的非牛顿流体流动问题描述………………………………………………………………………………10-1 模型定义………………………………………………………………………………10-2 定义非牛顿流体……………………………………………………………………… 10-2 定义项目………………………………………………………………………………10-2 边界条件………………………………………………………………………………10-3 定义目标…………………………………………………………………………10-3 与流体水进行比较…………………………………………………………………… 10-4 改变项目设置……………………………………………………………………10-4具有反射镜和屏幕的加热球问题描述…………………………………………………………………………… 11-1 模型结构…………………………………………………………………………… 11-2 案例 1 ………………………………………………………………………………11-3 定义项目……………………………………………………………………… 11-3 定义计算域……………………………………………………………………11-3 调整自动网格设置……………………………………………………………11-4 定义辐射表面…………………………………………………………………11-4 定义物体对于热辐射的可穿透性…………………………………………… 11-5 热源和目标定义………………………………………………………………11-5 案例 2 ……………………………………………………………………………… 11-6 改变辐射表面状况……………………………………………………………11-6 定义全局目标…………………………………………………………………11-6 定义固体的初始条件…………………………………………………………11-6结果………………………………………………………………………………… 11-7旋转叶轮问题描述………………………………………………………………………………12-1 模型定义………………………………………………………………………………12-2 定义项目………………………………………………………………………………12-2 边界条件………………………………………………………………………………12-3 定义静止壁面……………………………………………………………………12-4 叶轮效率………………………………………………………………………………12-4 定义项目目标…………………………………………………………………………12-5 结果……………………………………………………………………………………12-7CPU 冷却器问题描述………………………………………………………………………………13-1 模型定义………………………………………………………………………………13-2 定义项目………………………………………………………………………………13-2 定义计算域……………………………………………………………………………13-2 旋转区域………………………………………………………………………………13-3 定义静止壁面…………………………………………………………………………13-5 固体材料………………………………………………………………………………13-6 热源……………………………………………………………………………………13-6 初始网格设置…………………………………………………………………………13-7结果……………………………………………………………………………………13-11特性列表下面罗列了出现在教程中的b 相应的物理和界面特性。

SolidWorks_Simulation教程

SolidWorks_Simulation教程

SolidWorks_Simulation教程SolidWorks Simulation是一款用于进行结构、热分析和流体流动仿真的软件。

它能够帮助工程师们在设计产品的早期阶段就进行各种仿真分析,从而提高产品的质量和性能。

本文将介绍SolidWorks Simulation的基本工作流程和一些常用的功能。

首先,我们需要导入我们要进行仿真分析的零件或装配体。

在SolidWorks中,我们可以使用实体建模功能来创建零件和装配体,然后将其导入到Simulation环境中。

在导入之前,我们需要将零件或装配体的材料属性和边界条件定义好。

一旦我们导入了零件或装配体,我们就可以开始进行各种仿真分析。

在SolidWorks Simulation中,有三种主要类型的分析:结构分析、热分析和流体流动分析。

我们可以根据实际需要选择哪一种类型的分析。

对于结构分析,我们可以对零件或装配体的强度、刚度和变形进行分析。

我们可以定义荷载、约束条件和材料属性,并使用有限元法对零件或装配体进行离散化。

然后,我们可以进行静态分析、动态分析或疲劳分析,以评估产品在不同工况下的性能。

对于热分析,我们可以对零件或装配体的温度分布和热传导进行分析。

我们可以定义热源、边界条件和材料属性,并使用有限元法对零件或装配体进行离散化。

然后,我们可以进行稳态分析或瞬态分析,以评估产品在不同工况下的热性能。

对于流体流动分析,我们可以对液体或气体在零件或装配体中的流动行为进行分析。

我们可以定义流体的物理属性、边界条件和流动类型,并使用有限元法对零件或装配体进行离散化。

然后,我们可以进行稳态分析或瞬态分析,以评估产品在不同工况下的流体流动性能。

在进行仿真分析之后,我们可以查看结果并进行后处理。

SolidWorks Simulation提供了各种可视化工具,如色谱图、云图和矢量图,以帮助我们理解仿真结果。

我们还可以从结果中提取关键信息,如最大应力、最大变形和最大温度,以评估产品的性能。

SOLIDWORKS Flow Simulation 用户手册说明书

SOLIDWORKS Flow Simulation 用户手册说明书

SOLIDWORKS SOLIDWORKS Flow SimulationDassault Systèmes SolidWorks Corporation175 Wyman StreetWaltham, MA 02451 U.S.A.© 1995-2021, Dassault Systemes SolidWorks Corporation, a Dassault Systèmes SE company, 175 Wyman Street, Waltham, Mass. 02451 USA. All Rights Reserved.The information and the software discussed in this document are subject to change without notice and are not commitments by Dassault Systemes SolidWorks Corporation (DS SolidWorks).No material may be reproduced or transmitted in any form or by any means, electronically or manually, for any purpose without the express written permission of DS SolidWorks.The software discussed in this document is furnished under a license and may be used or copied only in accordance with the terms of the license. All warranties given by DS SolidWorks as to the software and documentation are set forth in the license agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of any terms, including warranties, in the license agreement.For a full list of the patents, trademarks, and third-party software contained in this release, please go to the Legal Notices in the SOLIDWORKS documentation.Restricted RightsThis clause applies to all acquisitions of Dassault Systèmes Offerings by or for the United States federal government, or by any prime contractor or subcontractor (at any tier) under any contract, grant, cooperative agreement or other activity with the federal government. The software, documentation and any other technical data provided hereunder is commercial in nature and developed solely at private expense. The Software is delivered as "Commercial Computer Software" as defined in DFARS 252.227-7014 (June 1995) or as a "Commercial Item" as defined in FAR 2.101(a) and as such is provided with only such rights as are provided in Dassault Systèmes standard commercial end user license agreement. Technical data is provided with limited rights only as provided in DFAR 252.227-7015 (Nov. 1995) or FAR 52.227-14 (June 1987), whichever is applicable. The terms and conditions of the Dassault Systèmes standard commercial end user license agreement shall pertain to the United States government's use and disclosure of this software, and shall supersede any conflicting contractual terms and conditions. If the DS standard commercial license fails to meet the United States government's needs or is inconsistent in any respect with United States Federal law, the United States government agrees to return this software, unused, to DS. The following additional statement applies only to acquisitions governed by DFARS Subpart 227.4 (October 1988): "Restricted Rights - use, duplication and disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252-227-7013 (Oct. 1988)."In the event that you receive a request from any agency of the U.S. Government to provide Software with rights beyond those set forth above, you will notify DS SolidWorks of the scope of the request and DS SolidWorks will have five (5) business days to, in its sole discretion, accept or reject such request. Contractor/ Manufacturer: Dassault Systemes SolidWorks Corporation, 175 Wyman Street, Waltham, Massachusetts 02451 USA.Document Number: PMT2243-ENGContents IntroductionAbout This Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Course Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Using this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Lessons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2About the Training Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3User Interface Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Conventions Used in this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Use of Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4More SOLIDWORKS Training Resources. . . . . . . . . . . . . . . . . . . . . . 4Local User Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Lesson 1:Creating a SOLIDWORKS Flow Simulation ProjectObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Case Study: Manifold Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Model Preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Internal Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7External Flow Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Manifold Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Lids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Lid Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Manual Lid Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9iContents SOLIDWORKS SimulationiiAdding a Lid to a Part File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Adding a Lid to an Assembly File . . . . . . . . . . . . . . . . . . . . . . . . 10 Checking the Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Internal Fluid Volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Invalid Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Project Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Exclude Cavities Without Flow Conditions. . . . . . . . . . . . . . . . . 21 Adiabatic Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Roughness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Computational Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Load Results Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Monitoring the Solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Goal Plot Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Warning Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Post-processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Scaling the Limits of the Legend . . . . . . . . . . . . . . . . . . . . . . . . . 38 Changing Legend Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Orientation of the Legend, Logarithmic Scale . . . . . . . . . . . . . . . 38 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Exercise 1: Air Conditioning Ducting . . . . . . . . . . . . . . . . . . . . . . . . 52Lesson 2:MeshingObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Case Study: Chemistry Hood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Project Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Computational Mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Basic Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Initial Mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Geometry Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Minimum Gap Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Minimum Wall Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Result Resolution/Level of Initial Mesh. . . . . . . . . . . . . . . . . . . . . . . 68Manual Global Mesh Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Control Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Exercise 2: Square Ducting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Exercise 3: Thin Walled Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Exercise 4: Heat Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Exercise 5: Meshing Valve Assembly . . . . . . . . . . . . . . . . . . . . . . . 102Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102SOLIDWORKS Simulation Contents Lesson 3:Thermal AnalysisObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Case Study: Electronics Enclosure. . . . . . . . . . . . . . . . . . . . . . . . . . 104Project Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Fans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Fan Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Perforated Plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Free Area Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Exercise 6: Materials with Orthotropic Thermal Conductivity . . . . 120Exercise 7: Electric Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Lesson 4:External Transient AnalysisObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133Case Study: Flow Around a Cylinder. . . . . . . . . . . . . . . . . . . . . . . . 134Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Reynolds Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135External Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Transient Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Turbulence Intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Solution Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . 138Two Dimensional Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138Computational Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Calculation Control Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Finishing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Saving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Drag Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Unsteady Vortex Shedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144Time Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149Exercise 8: Electronics Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150iiiContents SOLIDWORKS Simulation Lesson 5:Conjugate Heat TransferObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161Case Study: Heated Cold Plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Project Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Conjugate Heat Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Real Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Goals Plot in the Solver Window. . . . . . . . . . . . . . . . . . . . . . . . 166Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168Exercise 9: Heat Exchanger with Multiple Fluids . . . . . . . . . . . . . . 169 Lesson 6:EFD ZoomingObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173Case Study: Electronics Enclosure. . . . . . . . . . . . . . . . . . . . . . . . . . 174Project Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174EFD Zooming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174EFD Zooming - Computational Domain . . . . . . . . . . . . . . . . . . 177Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Lesson 7:Porous MediaObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185Case Study: Catalytic Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Associated Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Porosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Permeability Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Matrix and Fluid Heat Exchange . . . . . . . . . . . . . . . . . . . . . . . . 189Specific area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Dummy Bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192Design Modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201Exercise 10: Channel Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Lesson 8:Rotating Reference FramesObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Rotating Reference Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Part 1: Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Case Study: Table Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 ivSOLIDWORKS Simulation ContentsNoise Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217Broadband Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217Part 2: Sliding Mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218Case Study: Blower Fan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218Tangential Faces of Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220Time Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223Part 3: Axial Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228Exercise 11: Ceiling Fan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229Computational Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Lesson 9:Parametric StudyObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231Case Study: Piston Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232Stages in the Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232Parametric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233Steady State Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233Parametric Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235Part 1: Goal Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236Input Variable Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237Target Value Dependence Types . . . . . . . . . . . . . . . . . . . . . . . . 238Output Variable Initial Values . . . . . . . . . . . . . . . . . . . . . . . . . . 239Running Optimization Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 239Part 2: Design Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243Part 3: Multi parameter Optimization. . . . . . . . . . . . . . . . . . . . . . . . 246Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250Exercise 12: Variable Geometry Dependent Solution . . . . . . . . . . . 251Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Lesson 10:Free SurfaceObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253Case Study: Water Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254Free Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254Volume of Fluid (VOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261Exercise 13: Water Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262Theoretical Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268Exercise 14: Dam-Break Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276vContents SOLIDWORKS Simulation Lesson 11:CavitationObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277Case Study: Cone Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278Cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Lesson 12:Relative HumidityObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283Relative Humidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284Case Study: Cook House . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 Lesson 13:Particle TrajectoryObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291Case Study: Hurricane Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . 292Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292Particle Trajectories - Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 292Particle Study - Physical Settings. . . . . . . . . . . . . . . . . . . . . . . . 297Particle Study - Wall Condition . . . . . . . . . . . . . . . . . . . . . . . . . 298Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299Exercise 15: Uniform Flow Stream. . . . . . . . . . . . . . . . . . . . . . . . . 300 Lesson 14:Supersonic FlowObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305Supersonic Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306Case Study: Conical Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306Drag Coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307Shock Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 Lesson 15:FEA Load TransferObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313Case Study: Billboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 vi。

如何使用SolidWorks_Flow_Simulation分析空蚀现象-气蚀分析

如何使用SolidWorks_Flow_Simulation分析空蚀现象-气蚀分析

如何使用SolidWorks Flow Simulation分析孔蚀现象Cavitation in SolidWorks Flow Simulation –如何使用SolidWorks Flow Simulation分析孔蚀现象■实威国际/CAE产品事业部何谓孔蚀现象(Cavitation)孔蚀现象(Cavitation)也称之为气穴现象、空穴。

当液体进入管路或阀门时如果压力低于流体之蒸发压压力(Vapor Saturation Pressure),就会在管路或阀门的流道内产生气泡。

这气泡不是因为加热而产生的,而是因为流动造成局部区域流速较快引起局部区域静压骤降,气泡的产生会造成噪音或振动,而且通常是发生在实体表面上,因此会损坏管路或阀门的壁面,进而降低设备的使用寿命。

孔蚀现象也常常发生在其他常见的装置如泵浦、叶轮……等流体机械。

若能透过分析软件在产品设计时间仿真出此现象,则对于产品质量有非常大的保障。

(图一) 发生孔蚀现象的涡轮叶片(图片来源:参考数据2)(图二) 叶轮模型范例,吸入端至吐出端的压力曲线,上方曲线是正常的,下方曲线低于蒸发压力会发生孔蚀现象。

孔蚀现象在SolidWorks Flow Simulation1.SolidWorks Flow Simulation 2006以前版本。

SolidWorks Flow Simulation无法直接模拟出孔蚀现象。

不过,可以藉由分析结果中负压的区域指出有孔蚀现象的区域。

2.SolidWorks Flow Simulation 2007之后版本。

SolidWorks Flow Simulation有一项新增功能,可以应用来评估是否发生孔蚀现象。

(图三) 在SolidWorks Flow Simulation 2007版本之后,在流体流动特性(Flow Characteristic)中,就可以指定要不要启动Cavitation选项。

使用建议• 若是分析水的流动,在分析的区域中有可能局部区域的静态将低于液体在环境温度下的蒸发压力值或者是液体流过剧烈加热区域使温度上升至沸点而引起孔蚀现象,建议在Wizard 或General Settings的Fluid设定页面中启用Cavitation选项。

LED灯热模拟步骤(solidworks) flow simulation

LED灯热模拟步骤(solidworks) flow simulation
可以在网上查找,导热系数和比热容等相关参数一下要设置。
透 镜 材 料 设 置
Twelfth(第十二步):设置透镜材质:选中所有透镜,选择材料, 点对勾确定。(一般透镜材料为PMMA,Create/Edit新建材料。
——
材芯 料片 设 置
向 导 设 置
Eighth(第八步):设置初始环境条件(Initial and Ambient Conditions)。 Thermodynamic Parameters(热参数)→Temperature(温度)(数值可设置与环境温 度数值相同);设置气流(Velocity parameters)(只设与重力相反方向的气流); Solid Parameters→intial solid temperature(初始固体温度)(数值设置与环境温 度数值相同);设置相对湿度Humidity→Relative humidity
设 置 初 始 网 格 ( 手 动 )
3.Refining Cells→Refine solid cells→level of refining solid(设置 固体划分等级)
设 置 初 始 网 格 ( 手 动 )
4.Narrow Channels→Enable narrow channels refinement→Characteristic number of cells across a narrow channel/Narrow channels refinement level(设置模型间细小缝隙 划分等级)
铝 基 板
Thirteenth(第十三步):设置芯片和铝基板材质:芯片一般设为铜, 铝基板根据厂家提供参数来设置。
设 置 导 热 胶 和 芯 片 热 阻
Fourteenth(第十四步):Flow Simulation→Insert→Contact Resistance,(设置导热胶和芯片热阻)。

solidworks flow simulation工程实例详解

solidworks flow simulation工程实例详解

solidworks flow simulation工程实例详解1.引言1.1 概述概述部分的内容旨在简要介绍solidworks flow simulation工程实例详解这篇长文的主题和内容。

我们可以如下编写概述部分的内容:在当今工程领域,流体力学的分析和仿真已经成为设计和优化产品的不可或缺的一部分。

而solidworks flow simulation作为一种强大的流体力学分析工具,为工程师们提供了便利和精确的解决方案。

本文将详细介绍solidworks flow simulation的工程实例,旨在帮助读者更好地理解和应用这一工具。

本文将按照以下结构进行展开:引言、正文和结论。

引言部分首先会对整个文章的背景和目的进行概述,为读者提供一个整体的了解。

进一步,在正文部分,我们将通过两个工程实例的详细解析,展示solidworks flow simulation在实际工程问题中的应用。

每个工程实例将包含具体的问题描述、解决方案设计以及仿真结果分析,以便读者能够深入了解solidworks flow simulation的工作原理和功能。

最后,结论部分将对整篇文章进行总结,并展望solidworks flow simulation未来的发展和应用前景。

读者可以通过本文的内容,了解到solidworks flow simulation在工程实例中的应用价值,并对其在自己的工程项目中进行合理的选择和应用提供参考。

通过本文的阅读与理解,读者将能够更好地掌握并应用solidworks flow simulation,提升自己在工程领域的实际工作能力。

期望本文能够对有关solidworks flow simulation的工程专业人士提供一定的帮助和指导。

1.2 文章结构文章结构部分的内容可以包括以下内容:本文分为引言、正文和结论三部分。

引言部分包括概述、文章结构和目的三个小节。

在概述中,将介绍solidworks flow simulation工程实例的背景和重要性。

SOLIDWORKS Flow Simulation 产品说明书

SOLIDWORKS Flow Simulation 产品说明书

OBJECTIVESOLIDWORKS® Flow Simulation is a powerful Computational Fluid Dynamics (CFD) solution fully embedded within SOLIDWORKS. It enables designers and engineers to quickly and easily simulate the effect of fluid flow, heat transfer and fluid forces that are critical to the success of their designs.OVERVIEWSOLIDWORKS Flow Simulation enables designers to simulate liquid and gas flow in real-world conditions, run “what if” scenarios and efficiently analyze the effects of fluid flow, heat transfer and related forces on or through components. Design variations can quickly be compared to make better decisions, resulting in products with superior performance. SOL IDWORKS Flow Simulation offers two flow modules that encompass industry specific tools, practices and simulation methodologies—a Heating, Ventilation and Air Conditioning (HVAC) module and an Electronic Cooling module. These modules are add-ons to a SOLIDWORKS Flow Simulation license. BENEFITS• Evaluates product performance while changing multiple variables at a rapid pace.• Reduces time-to-market by quickly determining optimal design solutions and reducing physical prototypes.• Enables better cost control through reduced rework and higher quality.• Delivers more accurate proposals.CAPABILITIESSOLIDWORKS Flow SimulationSOLIDWORKS Flow Simulation is a general-purpose fluid flow and heat transfer simulation tool integrated with SOLIDWORKS 3D CAD. Capable of simulating both low-speed and supersonic flows, this powerful 3D design simulation tool enables true concurrent engineering and brings the critical impact of fluid flow analysis and heat transfer into the hands of every designer. In addition to SOL IDWORKS Flow Simulation, designers can simulate the effects of fans and rotating components on the fluid flow and well as component heating and cooling. HVAC ModuleThis module offers dedicated simulation tools for HVAC designers and engineers who need to simulate advanced radiation phenomena. It enables engineers to tackle the tough challenges of designing efficient cooling systems, lighting systems or contaminant dispersion systems. Electronic Cooling ModuleThis module includes dedicated simulation tools for thermal management studies. It is ideal for companies facing thermal challenges with their products and companies that require very accurate thermal analysis of their PCB and enclosure designs.SOLIDWORKS Flow Simulation can be used to:• Dimension air conditioning and heating ducts with confidence, taking into account materials, isolation and thermal comfort.• Investigate and visualize airflow to optimize systems and air distribution.• Test products in an environment that is as realistic as possible.• Produce Predicted Mean Vote (PMV) and Predicted Percent Dissatisfied (PPD) HVAC results for supplying schools and government institutes.• Design better incubators by keeping specific comfort levels for the infant and simulating where support equipment should be placed.• Design better air conditioning installation kits for medical customers.• Simulate electronic cooling for LED lighting.• Validate and optimize designs using a multi-parametric Department of Energy (DOE) method.SOLIDWORKS FLOW SIMULATIONOur 3D EXPERIENCE® platform powers our brand applications, serving 12 industries, and provides a rich portfolio of industry solution experiences.Dassault Syst èmes, t he 3D EXPERIENCE® Company, provides business and people wit h virt ual universes t o imagine sust ainable innovat ions. It s world-leading solutions transform the way products are designed, produced, and supported. Dassault Systèmes’ collaborative solutions foster social innovation, expanding possibilities for the virtual world to improve the real world. The group brings value to over 220,000 customers of all sizes in all industries in more than 140 countries. For more information, visit .Europe/Middle East/Africa Dassault Systèmes10, rue Marcel Dassault CS 4050178946 Vélizy-Villacoublay Cedex France AmericasDassault Systèmes 175 Wyman StreetWaltham, Massachusetts 02451-1223USA Asia-PacificDassault Systèmes K.K.ThinkPark Tower2-1-1 Osaki, Shinagawa-ku,Tokyo 141-6020Japan©2018 D a s s a u l t S y s t èm e s . A l l r i g h t s r e s e r v e d . 3D E X P E R I E N C E ®, t h e C o m p a s s i c o n , t h e 3D S l o g o , C A T I A , S O L I D W O R K S , E N O V I A , D E L M I A , S I M U L I A , G E O V I A , E X A L E A D , 3D V I A , B I O V I A , N E T V I B E S , I F W E a n d 3D E X C I T E a r e c o m m e r c i a l t r a d e m a r k s o r r e g i s t e r e d t r a d e m a r k s o f D a s s a u l t S y s t èm e s , a F r e n c h “s o c i ét é e u r o p ée n n e ” (V e r s a i l l e s C o m m e r c i a l R e g i s t e r # B 322 306 440), o r i t s s u b s i d i a r i e s i n t h e U n i t e d S t a t e s a n d /o r o t h e r c o u n t r i e s . A l l o t h e r t r a d e m a r k s a r e o w n e d b y t h e i r r e s p e c t i v e o w n e r s . U s e o f a n y D a s s a u l t S y s t èm e s o r i t s s u b s i d i a r i e s t r a d e m a r k s i s s u b j e c t t o t h e i r e x p r e s s w r i t t e n a p p r o v a l .• Free, forced and mixed convection• Fluid flows with boundary layers, including wall roughness effects• Laminar and turbulent fluid flows • Laminar only flow• Multi-species fluids and multi-component solids• Fluid flows in models with moving/rotating surfaces and/or parts• Heat conduction in fluid, solid and porous media with/without conjugate heat transfer and/or contact heat resistance between solids• Heat conduction in solids only • Gravitational effectsAdvanced Capabilities• Noise Prediction (Steady State and Transient)• Free Surface• Radiation Heat Transfer Between Solids • Heat sources due to Peltier effect• Radiant flux on surfaces of semi-transparent bodies• Joule heating due to direct electric current in electrically conducting solids• Various types of thermal conductivity in solid medium • Cavitation in incompressible water flows• Equilibrium volume condensation of water from steam and its influence on fluid flow and heat transfer• Relative humidity in gases and mixtures of gases • Two-phase (fluid + particles) flows • Periodic boundary conditions.• Tracer Study• Comfort Parameters • Heat Pipes • Thermal Joints• Two-resistor Components • PCBs•Thermoelectric Coolers• Test the heat exchange on AC and DC power converters.• Simulate internal temperature control to reduce overheating issues.• Better position fans and optimize air flux inside a design.• Predict noise generated by your designed system.Some capabilities above need the HVAC or Electronic Cooling Module.SOLIDWORK Design Support• Fully embedded in SOLIDWORKS 3D CAD• Support SOLIDWORKS configurations and materials • Help Documentation • Knowledge base• Engineering database• eDrawings ® of SOLIDWORKS Simulation results General Fluid Flow Analysis• 2D flow • 3D flow • Symmetry• Sector Periodicity • Internal fluid flows • External fluid flowsAnalysis Types• Steady state and transient fluid flows • Liquids • Gases• Non-Newtonian liquids • Mixed flows• Compressible gas and incompressible fluid flows •Subsonic, transonic and supersonic gas flowsMesher• Global Mesh Automatic and Manual settings • Local mesh refinementGeneral Capabilities• Fluid flows and heat transfer in porous media • Flows of non-Newtonian liquids • Flows of compressible liquids •Real gases。

solidworks flow simulation 操作方法

solidworks flow simulation 操作方法

solidworks flow simulation 操作方法(最新版4篇)目录(篇1)一、solidworks flow simulation 操作方法简述1.solidworks flow simulation 简介2.操作方法的基本流程3.操作方法的详细步骤二、使用solidworks flow simulation 的注意事项1.软件版本要求2.硬件配置要求3.使用技巧和注意事项正文(篇1)solidworks flow simulation 是一款用于流体模拟的软件,它可以帮助工程师和设计师更好地理解产品在各种环境下的性能。

以下是使用solidworks flow simulation 的操作方法及注意事项:一、solidworks flow simulation 操作方法简述1.打开solidworks软件,选择“flowsimulation”模块。

2.创建新的模拟:在界面左侧的工具栏中选择“新建”,然后按照提示设置模拟的基本参数。

3.导入模型:将需要模拟的模型导入到软件中。

4.添加流体:在界面左侧的工具栏中选择“流体”,然后选择需要模拟的流体类型和材料。

5.定义边界条件:在界面左侧的工具栏中选择“边界条件”,然后设置流体在模型中的流动边界条件,如压力、速度等。

6.运行模拟:点击“运行”按钮,开始模拟。

7.分析结果:在模拟结束后,软件会自动生成模拟结果,包括速度、压力、流量等数据。

工程师可以根据结果进行优化设计。

二、使用solidworks flow simulation 的注意事项1.软件版本要求:solidworks flow simulation 需要在solidworks 2016或更高版本中使用。

2.硬件配置要求:软件对电脑硬件要求较高,建议使用配置较高的电脑运行。

3.使用技巧和注意事项:在使用软件时,需要注意模型的导入和边界条件的设置,以及结果的准确性和可靠性。

目录(篇2)一、solidworks flow simulation 操作方法概述1.solidworks flow simulation 是一款用于模拟流体流动的软件。

如何使用SolidWorksFlowSimulation进行流体分析

如何使用SolidWorksFlowSimulation进行流体分析

如何使用SolidWorksFlowSimulation进行流体分析如何使用SolidWorks Flow Simulation进行流体分析第一章介绍SolidWorks Flow Simulation软件SolidWorks Flow Simulation是一款功能强大的流体分析软件,可用于研究和模拟各种流体行为,如流动、传热以及过程优化。

本章将介绍SolidWorks Flow Simulation的基本概念和软件界面。

1.1 SolidWorks Flow Simulation概述SolidWorks Flow Simulation是一款基于计算流体力学(CFD)原理的流体分析软件。

它提供了一种直观且易于使用的界面,使用户能够轻松地进行流体分析。

该软件适用于涉及空气、液体和气体等多种流体的工程领域,如航空航天、汽车、建筑、能源等。

1.2 SolidWorks Flow Simulation软件界面SolidWorks Flow Simulation软件的界面分为几个主要的模块,包括模型准备、模拟设定、网格划分、求解器设置和结果分析。

在模型准备模块中,用户可以导入、创建和编辑三维模型。

在模拟设定模块中,用户可以设置流体的边界条件、流体材料属性和求解器选项。

在网格划分模块中,用户可以对模型进行网格划分以提高计算精度。

在求解器设置模块中,用户可以选择不同的求解器和求解算法。

在结果分析模块中,用户可以对流体的流速、压力、温度等进行可视化和分析。

第二章 SolidWorks Flow Simulation基本操作本章将介绍使用SolidWorks Flow Simulation进行流体分析的基本操作,包括创建流体域、设置边界条件、定义流体材料和运行求解器。

2.1 创建流体域在使用SolidWorks Flow Simulation进行流体分析之前,首先需要创建定义流体域的模型。

用户可以使用SolidWorks CAD软件创建三维模型,然后导入到Flow Simulation中。

Dassault Syste

Dassault Syste

SolidWorks 2011SolidWorks Simulation 实践测试活动亚太地区总部电话:+65-6511-9188电子邮件:*********************大中国区电话:400-818-0016电子邮件:************************公司总部Dassault Systèmes SolidWorks Corp.300 Baker AvenueConcord, MA 01742 USA 电话:+1-978-371-5011电子邮件:*******************© 1995-2009,Dassault Systèmes SolidWorks Corporation 属于 Dassault Systèmes S.A. 公司。

300 Baker Avenue Concord, Massachusetts 01742 USA.保留所有权利。

本文档中提及的信息和软件如有更改,恕不另行通知,Dassault Systèmes SolidWorks Corporation (DS SolidWorks) 对此概不负责。

未经 DS SolidWorks 明确书面许可,不得以任何形式或通过任何手段(电子或机械)以及出于任何目的翻印或传播任何相关资料。

本文档中提及的软件是得到许可后才提供的,只能根据本许可协议的条款使用或复制。

DS SolidWorks对该软件和文档提供的所有保证均在 DS SolidWorks许可和订购服务协议中阐明,本文档及其内容中提及或暗示的任何内容,均不会视为对这些保证的修改或修订。

SolidWorks Standard、Premium 和 Professional 产品的专利通告。

美国专利 5,815,154、6,219,049、6,219,055、6,603,486、6,611,725 和 6,844,877,以及某些其他国家/地区的专利,包括 EP 1,116,190 和 JP 3,517,643。

solidworks hands on 使用Flow Simulation开始您的流体分析

solidworks hands on 使用Flow Simulation开始您的流体分析

介绍
CSloiclikdWtooreksdiFtlMowaSsitmeurlatteixotn是st一yl款es使用方便的仿真软件,它可以实
现S全e三co维nd的le流ve动l 和热分析,它可以做的仿真包括:
Third level
¾内Fo部ur和th 外lev部el流 动 9 Fifth level
¾ Fourth level 9 Fifth level
阀流量计算
Click to edit Master text styles
S创ec建on一d 个lev新el项目,并命名为flow rate
Third level
¾ Fourth level 9 Fifth level
阀流量计算
Click to edit Master text styles
阀流量计算
Click to edit Master text styles
S按ec照on同d 样lev的el方式,设定LID_2内表面的边界条件类型为Environment PreTshsirudrlee,ve数l 值为1个大气压强
¾ Fourth level 9 Fifth level
阀流量计算
实S际e动co手nd做le的ve例l 子 ¾ 阀T流hi量rd计lev算el
1. ¾内Fo部ur流th 动lev分el 析 2. 稳态9流Fif动th level
¾ 汽车排气管
1. 内部流动分析 2. 稳态流动 3. 气体-空气 4. 多孔介质
¾ 风叶流体分析到结构分析的方法
1. 外部流动转换为内部流动分析 2. 采用流体分析的结果进行结构分析
S选ec择on单d 位lev系el统,选择默认的SI单位系统

solidworks气流仿真步骤

solidworks气流仿真步骤

solidworks气流仿真步骤英文回答:As an engineer who has experience with Solidworks, I can provide a step-by-step guide for simulating airflow using this software. The first step is to create a new project in Solidworks and select the "Flow Simulation" option. Once the project is created, you can start by defining the boundaries of the airflow simulation. This involves specifying the inlet and outlet conditions, as well as any walls or obstacles that may affect the flow. For example, if you are simulating the airflow over a car, you would define the car's surface as a wall and the surrounding air as the inlet and outlet.After defining the boundaries, the next step is to set up the computational domain. This involves specifying the volume in which the airflow will be simulated. In the case of the car example, the computational domain would encompass the space around the car where the airflow is ofinterest. Solidworks provides tools for easily creatingthis computational domain based on the defined boundaries.Once the computational domain is set up, the next step is to define the fluid properties. This includes specifying the type of fluid (e.g. air, water, etc.), as well as its temperature, pressure, and other relevant properties. For the airflow over a car, the fluid properties would be those of the surrounding air. Solidworks allows for easy input of these properties through its user-friendly interface.With the boundaries, computational domain, and fluid properties defined, the next step is to mesh the computational domain. Meshing involves dividing the computational domain into small, discrete elements over which the airflow will be simulated. This is a crucial step as the accuracy of the simulation depends on the quality of the mesh. Solidworks provides tools for generating high-quality meshes with ease.Once the mesh is generated, the next step is to set up the simulation parameters. This involves specifying thetype of analysis (e.g. steady-state or transient), the solver settings, and any other relevant parameters. For the airflow over a car, a steady-state analysis would be appropriate as the airflow is not expected to changerapidly over time.After setting up the simulation parameters, the final step is to run the simulation and analyze the results. Solidworks provides tools for visualizing the airflow patterns, pressure distribution, velocity profiles, and other relevant data. This allows engineers to gain valuable insights into the behavior of the airflow and make informed design decisions.中文回答:作为一名有着Solidworks经验的工程师,我可以提供使用这款软件进行气流仿真的逐步指南。

SolidWorks Flow Simulation 七大特点

SolidWorks Flow Simulation 七大特点

强大的 3D 设计仿真工具 将流体流动分析与热传导仿真相结合 实现真正的并行工程 不可压缩和可压缩流体 牛顿和非牛顿流体 层流、湍流和过渡流 内部和外部流量 旋转坐标系 热传导仿真
湍流
压力对水和空气的体积的影响
压力
水体积:1
空气 体积:0.5
层流
© The COMET Program
3
© Dassault Systè mes | 机密信息 | 10/07/2013 | ref.: 3DS_Document_2012
益处
无需成为 CFD 专家 即可直接进行流动型态建模 与传统方法相比,缩短了设置时间并提高了模型的精度
12
实现技术 - 独一无二的 边界层壁面函数
自动修改壁面函数
© Dassault Systè mes | 机密信息 | 10/07/2013 | ref.: 3DS_Document_2012
4
ห้องสมุดไป่ตู้
低效产品开发周期
传统工程设计工具
只有 CFD 专家才能使用的 CFD
机械工程师 CFD 专家
© Dassault Systè mes | 机密信息 | 10/07/2013 | ref.: 3DS_Document_2012
5
并行 CFD - CFD 返回 3D CAD
终端用户 需求 初步项目概 念 详细产品设计 技术交流
3dsdocument2012与solidworks3dcad集成的通用流体流动和热传导仿真工具强大的3d设计仿真工具将流体流动分析与热传导仿真相结合实现真正的并行工程什么是solidworksflowsimulation
© Dassault Systè mes | 机密信息 | 10/07/2013 | ref.: 3DS_Document_2012

solidworks_flow_simulation中文教程

solidworks_flow_simulation中文教程

目录第一阶段:球阀设计打开模型……………………………………………………………………………1-1创建b 项目…………………………………………………………………1-2边界条件……………………………………………………………………………1-5定义工程目标…………………………………………………………………………1-7求解……………………………………………………………………………………1- 8监测求解过程…………………………………………………………………………1-8调整模型透明度………………………………………………………………………1-10切面云图……………………………………………………………………………1-10表面云图………………………………………………………………………………1-11等值图………………………………………………………………………………1-12流动迹线图…………………………………………………………………………1-13 XY 图………………………………………………………………………………1-15表面参数………………………………………………………………………………1-16分析球形部分中一个设计变化……………………………………………………… 1-16复制项目……………………………………………………………………………1-19分析b 应用中的一个设计变化……………………………………………1-19第一阶段:耦合热交换打开模型………………………………………………………………………………2-1 准备模型……………………………………………………………………………2-2 创建b 项目………………………………………………………………… 2-3 定义风扇………………………………………………………………………………2-6 定义边界条件…………………………………………………………………………2-8 定义热源………………………………………………………………………………2-9 创建新材料…………………………………………………………………………2-10 定义固体材料…………………………………………………………………………2-10 定义工程目标…………………………………………………………………………2-11 定义体积目标…………………………………………………………………… 2-11 定义表面目标…………………………………………………………………… 2-13定义全局目标…………………………………………………………………… 2-14改变几何求解精度…………………………………………………………………2-15 求解…………………………………………………………………………………2-16 观察目标………………………………………………………………………………2-16 流动迹线图…………………………………………………………………………2-17 切面云图……………………………………………………………………………2-19 表面云图……………………………………………………………………………2-22第一阶段:多孔介质打开模型………………………………………………………………………………3-2 创建b 项目…………………………………………………………………3-2 定义边界条件…………………………………………………………………………3-4 创建一个等向性的多孔介质………………………………………………………3-5 定义多孔介质-等向性………………………………………………………3-7 定义表面目标………………………………………………………………………… 3-7 定义方程目标………………………………………………………………………3-8 求解……………………………………………………………………………………3-9 观察目标……………………………………………………………………………… 3-10 流动迹线图…………………………………………………………………………… 3-10 复制项目……………………………………………………………………………… 3-11 创建一个单向性的多孔介质………………………………………………………… 3-12 定义多孔介质-单向性……………………………………………………………… 3-12 比较等向性和单向性多孔介质……………………………………………………… 3-13确定水力损失模型描述……………………………………………………………………………4-2 创建项目……………………………………………………………………………… 4-3 定义边界条件………………………………………………………………………… 4-7 定义表面目标………………………………………………………………………… 4-8 运行计算……………………………………………………………………………… 4-9 监测计算……………………………………………………………………………… 4-10 复制项目……………………………………………………………………………… 4-10 创建切面云图………………………………………………………………………… 4-11创建全局目标………………………………………………………………………… 4-15 计算器使用…………………………………………………………………………… 4-16 改变几何参数………………………………………………………………………… 4-18圆柱体阻力系数创建项目…………………………………………………………………………… 5-2 定义2D 流动平面………………………………………………………………… 5-6 定义全局目标……………………………………………………………………… 5-7 定义方程目标……………………………………………………………………… 5-7 复制项目并且创建一个新例子…………………………………………………… 5-8 改变项目设置………………………………………………………………………5-9 改变方程目标………………………………………………………………………5-10 创建模板…………………………………………………………………………… 5-10 以模板方式创建一个项目………………………………………………………… 5-11 求解一系列项目…………………………………………………………………… 5-12 获取结果…………………………………………………………………………… 5-12 热交换系数打开模型…………………………………………………………………………… 6-2 创建项目…………………………………………………………………………… 6-3 对称边界条件……………………………………………………………………… 6-5 定义流体子区域…………………………………………………………………… 6-6 定义边界条件……………………………………………………………………… 6-7 定义固体材料……………………………………………………………………… 6-10 定义体积目标……………………………………………………………………… 6-11 运行求解…………………………………………………………………………… 6-11 观察目标…………………………………………………………………………… 6-12显示流动迹线图…………………………………………………………………… 6-14 计算表面参数……………………………………………………………………… 6-16 计算热交换系数…………………………………………………………………… 6-18 定义参数显示范围…………………………………………………………………6-18网格优化问题描述…………………………………………………………………………… 7-2 模型定义…………………………………………………………………………… 7-3 定义项目……………………………………………………………………………7-3 边界条件……………………………………………………………………………7-3 手动设置最小网格间隙尺寸……………………………………………………… 7-7 关闭自动网格定义…………………………………………………………………7-9 生成网格如下所示,约75000网格单元使用Local Intial Mesh 选项…………………………………………………7-10 定义控制平面………………………………………………………………………7-12 再创建一个局部初始网格…………………………………………………………7-14EFD Zooming的应用问题描述……………………………………………………………………………8-1 两种使用b 进行求解问题的方式…………………………………………8-3 EFD Zooming 方法步骤……………………………………………………………8-3 EFD Zooming 第一阶段………………………………………………………8-4 EFD Zooming 项目第一阶段…………………………………………………8-4 EFD Zooming 第二阶段………………………………………………………8-8 EFD Zooming 项目第二阶段…………………………………………………8-8 改变散热器……………………………………………………………………8-14 复制项目到存在的模型定义…………………………………………………8-14局部初始化网格方法………………………………………………………………8-15 使用局部初始化网格方法的b 项目(Sink No1) …………………… 8-15 使用局部初始化网格方法的b 项目(Sink No2) …………………… 8-18 结果………………………………………………………………………………… 8-18纺织机械问题描述…………………………………………………………………………… 9-1 模型定义…………………………………………………………………………… 9-2 定义项目…………………………………………………………………………… 9-3 边界条件…………………………………………………………………………… 9-3 定义旋转壁面……………………………………………………………………… 9-4 初始条件-旋转…………………………………………………………………… 9-5 定义目标…………………………………………………………………………… 9-6 结果-光滑表面…………………………………………………………………… 9-7 显示粒子流和流动迹线……………………………………………………………9-8 模拟粗糙旋转壁面………………………………………………………………… 9-10 改变壁面粗糙度…………………………………………………………………… 9-10 结果-粗糙壁面…………………………………………………………………… 9-11圆形通道中的非牛顿流体流动问题描述………………………………………………………………………………10-1 模型定义………………………………………………………………………………10-2 定义非牛顿流体……………………………………………………………………… 10-2 定义项目………………………………………………………………………………10-2 边界条件………………………………………………………………………………10-3 定义目标…………………………………………………………………………10-3 与流体水进行比较…………………………………………………………………… 10-4 改变项目设置……………………………………………………………………10-4具有反射镜和屏幕的加热球问题描述…………………………………………………………………………… 11-1 模型结构…………………………………………………………………………… 11-2 案例 1 ………………………………………………………………………………11-3 定义项目……………………………………………………………………… 11-3 定义计算域……………………………………………………………………11-3 调整自动网格设置……………………………………………………………11-4 定义辐射表面…………………………………………………………………11-4 定义物体对于热辐射的可穿透性…………………………………………… 11-5 热源和目标定义………………………………………………………………11-5 案例 2 ……………………………………………………………………………… 11-6 改变辐射表面状况……………………………………………………………11-6 定义全局目标…………………………………………………………………11-6 定义固体的初始条件…………………………………………………………11-6结果………………………………………………………………………………… 11-7旋转叶轮问题描述………………………………………………………………………………12-1 模型定义………………………………………………………………………………12-2 定义项目………………………………………………………………………………12-2 边界条件………………………………………………………………………………12-3 定义静止壁面……………………………………………………………………12-4 叶轮效率………………………………………………………………………………12-4 定义项目目标…………………………………………………………………………12-5 结果……………………………………………………………………………………12-7CPU 冷却器问题描述………………………………………………………………………………13-1 模型定义………………………………………………………………………………13-2 定义项目………………………………………………………………………………13-2 定义计算域……………………………………………………………………………13-2 旋转区域………………………………………………………………………………13-3 定义静止壁面…………………………………………………………………………13-5 固体材料………………………………………………………………………………13-6 热源……………………………………………………………………………………13-6 初始网格设置…………………………………………………………………………13-7结果……………………………………………………………………………………13-11特性列表下面罗列了出现在教程中的b 相应的物理和界面特性。

Solidworksflowsimulation实例分析

Solidworksflowsimulation实例分析
出口边界
根据实际情况设置出口边界条件,如压力、流量等。对于未知的出 口条件,可以使用实验数据或经验公式进行估算。
壁面边界
定义模型壁面的属性,如粗糙度、热传导系数等,以便模拟流体与 壁面之间的相互作用。
初始条件设置
初始压力
设置模拟开始时的流体压力。对于稳 态模拟,初始压力通常设置为入口压 力;对于非稳态模拟,初始压力应根 据实际情况进行设置。
SolidWorks Flow Simulation实例分析
• SolidWorks Flow Simulation简 介
• 实例分析准备 • 实例分析过程 • 实例分析结果应用 • 实例分析总结与展望
01
SolidWorks Flow Simulation简介
定义与特点
定义:SolidWorks Flow Simulation是一 款基于SolidWorks平 台的流体动力学仿真 软件,用于模拟和分 析产品在流体环境中 的性能表现。
初始温度
设置模拟开始时的流体温度。对于稳 态模拟,初始温度通常设置为入口温 度;对于非稳态模拟,初始温度应根 据实际情况进行设置。
03
实例分析过程
模拟启动与运行
打开SolidWorks软件,并打开需要 进行流体模拟的3D模型。
在Flow Simulation界面中,选择适 当的流体模拟类型,如稳态、瞬态等, 并设置模拟参数,如入口条件、出口 条件、流体属性等。
决策支持
总结词
SolidWorks Flow Simulation的实例分析结果可以为决策者提供支持,帮助其做出更科学、合理的 决策。
详细描述
在产品设计和开发过程中,决策者需要综合考虑各种因素,包括设计、性能、成本等。通过 SolidWorks Flow Simulation的实例分析,决策者可以获得更全面、准确的产品性能信息,从而做出 更科学、合理的决策。同时,这些分析结果也可以为后续的设计和优化提供参考和借鉴。

solidworks 流体重力方向

solidworks 流体重力方向

solidworks 流体重力方向
在SolidWorks中,流体重力方向可以通过使用Flow Simulation模块来模拟和分析。

Flow Simulation可以帮助用户
进行流体力学仿真,包括流体的行为和流动,以及模拟液态或气态流体下不同条件下的流动行为。

要设置流体的重力方向,可以按照以下步骤操作:
1. 在SolidWorks的菜单栏中选择"插件",然后选择"流动仿真"。

2. 在Flow Simulation中选择"新建项目"。

3. 在工程树中,选择"流体组态",然后选择一个流体域。

4. 在流体域的属性管理对话框中,切换到"力和重力"选项卡。

5. 在"方向类型"下拉菜单中,选择"自定义重力方向"。

6. 在"自定义重力方向"选项中,输入所需的重力方向的矢量数值。

7. 确认设置后,进行仿真计算。

通过上述步骤,您可以在SolidWorks中设置流体的重力方向,并进行流体仿真分析。

注意,确保正确设置流体的物理特性和边界条件,以获得准确的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Second level Initial conditions(初始条件) – Pressure - 1 atm(1个大气 Third 压强) level Fourth level Temperature(温度) - 293.2 K. Fifth level 单击Next
项目向导
Click to edit Master text styles
Second level 点击Flow Simulation—Solve—Run,开始运行仿真 Third level 运行完成后,查看仿真结果,右击Results文件夹下的Goals,选择 Fourth level insert,选择SG Volume Flow Rate 1并单击OK,计算结果以Excel表格 Fifth level 的形式显示
对于这个项目所有的这些设置都是合适的,我们所要做的仅仅是将空 气作为项目的流体。为了避免经过每一个向导界面,我们将使用 Navigator (导航)面板,它可以使我们快速的访问向导页
项目向导
Click to edit Master text styles
Second level
Third level
汽车排气管
Click to edit Master text styles
Second level 在这个例子中我们将考察汽车尾气排放管一个截面的流动状态,在这 Third level 个截面上排出的尾气受到两块催化剂的阻碍,这两块催化剂属于多孔 Fourth level 介质,它的作用是将尾气中有害的一氧化碳气体转化为二氧化碳气体
单位系统 – SI 流体介质 - air 分析类型 – Internal(内部流动),no additional physical capabilities are considered(没有任何附加物理特征被选择) 壁面状况 – adiabatic wall(绝热壁面) 初始条件 – pressure 1 atm(1个大气压强),temperature(温度) 293.2 K 结果和几何求解 – level 3
Second level Result resolution(求解精度) – level 3 Third level 单击Finish(结束)
Fourth level Fifth level
定义边界条件
Click to edit Master text styles
Second level 在Flow Simulation 分析树,右击 Boundary Conditions(边界条件) Third level 图标并选择 Insert Boundary Condition (插入边界条件) Fourth level 如图显示选择入口盖子的内表面
项目向导
Click to edit Master text styles
Second level 壁面状态-adiabatic wall(绝热壁面) Third level 单击Next
Fourth level Fifth level
项目向导
Click to edit Master text styles
阀流量计算
Click to edit Master text styles
Second level 创建一个新项目,并命名为flow rate
Third level
Fourth level Fifth level
阀流量计算
Click to edit Master text styles
Second level 选择单位系统,选择默认的SI单位系统
Click to edit Master text styles
Second level 设置 Velocity Normal to Face(垂直入口面流速) 为 10 m/s Third level 点击 OK Fourth level 随着刚才所做的定义,我们告诉 Flow Simulation在这个开口处空气 Fifth level 以10 m/s的速度流进催化器
Third level
Fourth level Fifth level
阀流量计算
Click to edit Master text styles
Second level Result Resolution 接受默认的 Third level 点击Finish,现在Flow Simulation通过赋值数据的方式创建了一个新 Fourth level 的算例
Second level 右键单击Goals,选择Insert Surface Goals Third level 选择LID_2内表面,将Volume Flow Rate(体积流量)作为观测目标
Fourth level Fifth level
阀流量计算
Click to edit Master text styles
风扇曲线
优化‐参数分析
旋转区域
阀流量计算
Click to edit Master text styles
已知球阀入口压强为2个大气压,出口压强为1个大气压,温度为20摄 Second level 氏度,阀内壁面光滑,求流经阀的体积流量 Third level
Fourth level Fifth level
入口
出口
阀流量计算
Click to edit Master text styles
点击Flow Simulation-Project-Wizard,通过这个向导,我们可以完 Second level 成整个流体仿真工作的近80%的设置 Third level
Fourth level Fifth level
Click to edit Master text styles
Second level
Third level
Fourth level Fifth level
使用Flow Simulation开始您的流体分析
ห้องสมุดไป่ตู้
广州宇喜资讯科技有限公司 张小林
日程
介绍 Click to edit Master text styles 实际动手做的例子 Second level 阀流量计算 Third level
Fifth level
打开SolidWorks模型
单击【文件】,【打开】 在打开对话框,浏览到装配体文件Catalyst.SLDASM 多孔催化剂 出口
入口
项目向导(Wizard)
Click to edit Master text styles
Second level 点击Flow Simulation,Project(项目),Wizard(向导)
Fourth level 单位系统– SI Fifth level
单击 Next
分析类型– Internal, 没有任何附加物理特 征被选择, 单击 Next
项目向导
Click to edit Master text styles
Second level 在 Navigator(导航) 面板,点击 Fluids(流体) Third level 打开 Gases (气体)文件夹, 点击 Air(空气), 接着点击 Add Fourth level (添加) Fifth level 单击Next
阀流量计算
Click to edit Master text styles
Second level Openings和Total Pressure 选择Pressure Third level 设定总压为2两个大气压强 Fourth level 点击OK,新的Total Pressure 1边界条件出现 Fifth level
Third level 如果已经在向导状态,直接选择Create New以便创建一个新的配置并命 Fourth level 名为Isotropc Fifth level 单击Next
项目向导
Click to edit Master text styles
Second level 这个项目向导会指导你一步一步完成整个项目的特性定义。除了其中 Third level 两步(定义项目流体和默认固体),其他的每一步都是预先的定义值, Fourth level 所以你可以接受这些默认值(跳过这一步可以直接点击 Next)或者 Fifth level 进行相应的修改。 这些预先设定的值是:
Second level 在 Flow Simulation分析树中,右击 Boundary Conditions 图标并 Third Insert Boundary Condition 且选择 level Fourth level 如图显示选择 LID_1 的 inner 面 (访问内表面,在图形区域右击 Fifth level Lid_1 并且选择Select Other,移动鼠标至列表中所要选择的内表面 上,最后点击鼠标左键)
现全三维的流动和热分析,它可以做的仿真包括: Second level
Third level Fourth level 内部和外部流 动 Fifth level 热现象: ‐传导; ‐对流; ‐辐射; 非牛顿流体 多组分气体 可压缩和不可 压缩流体
SW Flow Simulation
设计更好的产品
阀流量计算
Click to edit Master text styles
Second level 按照同样的方式,设定LID_2内表面的边界条件类型为Environment Third level Pressure,数值为1个大气压强
Fourth level Fifth level
阀流量计算
Click to edit Master text styles
Fifth level
阀流量计算
Click to edit Master text styles
相关文档
最新文档