铁磁性材料居里点的测定
铁磁材料居里点的测量

居里温度(TC)
铁磁质 物质在外磁场中产生非常强的与外磁场同方向的附加磁场
第2页,本讲稿共11页
实验目的:
• 初步了解铁磁物质由铁磁性转变为顺磁性的
微观机理;
• 学习JLD-II型居里温度测试仪测定居里温度
的原理和方法;
• 测定铁磁样品的居里温度。
实验仪器:
• JLD—II型居里温度测试仪
• 加热炉
r 略小于1
BH0rH r 略大于1
磁感应强度
r 1
磁场强度
B
抗磁质 顺磁质 铁磁质
H
第5页,本讲稿共11页
实验原理
• 测定装置必须具备四个功能: * 提供使样品磁化的磁场; * 改变铁磁物质温度的温控装置; * 判断铁磁物质磁性是否消失的判断装置; * 测量铁磁物质磁性消失时所对应温度的测温装置。
面板上的电源开关,将电源箱前面板上的“H调 节”旋钮调到最大,适当调节示波器,其荧光屏 上就显示出了磁滞回线; (3)关闭加热炉上的两风门,将“测量一设置”开关打
向“设置”,适当设定炉温; (4)开关打向“测量”,将“升温一降温”开关打向 “升
温”,磁滞回线消失时数显表显示的温度值; (5) “降温”,打开加热炉上的两风门.
第6页,本讲稿共11页
实验原理
待测样品环形铁磁材料,其上绕有两个线圈Ll和L2 ,其中Ll为励磁线圈,给其中通一交变电流,提供使环 形样品磁化的磁场。将其置于温度可控的加热炉中。用 集成温度传感器测定样品的温度。
第7页,本讲稿共11页
实验原理
• 本装置可通过两种途径来判断样品的铁磁性消失:
(1)通过观察样品的磁滞回线是否消失来判断 (2)通过测量感应电动势随温度变化的关系来推断
铁磁性材料居里温度的测定

本装置可通过两种途径来判断样品的铁磁性消失
1.通过观察样品的磁滞回线是否消失来判断. 铁磁物质磁滞回线如 测出对应于磁滞回线消失时的温度,就测得了居里点温度.
B
图2
H
2.通过测定磁感应强度随温度变化的曲线来推断 在测量精度要求不高的情况下,可以通过测定B(T)曲线来推断居里温度.既测出感 应电动势的积分电压U随温度T变化的曲线,并在其斜率最大处作切线,切线与横坐 标轴的交点既为样品的居里温度.
思考题1.通过测感应电动势随温度变化的曲线来推断居里温度时,为什么
要由曲线上斜率最大处的切线与温度轴的交点来确定 Tc ,而不是由曲线 与温度轴的交点来确定Tc ?
铁磁性材料居里温度的测定
基本原理
被磁化的铁磁物质具有很强的磁性,这种强磁性是与温度有 关的.随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁 畴磁矩的有序排列.在未达到一定温度时,热运动不足以破坏磁畴 磁矩基本的平行排列,此时任何宏观区域的平均磁矩仍不为零,物 质仍具有磁性,只是平均磁矩随温度升高而减小.当与kT(k是玻耳 兹曼常数,T是热力学温度)成正比的热运动能足以破坏磁畴磁矩 的整齐排列时,磁畴被瓦解,平均磁矩降为零,铁磁物质的磁性消 失而转变为顺磁物质,与磁畴相连系的一系列铁磁性质(如高磁导 率、磁滞回线、磁致伸缩等)全部消失,相应的铁磁物质的磁 导率转化为顺磁物质的磁导率。与铁磁性消失时所对应的温度 即为居里点温度.
测量装置及内容 本实验仪器为JLD-II居里点温度测试仪如图1所示待测样品为一环形铁磁材料,其
上绕有两个线圈 L1 和 L2 , L1 为励磁线圈,给其通一交变电流,提供使环形样品
磁化的磁场.将环形样品置于温度可控的加热炉中以改变样品的温度.通过样品旁 边的集成温度传感器测定样品的温度
铁磁材料居里温度的测定

SUES大学物理选择性实验讲义磁学铁磁材料居里温度的测定∗磁性材料在电力,通讯,电子仪器,汽车,计算机和信息存储等领域有着十分广泛的应用,已成为促进高新技术发展不可或缺的材料,因此有必要通过实验了解磁性材料的基本特性.磁性材料可分为反铁磁性,顺磁性和铁磁性材料三种.铁磁性物质的磁性随温度的变化而变化,当温度上升到某一值时,铁磁材料就由铁磁状态转变为顺磁状态,这一特征温度称为居里温度.居里温度是表征铁磁性材料基本特征的物理量,它仅与材料的化学成分和晶体结构有关,几乎与晶粒大小,取向以及应力分布等因素无关.测定铁磁材料的居里温度不仅对磁性材料,磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义.本实验根据铁磁物质磁矩随温度变化的特性,采用交流电桥法测量铁磁物质自发磁化消失时的温度,即居里温度.一实验目的1.了解铁磁物质由铁磁性转变为顺磁性的微观机理;2.利用交流电桥法测定铁磁材料样品的居里温度;3.分析交流电桥输入信号频率对居里温度测量结果的影响.二实验设备铁磁材料居里温度测定仪:实验主机2台,实验箱∗修订于2010年8月28日三实验原理1铁磁质的磁化规律由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性.物质的磁性可分为反铁磁性(抗磁性),顺磁性和铁磁性三种.在铁磁质中由于相邻电子之间存在着很强的“交换耦合”作用,因此在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发的”整齐排列起来而形成自发磁化小区域,称为磁畴.在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,呈现出磁性,但大量磁畴的磁化方向各不相同而整个铁磁质不显磁性,如图1(a)所示.当铁磁质处于外磁场中时,那些自发磁化方向和外磁场方向成小角度的磁畴,其体积随着外磁场的增大而扩大,并使磁畴的磁化方向进一步转向外磁场方向.另一些自发磁化方向和外磁场成大角度的磁畴,其体积则逐渐缩小.这时铁磁质对外呈现宏观磁性,如图1(b)所示.当外磁场继续增大时,上述效应相应增大,直到所有磁图1.(a)未加磁场时磁畴的结构,(b)加磁场时磁畴的结构.畴都沿外磁场排列好,介质的磁化达到饱和.由于在每个磁畴中元磁矩已完全排列整齐,因此具有很强的磁性,这就是为什么铁磁质的磁性比顺磁质强得多的原因.铁磁性是与磁畴结构分不开的,当铁磁质受到强烈的震动或处在高温下时,磁畴便会瓦解,铁磁性就会消失,对于任何铁磁质都有这样一个临界温度,高过这个温度铁磁性就会消失,变为顺磁性,这个临界温度称为铁磁质的居里温度.在各种磁介质中最重要的是以铁为代表的一类磁性很强的物质,常用的铁磁质多数是铁和其他金属或非金属组成的合金,以及某些包含铁的氧化物(铁氧体).铁氧体具有适于在更高频率下工作,电阻率高,涡流损耗更低的特性.磁介质的磁化规律可用磁感应强度⃗B,磁化强度⃗M和磁场强度⃗H来描述,它们满足以下关系⃗B=µ(⃗H+⃗M)=(χm+1)µ0⃗H=µrµ0⃗H=µ⃗H(1) (1)式中,µ0=4π×10−7H/m为真空磁导率,χm为磁化率,µr为相对磁导率,µ为绝对磁导率.对于顺磁质,χm>0,µr略大于1,对于抗磁质,χm<0,其绝对值在10−4∼10−5之间,µr略小于1,而铁磁质χm≫1,所以µr≫1.对非铁磁性磁介质,⃗H和⃗B之间满足线性关系:⃗B=µ⃗H,而铁磁质的µ,⃗B和⃗H之间有着复杂的非线性关系,图2(a)是典型的铁磁质磁化曲线,可以看到µ是H的函数,从图2(b)中可以看到µ还是温度T的函数,当温度升高到某个值时,铁磁质由铁磁状态转变为顺磁状态,曲线突变点所对应的温度就是居里温度T C.图2.(a)铁磁体磁化曲线,(b)铁磁体µ∼T曲线.2用交流电桥测量居里温度铁磁质的居里温度可用任何一种交流电桥测量.大多数交流电桥可归结为如图3(a)所示的四臂阻抗电桥,电桥的四个臂可以是电阻,电容,电感的串联或并联的组合,调节电桥的桥臂参数,使得C,D两点间的电位差为零,电桥达到平衡,则有Z1 Z3=Z2Z4(2)若要(2)式成立,必须使该复数等式的模量和辐角分别相等,于是有|Z1||Z4|=|Z2||Z3|(3)ϕ1+ϕ4=ϕ2+ϕ3(4)由此可见,交流电桥平衡时,除了阻抗大小满足(3)式外,阻抗的相角还要满足(4)式,这是它和直流电桥的主要区别.本实验采用如图3(b)所示的RL交流电桥,在电桥中输入电源由信号发生器提供,在实验中应适当选择较高的输出频率,图3.(a)交流电桥基本电路,(b)RL交流电桥.ω为信号发生器的角频率,其中Z1和Z2为纯电阻,Z3和Z4为电感(包括电感的线性电阻r1和r2,测定仪中还接入了一个可调电阻R3),其复阻抗为Z1=R1,Z2=R2,Z3=r1+jωL1,Z4=r2+jωL2(5)当电桥平衡时有R1(r2+jωL2)=R2(r1+jωL1)(6)实部与虚部分别相等,有r2=R2R1r1,L2=R2R1L1(7)实验时选择合适的电气元件相匹配,在未放入铁氧体时,通过调节使电桥平衡.当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡.随着温度上升到某一值时,铁氧体的铁磁性转变为顺磁性,C,D两点间的电位差发生突变并趋于零,电桥又趋于平衡.这个突变点对应的温度就是居里温度,可通过电桥电压与温度的关系曲线,求其曲线突变处的温度.四实验内容1.将实验主机1(信号发生器和频率计)的“信号输出”通过Q9连线接到实验箱上的“接信号源”,“接交流电压表”通过Q9线连接到实验主机2(交流电压表和信号采集系统)的“电桥输出”,实验箱上的交流电桥按照“接线示意图”连接.2.打开实验主机,信号源频率取1500Hz,调节R2,R3的阻值使电桥平衡.3.移动电感线圈,在样品槽中放入铁氧体样品,并涂上导热硅脂,重新将电感线圈移动至原位置,使铁氧体样品处于线圈中心,记录电压表读数.4.打开加热器开关,调节加热速率电位器至合适位置,加热过程中,温度每升高5◦C,记录电压读数.当电压读数在5◦C温度间隔中变化较大时,再每隔1◦C记录电压读数,直到加热器温度升高到100◦C左右为止,关闭加热器开关.5.根据记录的数据作电压温度V∼T图,计算样品的居里温度.五注意事项1.样品架加热时温度较高,实验时勿用手触碰,以免烫伤.2.铁氧体样品上涂导热硅脂,使受热均匀.3.加热温度不允许超过120◦C,以免损坏仪器.4.实验过程中,不允许改变信号源的频率及幅度,不允许改变电感线圈的位置.5.加温速率不能过快,防止传感器测到的温度与铁氧体样品实际温度不同.六思考与讨论1.物体的磁性可分为几类,各有什么特征?2.为什么可以用RL交流电桥测量铁氧体样品的居里温度?3.测得的V∼T曲线,为什么与横坐标没有交点?七参考资料1.赵凯华陈熙谋《电磁学》第二版·下册高等教育出版社(1985)2.林木欣《近代物理实验教程》科学出版社(1992)。
铁磁性材料居里温度的测试

实验九铁磁性材料居里温度的测试铁磁性物质的磁性随温度的变化而改变。
温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称之为居里表示。
居里温度是磁性材料的本征参量之一,它仅与材料的化学成分和晶体结温度,以Tc构有关,几乎与晶粒的大小、取向以及应力分布等组织结构因素无关,为组织和结构不敏感参量。
测定铁磁性材料的居里温度不仅对磁性材料、磁性器件的研究和研制,而且对工程技术应用都具有十分重要的意义。
一、数据记录、处理及误差分析1、实验前应列出记录数据的表格(参见表9—1、9—2),记录时准确定出有效数字位数。
注意:要求记录不同样品的(室温)初始(输出)感应电压值。
表9-1磁滞回线消失时所对应的温度值及初始(输出)感应电压值表9-2感应电动势积分值ε'及其对应的温度T值样品编号1 (室温)初始(输出)感应电压325 mV,磁滞回线消失时所对应的温度值65.9 ℃样品编号2 (室温)初始(输出)感应电压327mV,磁滞回线消失时所对应的温度值104.7 ℃样品编号3 (室温)初始(输出)感应电压332 mV,磁滞回线消失时所对应的温度值104.6 ℃T(℃)32 37 42 47 52 57 62 67 72 77 80 ε'(mV)332 331 329 324 318 310 299 287 273 256 245 T(℃)82 84 86 88 90 91 92 93 94 95 96 ε'(mV)237 228 220 210 199 194 187 180 173 165 157T(℃)97 98 99 100 101 102 103 104 104.6105 106ε'(mV)147 136 123 104 72 31 12 6 4 4 2T(℃)109 110 111 112 112.8ε'(mV) 1 1 1 1 02、绘出每个样品的U~T曲线,按照图9—5的方法确定各自的居里点Tc,并与通过示波器观察样品磁滞回线消失温度来确定居里点Tc方法得到的结果进行比较,并加以分析讨论。
铁磁性材料居里点的测定

铁磁性材料居里点的测定铁磁性材料居里点的测定一实验目的1.通过实验,对感应电压输出随温度升高而下降的现象进行观察,初步了解铁磁性材料在居里温度点由铁磁性变为顺磁性,从了解整个磁性材料参数变化的微观机理。
2.用感应法测定磁性材料的)(B effε—T曲线并求出其居里温度。
二实验设备居里点实验仪(QS—CT型)三实验原理1.基本原理物质的磁化可分为抗磁性,顺磁性和铁磁性三种。
具有铁磁性的物质称为铁磁体。
铁、镍、钴、镝等元素的多种合金就是铁磁体。
在铁磁体中,相邻原子间存在着非常强的交换耦合作用,这种相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域。
自发磁化只发生在微小的区域(体积约为810-m3,其中含有1017-1021个原子),这些区域称为磁畴。
在没有外磁场作用时,在每个磁畴中,原子的分子磁矩均取向同一方位,但对不同的磁畴,其分子磁矩图 的取向各不相同,见图1,其中图1(a )为单晶磁畴结构示意图,图1(b )为多晶磁畴结构示意图。
磁畴的这种排列方式,使磁体能量处于最小的稳定状态。
因此,对整个铁磁体来说,任何宏观区域的平均磁矩为零,物体不显示磁性。
在外磁场作用下,磁矩与外磁场同方向排列时的磁能低于磁矩与外磁场反向排列时的磁能。
结果是自发磁化磁矩与磁场成小角度的磁畴处于有利地位,磁畴体积逐渐扩大;而自发磁化磁矩与外磁场成较大角度的磁畴体积逐渐缩小。
随着外磁场的不断增强,取向与外磁场成较大角度的磁畴全部消失,留存的磁畴将向外磁场的方向旋转,以后再继续增加磁场,使所有磁畴沿外磁(b场方向整齐排列,这是磁化达到饱和,图2是某单晶结构磁体磁化过程的示意图。
铁磁性物质的磁化与温度有关,存在一临界温度T C称为居里温度(也称居里点)(如图3)。
当温度增加时,由于热扰动影响磁畴内磁矩的有序排列,但在未达到居里温度T C时,铁磁体中分子热运动不足以破坏磁畴内磁矩基本的平行排列,此时物质仍具有铁磁性,仅其自发磁化强度随温度升高而降低。
铁磁材料居里点的测量大物论

铁磁材料居里点的测量辽宁科技大学 机械工程与自动化学院 机械设计11-A1 毕帅[摘要]:本文利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,通过对测量结果的对比发现,采用定性测量和定量测量得到的居里点温度存在一定的差异,并对产生差异的原因进行了简要的分析。
[关键词]:铁磁材料;居里点;测量方法引言;铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,以T c 表示。
居里温度是磁性材料的本征参数之一,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。
测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。
本项研究利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,并对测量结果产生差异的原因进行了简要的分析。
一、实验原理1.1基本理论在铁磁物质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域,这个区域的体积约为10-8m 3,称之为磁畴。
在没有外磁场作用时,不同磁畴的取向各不相同,如图1所示。
因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。
当有外磁场作用时,不同磁畴的取向趋于外磁场的方向,任何宏观区域的平均磁矩不再为零,且随着外磁场的增大而增大。
当外磁场增大到一定值时,所有磁畴沿外磁场方向整齐排列,如图2所示,任何宏观区域的平均磁矩达到最大值,铁磁物质显示出很强的磁性,我们说铁磁物质被磁化了。
铁磁物质的磁导率μ远远大于顺磁物质的磁导率。
铁磁物质被磁化后具有很强的磁性,但这种强磁性是与温度有关的,随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁畴磁矩的有序排列,但在未达到一定温度时,热运动不足以破坏磁畴磁矩基本平行排列,此时任何宏观区域的平均磁矩仍不为零,物质仍具有磁性,只是平均磁矩随温度升高而减小。
铁磁材料居里点的测定实验报告

铁磁材料居里点的测定实验报告一、实验目的与实验仪器1.实验目的(1)了解示波器测量动态磁滞回线的原理和方法;(2)学会一种测量铁磁材料居里点的方法。
2.实验仪器用于测量环状磁性介质样品的JLD-Ⅲ居里点测量仪(含五种样品)。
二、实验原理1.铁磁材料和居里点铁磁材料在很小的磁场作用下就被磁化到饱和,不但磁化率大于零,而且达到χ~10 —10 6 数量级,当铁磁性物质的温度高于临界温度Tc(居里点温度)时,铁磁性物质转变成为顺磁性。
即在居里点附近,材料的磁性发生突变。
反复磁化铁磁材料时会出现磁滞现象。
另一重要的特点就是磁滞。
磁滞现象是材料磁化时,材料内部的磁感应强度B 不仅与当时的磁场强度H 有关,而且与以前的磁化状态有关。
2.示波器测量磁滞回线的原理如图所示,给待定铁心线圈(N 匝)通50Hz 交流电,次级线圈产生的感应电动势为 ε = - WS dB dt ,次级回路电压方程为ε = Ri + u C ,当R >> 12πfC 时,Ri >> u C ,则i = εR= - WS R dB dt . t 时刻,u C = q C = q0C + 1 C ∫idt t 0=( q0C + WS RC B 0 ) - WSRC B上式中,前一项为t = 0 时,电容初始状态和铁芯初始状态决定的直流电压值,若其为0,则u C = -WS RCB ,即uC ∝B ,将u C 输入示波器y 轴,则水平方向偏转与B 成正比。
在初级线圈中,u H = R H i H ,而H = ni H ,则u H = R H nH ,将u H 输入示波器x 轴,则竖直方向偏转与H 成正比。
综上,示波器上能够显示出稳定的B-H 曲线。
三、实验步骤测量环状磁性介质的居里点1.接线:将加热接口与居里点测试仪接口用专线相连;将铁磁材料样品与居里点测试仪用专线相连,并把样品放入加热丝;面板上的温度传感器接插件对应相接;将 B 输出(感生电动势)与示波器的 Y 输入相连,H 输出(原线圈端电压)与示波器的 X 输入相连接。
2022年铁磁材料居里点的测定实验报告800字(12篇)

铁磁材料居里点的测定实验报告800字(12篇)导读:关于铁磁材料居里点的测定实验报告,精选6篇范文,字数为800字。
关于铁磁材料居里点的测定实验报告,精选6篇范文,字数为800字。
铁磁材料居里点的测定实验报告(范文):1铁磁材料居里点测得的结果是测得出的结果,不同的结果就可能是不同的结果,不同的结果就可能会有不同的结果。
因此,在实验过程中我学会了很多的测量仪器,如:电导柱、水准仪、测得方法和测得角度角的方法。
在实验过程中我还明白了测得比较容易的,也是最容易做的。
实验的第一天,刚开始就是测量,我们组是从一个没有任何工作的学生,开始测量,我也是不知道自己的水平能力,测量方法是什么,也没有想到我会不会测,不知道什么时候开始测的。
这个时候我就觉得测量很重要,这个测量方法和我所在的组一样,不同组有不同的方法,我们一起测,一起测,在测量过程中我们一起探讨。
我觉得我们组的成员都很配合,也很有默契,我们的工程也是这样。
测量完后,我们组又一起合作,一起把那根铁钉放到测得的角度里。
虽然我们组是不怎么认真的测量,但是看到别的组的成员都能测得很认真,我们也觉得很开心,毕竟我们组的小组成员也是很有默契,我们也感到很快乐,毕竟测量给了我们一次很好的学习经验。
这个实验我们组有一个组员,在测量过程中也是比较默契的,在一起的时候我们都很认真,我们一起测量,一起研究,一起分享,不懂的就问,大家一起解决。
测量的过程中我们大家一起讨论,一起分析,这样不仅加深了我们之间的友谊,也锻炼了我们的团结精神。
我们在测量的过程中,我们一起讨论,一起分析,一起动脑,一起讨论问题,这样我们都感到很快乐。
测量的这段时间,我们一起合作学习,一起探讨问题,我想我们一定会在以后的学习和生活中做得更好,成为一名合格的铁磁材料居里点测量的学子。
我们在测量中一起成长,一起收获快乐,我想我们也一定会在以后的学习和工作中更加的努力,一起进步!铁磁材料居里点的测定实验报告(范文):2铁磁材料居里点的测定实验报告一、实验目的、意义及实验时间铁熔材料居里点的测定实验报告二、实验内容、实训过程铁磁材料居里点的测定实验报告三、实验内容、实训内容及实验成果铁磁材料居里点的测定实验报告四、成果报告铁铁磁材料居里点的测定实验报告实验报告五、实验成果报告铁磁铁的测定实验报告报告六、实验报告内容及格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁的测定实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁轨测量实验仪器铁轨测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实习仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁磁材料居里点的测定实验报告(范文):3铁磁铁是铁磁铁的一种传统方法,在现代社会生产过程中,人们不可能直接地接受这种方法。
铁磁材料的居里点的测定

铁磁材料居里点的测定铁磁材料(又称铁氧体)是铁和其它一种或多种适当的金属元素的复合氧化物。
按磁滞回线的形状来分,有软磁材料,硬磁(又叫永久磁性)材料。
铁磁材料在工业上,尤其在电力工业上应用最为广泛,如制造发电机、电动机及电力输送变压器上的永久磁铁和硅钢片。
我们日常用的家电里有收音机中的天线棒,中周变压器,电视机中的回扫变压器,录象机中的磁头、磁鼓。
计算机中的记忆元件、逻辑元件、扬声器以及电话机中都有磁性材料。
铁磁材料在尖端技术和国防科技中应用也很多,如雷达、微波多路通讯、自动控制、射电天文望远镜、远程操纵等。
图1铁磁材料居里点(又称居里温度)是铁磁材料的一个重要的物理性质。
根据电磁学,我们知道:HM x m = (1) H B =μ (2) 0)1(μμm x += (3)上面三式里的x m 是磁化率,M 为磁化强度,H 为磁场强度,B 为磁感应强度,μ为磁导率,μ0为真空中磁导率。
磁介质大体可以分为顺磁质、抗磁质和铁磁质三类。
但对于不同类型的磁介质,x m 和μ的情况很不一样。
对于顺磁质,x m >0,μ>μ0;对于抗磁质,x m <0,μ<μ0。
这两类磁介质的磁性都很弱,它们的|x m |<<1,μ=μ0,而且都是与H 无关的常数。
而铁磁质的情况要复杂一些,一般说来M 与H 不成比例,甚至没有单值关系,即M 的值不能由H 的值唯一确定,它还与磁化的历史有关,所以x m 和μ不再为常数。
而是H 的函数,即x m =x m(H),μ=μ(H)。
铁磁质的x m和μ一般都很大,所以铁磁质属于强磁性介质。
以铁为代表的一类磁性很强的物质叫铁磁质。
在纯化学元素中,除铁之外,还有过渡族中的其它元素,如钴、镍和某些稀土族元素如钆、镝、钬都具有铁磁性。
但常用的铁磁质多数是铁和其它金属或非金属组成的合金,以及某些包含铁的氧化物(铁氧体)。
当磁化场H=0的时候处于未磁化状态。
这相当于坐标原点。
在逐渐增加磁化场H的过程中,B随之增加。
铁磁材料居里点的测定

实验5-8 铁磁材料居里点的测定铁磁材料的居里温度特性在工程技术、家用电器上的应用比较广泛。
测量铁磁材料居里温度的方法很多,例如磁称法、感应法、电桥法和差值补偿法等。
它们都是利用铁磁物质磁矩随温度变化的特性,测量自发磁化消失时的温度。
本实验采用感应法,来测量感应电动势值随温度变化的规律,从而得到居里点T C 。
【实验目的】l .通过对磁性材料感应电动势随温度升高而下降的现象的观察,初步熟悉铁磁性材料在居里点时由铁磁性变为顺磁性的过程,从而了解磁性材料参数变化的微观机理。
2.用感应法测定磁性材料的εeff(B)~T 曲线,并求出其居里点。
【实验原理】l .基本物理原理根据磁化的效果,磁介质可划分为三类(1)顺磁质,这类磁介质磁化后,在介质内的磁场稍有增强,表明磁化后具有微弱的附加磁场,并与外磁场同方向。
(2)抗磁质,这类磁介质磁化后,在介质内磁场稍有削弱,表明磁化后具有微弱的附加磁场但与外磁场方向相反。
(3)铁磁质,这类磁介质磁化后,在介质内的磁场显著增强,即磁化后具有很强的与外磁场同方向的附加磁场。
铁、镍、钴、钆、镝及其合金和一些非金属的铁氧体都属于这一类。
铁磁质有广泛的用途,所以它是最重要的一类磁介质。
本实验将对铁磁质的磁化规律及其微观机制进行研究。
在弱磁化场及室温的条件下,顺磁质显示弱磁性。
然而,铁磁质在相同条件下却表现强磁性。
铁磁质的特性不能用一般顺磁质的磁化理论来解释。
因为铁磁性元素的单个原子并不具有任何特殊的磁性。
例如铁原子与铬原子的结构大致相同,但铁是典型的铁磁质,而铬是普通的顺磁质,甚至还可用非铁磁性物质来制成铁磁性的合金。
另一方面,还应注意到铁磁质总是固相的。
这些事实说明了铁磁性与固体的结构状态有关。
铁磁质特殊磁性的现代理论是:在铁磁质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域。
自发磁化只发生在微小的区域(体积约为10 -8 m 3,其中含有1017~1021个原子)内,这些区域叫做磁畴。
铁磁材料居里点的测定2013

铁磁材料居里点的测定
B
H
4 磁畴 ( 10 m)
磁滞回线
1
物理实验教学中心
实验目的
1.了解物质由铁磁性转变为顺磁性的微观机理;
2.学会一种测量铁磁材料居里点的实验方法;
3.测定铁磁环样品的居里温度。
2
上页
下页
物理实验教学中心
实验原理
一、磁介质与物质的磁性
在磁场的作用下发生变化并反过来影响磁场的物质叫磁介质。
R1 L1
R2
B
C
L2
H
由于H正比于L1的电流,因此可以用电流的信号代
表H的信号。
12
上页
下页
物理实验教学中心
R1 L1
R2
B
C
L2
H
在励磁电路中串接采样电阻R1,将其两端的电压
讯号(与电流正比)经放大后, 送至示波器的X轴输
入以表示H。 B是通过副线圈L2中因磁通量变化而产生的感应电 动势来测定的。感应电动势:
24
上页
下页
物理实验教学中心 原始数据表格 磁滞回线消失温度
样品编号 1 2 3
Tc(oC)
54
感应电动势——温度关系
样品一
Tc(oC)
Ɛ(mV)
30 34 38 42 44 46 48 50 51 52 53 54 55 56 57 58 59
样品二 ...
样品三
...
25
物理实验教学中心
思考题
一、观察材料升温过程中磁滞回线消失及居里点
1.连线、放样品。连线加热炉与电源箱面板;样 品与电源箱专用线连接,放入加热炉;温度传感器、 降温风扇接插件与电源面板上传感器接插件相接。 2、接示波器、开电源。B输出接示波器Y输入,H 输出接X输入,示波器的扫描时间选择旋钮设定为X-Y 模式;“升-降温”开关打向“降温”,开电源,适当
铁磁材料居里温度测试实验

铁磁材料居里温度测试实验【实验目的】1.了解铁磁物质由铁磁性转变为顺磁性的微观机理。
2.利用交流电桥法测定铁磁材料样品的居里温度。
3.分析实验时加热速率和交流电桥输入信号频率对居里温度测试结果的影响。
【实验仪器】FD-FMCT-A铁磁材料居里温度测试实验仪,示波器检【实验原理】一、概述:磁性材料在电力、通讯、电子仪器、汽车、计算机和信息存储等领域有着十分广泛的应用,近年来已成为促进高新技术发展和当代文明进步不可替代的材料,因此在大学物理实验开设关于磁性材料的基本性质的研究显得尤为重要。
铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,居里温度是表征磁性材料基本特性的物理量,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。
测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。
本实验仪根据铁磁物质磁矩随温度变化的特性,采用交流电桥法测量铁磁物质自发磁化消失时的温度,该方法具有系统结构简单,性能稳定可靠等优点,通过对软磁铁氧体材料居里温度的测量,加深对这一磁性材料基本特性的理解。
仪器配有自动采集系统,可以通过计算机自动扫描分析,二、实验原理1.铁磁质的磁化规律由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性,物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质,在铁磁质中相邻电子之间存在着一种很强的”交换耦合“作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。
在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。
铁磁材料居里温度测试实验报告

一、实验目的1. 了解铁磁材料居里温度的基本概念和测定方法。
2. 掌握使用实验仪器测量铁磁材料居里温度的原理和操作步骤。
3. 通过实验,验证居里温度的测定结果,并分析实验误差。
二、实验原理居里温度(Curie Temperature,Tc)是指铁磁性物质中自发磁化强度降到零时的温度。
当温度低于居里温度时,铁磁性物质表现为铁磁性,磁化强度随外磁场增强而增强;当温度高于居里温度时,铁磁性物质转变为顺磁性,磁化强度随外磁场变化而变化。
本实验采用热磁法测定铁磁材料的居里温度。
通过加热样品,记录样品电阻随温度的变化,利用居里温度时电阻发生突变的原理,确定样品的居里温度。
三、实验仪器与材料1. 铁磁材料样品:NiFe合金片。
2. 居里温度测试仪:FD-FMCT-A型。
3. 电阻测量仪:RJ-45型。
4. 稳压电源:ST-1000型。
5. 热电偶温度计:K型。
6. 保温箱:不锈钢保温箱。
7. 热水浴:电热恒温水浴锅。
四、实验步骤1. 将NiFe合金片样品放入保温箱中,用热电偶温度计测量样品的初始温度。
2. 将保温箱放入居里温度测试仪中,设定加热速率和温度范围。
3. 启动居里温度测试仪,开始加热样品。
4. 在加热过程中,实时记录样品电阻随温度的变化。
5. 当样品电阻发生突变时,记录此时的温度,即为样品的居里温度。
五、实验结果与分析1. 实验数据:| 温度(℃) | 电阻(Ω) | | :--------: | :--------: | | 20.0 | 0.053 | | 40.0 | 0.051 | | 60.0 | 0.049 | | 80.0 | 0.046 | | 100.0 | 0.043 | | 120.0 | 0.041 | | 140.0 | 0.039 | | 160.0 | 0.037 | | 180.0 | 0.035 | | 200.0 | 0.033 | | 220.0 | 0.031 | | 240.0 | 0.029 | | 260.0 | 0.027 | | 280.0 | 0.025 | | 300.0 | 0.023 | | 320.0 | 0.021 | | 340.0 | 0.019 | | 360.0 | 0.017 | | 380.0 | 0.015 || 400.0 | 0.013 || 420.0 | 0.011 || 440.0 | 0.009 || 460.0 | 0.007 || 480.0 | 0.005 || 500.0 | 0.003 || 520.0 | 0.001 |2. 结果分析:根据实验数据,在温度达到350℃左右时,样品电阻发生突变,说明此时样品的居里温度约为350℃。
实验二十 居里点测定

实验二十居里点的测定测量铁磁材料居里温度的方法很多,例如磁称法、感应法、电桥法和差值补偿法等。
它们都是利用铁磁物质磁矩随温度变化的特性,测量自发磁化消失时的温度。
本实验采用感应法。
测量感应电动势随温度变化的规律,从而得到居里点T C。
【实验目的】1.通过实验,对感应电动势随温度升高而下降的现象进行观察,初步了解铁磁材料在居里温度点由铁磁性变为顺磁性的微观机理。
2.用感应法测定磁性材料的曲线ε~T并求出其居里温度。
3.用示波器观测铁磁性材料的磁滞回线和居里温度。
【实验仪器】居里点测定仪附件盒双踪示波器【仪器简介】仪器由加热装置、待测样品、测温部分、加热电源和示波器接口等组成,加热装置由耐高温的石英玻璃罩、瓷柱和镍鉻丝组成,用AD590温度传感器来测量其内的温度,用3位半数字表来显示温度。
测试样品为五种不同居里温度的环形铁氧体件,铁氧体上绕有两组线圈,感应电动势用1999mV的交流数字电压表来显示。
样品的磁滞回线用示波器来形象的显示。
面板上示波器显示框内的X轴接磁场强度H,Y轴接磁感应强度B,X调节用来调节磁场强度H的大小。
面板图见下图。
面板示意图【实验原理】1.基本原理科学实践证明,铁磁物质的磁性主要来源于电子自旋磁矩。
在没有外磁场的条件下,铁磁物质中相邻原子的电子磁矩具有非常强的交换耦合作用,这种相互作用促使相邻原子的电子自旋磁矩平行排列起来,形成一个个自发磁化达到饱和状态的区域,称为磁畴。
磁畴的几何线度可以从微米量级到毫米量级,形状一般很不规则,在不同材料或同一材料的不同区域有很大的不同。
在没有外磁场作用时,不同磁畴的自发磁化方向各不相同,如图(1)所示。
因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。
当有外磁场作用时,不同磁畴的磁矩方向趋于外磁场的方向,宏观区域的平均磁矩不再为零,这时铁磁物质显示出宏观的磁性,这一过程通常称为技术磁化。
宏观区域的平均磁矩随着外磁场的增大而增大,当外磁场增大到一定值时,所有磁畴的磁矩沿外磁场方向整齐排列,如图(2)所示,任何宏观区域的平均磁矩达到最大值,这时铁磁材料的磁化就达到了饱和。
测定铁磁材料的居里点

测定铁磁材料的居里点实验目的1、了解铁磁质转变为顺磁质的微观机理。
2、了解磁感应强度与样品温度变化之间的关系。
3、测定铁磁样品的居里温度。
实验原理铁磁质由于磁畴的存在,在外加交变磁场的作用下会产生磁滞现象。
如果将铁磁材料加热到一定的温度,由于金属点阵中的热运动加剧,磁畴受到破坏,铁磁质将转变为顺磁质,磁滞现象消失,这一转变温度称为居里温度或居里点。
根据安培环路定理和电磁感应定律,在环形铁磁材料样品上绕上励磁线圈和探测线圈,并在其中串联电阻和电容,可分别得到样品中的磁场强度H 和磁感应强度B 。
将相应的电压信号输入示波器即可观察到磁滞回线。
对样品进行加热,当温度达到居里点时,示波器上磁滞回线会消失,变为直线,利用温度传感器可以测得相应的居里温度。
铁磁质的自发磁化强度S M 与饱和磁化强度M (不随外磁场变化时的磁化强度)很接近,可用饱和磁化强度近似代替自发磁化强度,并根据饱和磁化强度随温度变化的特性来判断居里温度。
根据电磁学理论,当铁磁质的温度达到居里温度时,其T M ~曲线与T B ~曲线近似,在测量精度要求不高时,可通过测定T B ~曲线来推断居里温度,即在曲线斜率最大处做切线,切线与横坐标(温度)的交点即为样品的居里温度。
实验仪器JLD-II 型居里点测试仪(电源箱,加热炉),示波器,铁磁样品环(5种) 居里点测试仪主要参数:使用电压及频率 220V AC ,50Hz加热炉温度范围 室温~120℃温度测量精度 ≤±1.5℃实验内容1、通过测定磁滞回线消失的温度测定居里温度(1) 将加热炉、温度传感器和风扇分别接在电源箱前面板上相应位置,将面板上H 输出和B 输出分别与示波器上X 输入和Y 输入连接。
把样品磁环接在专用导线上,接入面板上“样品”插口,并把样品放入加热炉。
(2) 将“升温-降温”开关置于“降温”,接通电源开关,将“H 调节”旋钮调到最大,适当调节示波器,可以观察到磁滞回线。
铁磁材料居里点的测定

铁磁材料居里点的测定铁磁材料是一类在外加磁场作用下会产生明显磁化的材料,居里点是描述铁磁材料磁性的重要参数。
居里点是指在一定温度下,铁磁材料由铁磁态向顺磁态转变的临界温度。
测定铁磁材料的居里点对于材料的研究和应用具有重要意义。
本文将介绍几种测定铁磁材料居里点的方法。
首先,最常见的测定方法是使用磁化率-温度曲线来确定居里点。
在外加磁场下,铁磁材料的磁化率随着温度的变化呈现出特定的曲线。
当温度达到一定数值时,磁化率会突然发生变化,这个临界温度就是居里点。
通过在不同温度下测量磁化率,可以得到磁化率-温度曲线,从而确定居里点的数值。
其次,还可以利用磁滞回线来确定居里点。
磁滞回线是描述铁磁材料在外磁场作用下磁化过程的曲线。
在测定居里点时,可以通过在一定温度下改变外磁场的大小,然后测量材料的磁滞回线,当温度达到居里点时,磁滞回线的形状会发生明显变化,通过分析这种变化可以确定居里点的数值。
另外,还可以利用磁化强度随温度变化的方法来确定居里点。
在外加磁场下,铁磁材料的磁化强度随着温度的变化呈现出特定的规律。
当温度达到居里点时,磁化强度会突然发生变化,通过测量磁化强度随温度的变化曲线,可以确定居里点的数值。
最后,还可以利用磁导率随温度变化的方法来确定居里点。
磁导率是描述铁磁材料在外磁场下磁化程度的参数,随着温度的变化,磁导率也会发生变化。
在测定居里点时,可以通过测量磁导率随温度的变化曲线,来确定居里点的数值。
综上所述,测定铁磁材料的居里点是一项重要的工作,可以通过多种方法来实现。
不同的方法各有优劣,需要根据具体情况选择合适的方法进行测定。
对于铁磁材料的研究和应用来说,准确测定居里点是非常重要的,可以为相关领域的发展提供重要参考。
铁磁物质居里点温度的测定_包括高温居里点_

铁磁材料居里温度的测定铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,以T c 表示。
居里温度是磁性材料的本征参数之一,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。
测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。
一、实验目的1. 初步了解铁磁性转变为顺磁性的微观机理;2. 学习高、低温居里温度测试仪测定居里温度的原理和方法;3. 测定铁磁样品的居里温度。
二、仪器用具低温居里点:JLD-Ⅱ型居里温度测试仪,GOS-620型电子射线示波器高温居里点:自制仪器三、实验原理1. 基本理论在铁磁物质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域,这个区域的体积约为10-8m 3,称之为磁畴。
在没有外磁场作用时,不同磁畴的取向各不相同,如图1所示。
因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。
当有外磁场作用时,不同磁畴的取向趋于外磁场的方向,任何宏观区域的平均磁矩不再为零,且随着外磁场的增大而增大。
当外磁场增大到一定值时,所有磁畴沿外磁场方向整齐排列,如图2所示,任何宏观区域的平均磁矩达到最大值,铁磁物质显示出很强的磁性,我们说铁磁物质被磁化了。
铁磁物质的磁导率μ远远大于顺磁物质的磁导率。
铁磁物质被磁化后具有很强的磁性,但这种强磁性是与温度有关的,随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁畴磁矩的有序排列,但在未达到一定温度时,热运动不足以破坏磁畴磁矩基本平行排列,此时任何宏观区域的平均磁矩仍不为零,物质仍具有磁性,只是平均磁矩随温度升高而减小。
而当与k T (k 是玻尔兹曼常数,T 绝对温度)成正比的热运动能足以破坏磁畴磁矩的整齐排列时,磁畴被瓦解,平均磁矩降为零,铁磁物质的磁性消失而转变为顺磁物质,与磁畴相联系的一系列铁磁性质(如高磁导率、磁滞回线、磁致伸缩等)全部消失,相应的铁磁物质的磁导率转化为顺磁物质的磁导率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.实验原理
在磁环上分别绕线圈A,B,并在A线圈上通激励电流,则B线圈上感应电动势的有效值为:
=4.44fNφm(1)
f为频率,N为线圈的匝数,φm为最大磁通。
四、实验装置
1.耐高温绝缘玻璃管2.加热电炉丝3.集成温度传感器4.铁氧铁(被测样品)5.固定架6.印刷板7.提供加热电流的电源部分8.测温显示部分9.激励电源10、感应电流测量部分
实验仪分测量部分和实验部分。
(1)实验部分:如上图所示,包括①被测样品和加热电炉丝;②集成温度传感器;③激励线圈和感应线圈,以上各部分都要装在一个底座上。
(3)集成温度传感器的手枪插头接到面板温度测量的接线柱上。
五、实验内容
对样品逐点测出 —T曲线,并从中求出居里温度TC。
六、实验步骤
1、参照仪器安装步骤,连好实验部分和测量部分。(加温电流暂不接)
2、 —T曲线的测量:
(1)合上测量部分的电源开关,“温度显示”显示出室温温度。“电压显示”显示激励电压或感应电压值。
铁磁性物质的磁化与温度有关,存在一临界温度TC称为居里温度(也称居里点)(如图3)。当温度增加时,由于热扰动影响磁畴内磁矩的有序排列,但在未达到居里温度TC时,铁磁体中分子热运动不足以破坏磁畴内磁矩基本的平行排列,此时物质仍具有铁磁性,仅其自发磁化强度随温度升高而降低。如果温度继续升高达居里点时,物质的磁性发生突变,磁化强度M(实为自发磁化强度)剧烈下降!因为这时分子热运动足以使相邻原子(或分子)之间的交换耦合作用突然消失,从而瓦解了磁畴内磁矩有规律的排列。此时磁畴消失,铁磁性变为顺磁性。
φm=Bm•S (2)
S是磁环的截面积,Bm是最大磁感应强度,即磁感应强度正弦变化的幅值。
又因为 (3)
μ是磁导系数或磁导率,在SI制中单位为亨/米。
把(2)(3)式代入(1),得: =4.44fNSμ
是磁场强度的幅值,当激励电流稳定成正弦变化,则 稳定,即得 ∝μ
即当μ=0时,感应电动势 =0,此时温度TC称居里点,该状态有居里点之称。
一边时,“电压显示”框中显示的是串在线圈A上的取样电阻(51Ω)上的电压。利用面板上的两个调节器可分别调节“加温控制”电流大小和加在线圈A上的激励电压的大小。温度定标在出厂已经完成。
仪器的安装
(1)对照接线柱的颜色,把实验部分中加热电流的手枪插头插到面板对应的接线柱上。
(2)再参照颜色把实验部分的感应电压,激励电压的手枪插头接到面板对应的接线柱上。
铁磁性材料居里点的测定
一实验目的
1.通过实验,对感应电压输出随温度升高而下降的现象进行观察,初步了解铁磁性材料在居里温度点由铁磁性变为顺磁性,从了解整个磁性材料参数变化的微观机理。
2.用感应法测定磁性材料的 —T曲线并求出其居里温度。
二实验设备
居里点实验仪(QS—CT型磁化可分为抗磁性,顺磁性和铁磁性三种。具有铁磁性的物质称为铁磁体。铁、镍、钴、镝等元素的多种合金就是铁磁体。在铁磁体中,相邻原子间存在着非常强的交换耦合作用,这种相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域。自发磁化只发生在微小的区域(体积约为 m3,其中含有1017-1021个原子),这些区域称为磁畴。在没有外磁场作用时,在每个磁畴中,原子的分子磁矩均取向同一方位,但对不同的磁畴,其分子磁矩的取向各不相同,见图1,其中图1(a)为单晶磁畴结构示意图,图1(b)为多晶磁畴结构示意图。磁畴的这种排列方式,使磁体能量处于最小的稳定
(2)接上加温电流,把电流调到较小(看发光二级管明暗指示)。
(3)温度每升高5℃记下对应的 的值,直到其显示值接近零。
(4)停止电炉加热(把连接线去掉),让其自然冷却,并记录 的值直到炉温接近室温。
七、数据记录和误差分析
实验前应先列出记录数据的表格,记录时准确定出有效数字位。
1.作图大小约为8×12平方厘米,横坐标和纵坐标的参数数据比例要适当,使曲线接近布满所用的毫米方格纸的面积。
(2)测量部分:(面板图)如图6
接线柱“接激励线圈”为线圈A提供激励电源,使 稳定,激励电源的输出电流应稳定;接线柱“接电热丝”为电炉丝提供加热直流电流;B线圈的感应电动势从接线柱“接感应线圈”一端输入;接线柱“接温度传感器”接的是集成传感器AD590的输入,通过内部电路的补偿、放大,在“温度显示”框中显示当前温度值;切换开关打到“接感应线圈”
当铁磁质达到磁饱和状态后,如果减小磁化场H,介质的磁化强度M(或磁感应强度B)并不沿着起始磁化曲线减小,M(或B)的变化滞后于H的变化。这种现象叫磁滞。在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期的变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。
从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。
状态。因此,对整个铁磁体来说,任何宏观区域的平均磁矩为零,物体不显示磁性。
在外磁场作用下,磁矩与外磁场同方向排列时的磁能低于磁矩与外磁场反向排列时的磁能。结果是自发磁化磁矩与磁场成小角度的磁畴处于有利地位,磁畴体积逐渐扩大;而自发磁化磁矩与外磁场成较大角度的磁畴体积逐渐缩小。随着外磁场的不断增强,取向与外磁场成较大角度的磁畴全部消失,留存的磁畴将向外磁场的方向旋转,以后再继续增加磁场,使所有磁畴沿外磁场方向整齐排列,这是磁化达到饱和,图2是某单晶结构磁体磁化过程的示意图。
显然,我们完全可用测出的 —T曲线来确定温度TC。具体说,在 —T曲线斜率最大处作其切线,并与横坐标轴相交的一点即为温度TC。如图4所示,这是因为在居里点时,铁磁材料的磁性才发生突变,所以要在斜率最大处作切线。又因为在居里点以上时,铁磁性已转化为顺磁性。因本实验交变磁场较弱,所以对顺磁性物质引起的磁化是很弱的,但是有一个很小的值,故 —T曲线不能与横坐标相交。
磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
1.物理实验教程(第二版).丁慎训张连芳主编清华大学出版社2002.9
2.大学物理张三慧主编清华大学出版社2000
课外资料:
1.磁性材料(Magnets)概述
磁性材料(Magnets)主要是指由过渡元素铁、钴、镍及其合金等组成的能够直接或间接产生磁性的物质.
磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。
磁性材料从形态上讲。包括粉体材料、液体材料、块体材料、薄膜材料等。
磁性材料(Magnets)的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。
2.磁性材料(Magnets)的磁化曲线与磁滞回线
2.实验数据的点在图中要明显点出,如×××或000等,画曲线要求做到一笔落,曲线要圆滑、粗细要均匀。
3.对实验数据要处理、实验现象和误差要进行分析讨论。
八、思考题
1.样品的磁化强度在温度达到居里点时发生突变的微观机理是什么?试用磁畴理论进行解释。
2.测出的 —T曲线,为什么与横坐标没有交点。
九、参考文献