居里温度的测量
铁磁性材料居里温度的测定
本装置可通过两种途径来判断样品的铁磁性消失
1.通过观察样品的磁滞回线是否消失来判断. 铁磁物质磁滞回线如 测出对应于磁滞回线消失时的温度,就测得了居里点温度.
B
图2
H
2.通过测定磁感应强度随温度变化的曲线来推断 在测量精度要求不高的情况下,可以通过测定B(T)曲线来推断居里温度.既测出感 应电动势的积分电压U随温度T变化的曲线,并在其斜率最大处作切线,切线与横坐 标轴的交点既为样品的居里温度.
思考题1.通过测感应电动势随温度变化的曲线来推断居里温度时,为什么
要由曲线上斜率最大处的切线与温度轴的交点来确定 Tc ,而不是由曲线 与温度轴的交点来确定Tc ?
铁磁性材料居里温度的测定
基本原理
被磁化的铁磁物质具有很强的磁性,这种强磁性是与温度有 关的.随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁 畴磁矩的有序排列.在未达到一定温度时,热运动不足以破坏磁畴 磁矩基本的平行排列,此时任何宏观区域的平均磁矩仍不为零,物 质仍具有磁性,只是平均磁矩随温度升高而减小.当与kT(k是玻耳 兹曼常数,T是热力学温度)成正比的热运动能足以破坏磁畴磁矩 的整齐排列时,磁畴被瓦解,平均磁矩降为零,铁磁物质的磁性消 失而转变为顺磁物质,与磁畴相连系的一系列铁磁性质(如高磁导 率、磁滞回线、磁致伸缩等)全部消失,相应的铁磁物质的磁 导率转化为顺磁物质的磁导率。与铁磁性消失时所对应的温度 即为居里点温度.
测量装置及内容 本实验仪器为JLD-II居里点温度测试仪如图1所示待测样品为一环形铁磁材料,其
上绕有两个线圈 L1 和 L2 , L1 为励磁线圈,给其通一交变电流,提供使环形样品
磁化的磁场.将环形样品置于温度可控的加热炉中以改变样品的温度.通过样品旁 边的集成温度传感器测定样品的温度
居里温度的测定 实验报告
居里温度的测定实验报告一、实验目的1.了解居里温度的概念和测量方法;2.掌握居里温度的测量实验方法,学习使用实验仪器测量样品的电容变化值;3.实验中讲解电容变化与相变的关系,了解传统物理学的局限性。
二、实验原理居里温度是材料在物理性质上的一个临界点,其以下推广为:在低于居里温度时,铁磁体材料的磁矩方向是有序排列的,而在高于居里温度时,磁矩方向由有序变为无序。
因此,可以通过测量样品的电容变化值,得到居里温度。
三、实验步骤1.实验前清洗所有试验仪器。
2.准备试验样品,将其放置在试验装置中。
3.使用热水槽进行加热,保持温度平稳,直至100°C。
4.使用温度计测量试验样品的温度。
5.使用电容计测量试验样品的电容变化值,记录数据。
6.以5°C为温度间隔进行多次测量,直到样品的磁性变化稳定。
7.记录数据,绘制样品电容与温度变化曲线。
四、实验结果通过实验测量,我们得出了以下结果:样品的居里温度为:82℃温度(℃)电容变化(pF)70 300我们取样品的温度范围为70℃-100℃,通过测量其电容变化值,得出样品的居里温度为82℃。
五、实验分析通过实验结果,我们可以看到样品的电容变化值随温度的升高而减小,在样品的居里温度范围内发生了明显的变化。
其原因在于,磁性相变时,样品不同部分的电容值不同,导致整个样品的电容值随着温度变化而发生了变化。
通过上述分析,我们可以看到居里温度的测量方法非常简单,只需要测量样品在不同温度下的电容变化即可。
但是,这种传统的测量方法有其局限性,因为它基于经典物理学的理论,没有考虑到量子效应的影响。
六、思考题1.量子效应对居里温度有什么影响?量子效应对居里温度的影响很大,因为量子效应下,物质的行为与经典物理学预测的不同。
例如,当离子化程度高时,电子可能以一种非常奇怪的方式通过晶格进行传递,导致物质在低温下的电阻率异常地高。
2.居里温度与材料的磁矩有什么关系?3.磁相变与其他相变有何不同?磁相变是材料在物理性质上的相变,与正常的从固体到液体的相变不同,它涉及到物质的电磁性质。
铁磁材料居里温度的测定
SUES大学物理选择性实验讲义磁学铁磁材料居里温度的测定∗磁性材料在电力,通讯,电子仪器,汽车,计算机和信息存储等领域有着十分广泛的应用,已成为促进高新技术发展不可或缺的材料,因此有必要通过实验了解磁性材料的基本特性.磁性材料可分为反铁磁性,顺磁性和铁磁性材料三种.铁磁性物质的磁性随温度的变化而变化,当温度上升到某一值时,铁磁材料就由铁磁状态转变为顺磁状态,这一特征温度称为居里温度.居里温度是表征铁磁性材料基本特征的物理量,它仅与材料的化学成分和晶体结构有关,几乎与晶粒大小,取向以及应力分布等因素无关.测定铁磁材料的居里温度不仅对磁性材料,磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义.本实验根据铁磁物质磁矩随温度变化的特性,采用交流电桥法测量铁磁物质自发磁化消失时的温度,即居里温度.一实验目的1.了解铁磁物质由铁磁性转变为顺磁性的微观机理;2.利用交流电桥法测定铁磁材料样品的居里温度;3.分析交流电桥输入信号频率对居里温度测量结果的影响.二实验设备铁磁材料居里温度测定仪:实验主机2台,实验箱∗修订于2010年8月28日三实验原理1铁磁质的磁化规律由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性.物质的磁性可分为反铁磁性(抗磁性),顺磁性和铁磁性三种.在铁磁质中由于相邻电子之间存在着很强的“交换耦合”作用,因此在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发的”整齐排列起来而形成自发磁化小区域,称为磁畴.在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,呈现出磁性,但大量磁畴的磁化方向各不相同而整个铁磁质不显磁性,如图1(a)所示.当铁磁质处于外磁场中时,那些自发磁化方向和外磁场方向成小角度的磁畴,其体积随着外磁场的增大而扩大,并使磁畴的磁化方向进一步转向外磁场方向.另一些自发磁化方向和外磁场成大角度的磁畴,其体积则逐渐缩小.这时铁磁质对外呈现宏观磁性,如图1(b)所示.当外磁场继续增大时,上述效应相应增大,直到所有磁图1.(a)未加磁场时磁畴的结构,(b)加磁场时磁畴的结构.畴都沿外磁场排列好,介质的磁化达到饱和.由于在每个磁畴中元磁矩已完全排列整齐,因此具有很强的磁性,这就是为什么铁磁质的磁性比顺磁质强得多的原因.铁磁性是与磁畴结构分不开的,当铁磁质受到强烈的震动或处在高温下时,磁畴便会瓦解,铁磁性就会消失,对于任何铁磁质都有这样一个临界温度,高过这个温度铁磁性就会消失,变为顺磁性,这个临界温度称为铁磁质的居里温度.在各种磁介质中最重要的是以铁为代表的一类磁性很强的物质,常用的铁磁质多数是铁和其他金属或非金属组成的合金,以及某些包含铁的氧化物(铁氧体).铁氧体具有适于在更高频率下工作,电阻率高,涡流损耗更低的特性.磁介质的磁化规律可用磁感应强度⃗B,磁化强度⃗M和磁场强度⃗H来描述,它们满足以下关系⃗B=µ(⃗H+⃗M)=(χm+1)µ0⃗H=µrµ0⃗H=µ⃗H(1) (1)式中,µ0=4π×10−7H/m为真空磁导率,χm为磁化率,µr为相对磁导率,µ为绝对磁导率.对于顺磁质,χm>0,µr略大于1,对于抗磁质,χm<0,其绝对值在10−4∼10−5之间,µr略小于1,而铁磁质χm≫1,所以µr≫1.对非铁磁性磁介质,⃗H和⃗B之间满足线性关系:⃗B=µ⃗H,而铁磁质的µ,⃗B和⃗H之间有着复杂的非线性关系,图2(a)是典型的铁磁质磁化曲线,可以看到µ是H的函数,从图2(b)中可以看到µ还是温度T的函数,当温度升高到某个值时,铁磁质由铁磁状态转变为顺磁状态,曲线突变点所对应的温度就是居里温度T C.图2.(a)铁磁体磁化曲线,(b)铁磁体µ∼T曲线.2用交流电桥测量居里温度铁磁质的居里温度可用任何一种交流电桥测量.大多数交流电桥可归结为如图3(a)所示的四臂阻抗电桥,电桥的四个臂可以是电阻,电容,电感的串联或并联的组合,调节电桥的桥臂参数,使得C,D两点间的电位差为零,电桥达到平衡,则有Z1 Z3=Z2Z4(2)若要(2)式成立,必须使该复数等式的模量和辐角分别相等,于是有|Z1||Z4|=|Z2||Z3|(3)ϕ1+ϕ4=ϕ2+ϕ3(4)由此可见,交流电桥平衡时,除了阻抗大小满足(3)式外,阻抗的相角还要满足(4)式,这是它和直流电桥的主要区别.本实验采用如图3(b)所示的RL交流电桥,在电桥中输入电源由信号发生器提供,在实验中应适当选择较高的输出频率,图3.(a)交流电桥基本电路,(b)RL交流电桥.ω为信号发生器的角频率,其中Z1和Z2为纯电阻,Z3和Z4为电感(包括电感的线性电阻r1和r2,测定仪中还接入了一个可调电阻R3),其复阻抗为Z1=R1,Z2=R2,Z3=r1+jωL1,Z4=r2+jωL2(5)当电桥平衡时有R1(r2+jωL2)=R2(r1+jωL1)(6)实部与虚部分别相等,有r2=R2R1r1,L2=R2R1L1(7)实验时选择合适的电气元件相匹配,在未放入铁氧体时,通过调节使电桥平衡.当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡.随着温度上升到某一值时,铁氧体的铁磁性转变为顺磁性,C,D两点间的电位差发生突变并趋于零,电桥又趋于平衡.这个突变点对应的温度就是居里温度,可通过电桥电压与温度的关系曲线,求其曲线突变处的温度.四实验内容1.将实验主机1(信号发生器和频率计)的“信号输出”通过Q9连线接到实验箱上的“接信号源”,“接交流电压表”通过Q9线连接到实验主机2(交流电压表和信号采集系统)的“电桥输出”,实验箱上的交流电桥按照“接线示意图”连接.2.打开实验主机,信号源频率取1500Hz,调节R2,R3的阻值使电桥平衡.3.移动电感线圈,在样品槽中放入铁氧体样品,并涂上导热硅脂,重新将电感线圈移动至原位置,使铁氧体样品处于线圈中心,记录电压表读数.4.打开加热器开关,调节加热速率电位器至合适位置,加热过程中,温度每升高5◦C,记录电压读数.当电压读数在5◦C温度间隔中变化较大时,再每隔1◦C记录电压读数,直到加热器温度升高到100◦C左右为止,关闭加热器开关.5.根据记录的数据作电压温度V∼T图,计算样品的居里温度.五注意事项1.样品架加热时温度较高,实验时勿用手触碰,以免烫伤.2.铁氧体样品上涂导热硅脂,使受热均匀.3.加热温度不允许超过120◦C,以免损坏仪器.4.实验过程中,不允许改变信号源的频率及幅度,不允许改变电感线圈的位置.5.加温速率不能过快,防止传感器测到的温度与铁氧体样品实际温度不同.六思考与讨论1.物体的磁性可分为几类,各有什么特征?2.为什么可以用RL交流电桥测量铁氧体样品的居里温度?3.测得的V∼T曲线,为什么与横坐标没有交点?七参考资料1.赵凯华陈熙谋《电磁学》第二版·下册高等教育出版社(1985)2.林木欣《近代物理实验教程》科学出版社(1992)。
铁磁性材料居里温度的测试
铁磁性材料居里温度的测试铁磁性物质的磁性随温度的变化而改变。
温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称之为居里表示。
居里温度是磁性材料的本征参量之一,它仅与材料的化学成分和晶体结温度,以Tc构有关,几乎与晶粒的大小、取向以及应力分布等组织结构因素无关,为组织和结构不敏感参量。
测定铁磁性材料的居里温度不仅对磁性材料、磁性器件的研究和研制,而且对工程技术应用都具有十分重要的意义。
一、数据记录、处理及误差分析1、实验前应列出记录数据的表格(参见表9—1、9—2),记录时准确定出有效数字位数。
注意:要求记录不同样品的(室温)初始(输出)感应电压值。
表9-1磁滞回线消失时所对应的温度值及初始(输出)感应电压值表9-2感应电动势积分值ε'及其对应的温度T值2、绘出每个样品的U~T 曲线,按照图9—5的方法确定各自的居里点Tc ,并与通过示波器观察样品磁滞回线消失温度来确定居里点Tc 方法得到的结果进行比较,并加以分析讨论。
2030405060708090050100150200250300350400i n d u c e d v o l t a g e (m V )temperature(℃)图1-1 试样一的U~T 曲线示波器法测得Tc=85℃(室温26℃) U~T 曲线用切线法测得Tc=85.2℃050100150200250300350400i n d u c e d v o l t a g e (m V )temperature(℃)图1-2 试样二的U~T 曲线 示波器法测得Tc=130.6℃(室温25℃) U~T 曲线用切线法测得Tc=130.2℃答:从数据处理的结果我们可以看出,用示波器观察样品磁滞回线消失温度来确定的居里点Tc比通过感应电动势随温度变化的曲线来推断居里点温度略大,但基本上相等。
影响示波器测量结果的因素有(1)待测样品上的线圈L1、L2互绕在一起有一定的互感,始终存在一定感应电压,使示波器显示的磁滞回线不能准确地反映待测样品的真实磁滞回线的情况。
大学物理实验 居里温度的测量
实验十一 居里温度的测量居里温度是表征磁性材料性质和特征的重要参量,测量磁导率和居里温度的仪器很多,例如磁天平、振动样品磁强计、磁化强度和居里温度测试仪等,测量方法有感应法、谐振法、电桥法等.【实验目的】1. 初步了解铁磁性物质由铁磁性转变为顺磁性的微观机理.2. 学习JZB-1型居里温度测试仪测定居里温度的原理和方法.3. 学会测量不同铁磁样品居里点的方法.【实验原理】磁性是物质的一种基本属性,从微观粒子到宏观物体,以至宇宙天体,无不具有某种程度的磁性,只是其强弱程度不同而已,这里说的磁性是指物质在磁场中可以受到力或力矩作用的一种物理性质。
使物质具有磁性的物理过程叫做磁化,一切可以被磁化的物质都叫做磁介质.磁介质的磁化规律可用磁感应强度B 、磁化强度M 、磁场强度H 来描述,当介质为各向同性时,它们满足下列关系:()()H H H M H B r m μμμχμμ==+=+=0001 (1)其中m r χμ+=1,r μ称为相对磁导率,是个无量纲的量.为了简便,常把r μ简称为介质磁导率,m χ称为磁化率,m H /10470-⨯=πμ称为真空磁导率,r μμμ0=称为绝对磁导率.H M m χ=.在真空中时0=M ,H 和B 中只需一个便可完全描述场的性质.但在介质内部,H 和B 是两个不同的量,究竟用H 还是用B 来作为描述磁场的本征量,根据磁场的性质有各种不同的表现来选择.因为H 和B 两者描述了不同情况下磁场的性质,它们都是描述磁场性质的宏观量,都是真正的物理量.在某些问题中,比如在电磁感应、霍尔效应、测量地磁水平分量等问题中,由于起作用的是磁通量的时间变化率,牵涉到的是B ;而如果考虑材料内部某处磁矩所受的作用时,起作用的就是H ,比如求退磁能及磁矩所做的功等。
从H B r μμ0=的关系看,表面上B 与H 是线性的,但实际上,由于r μ是一个与m χ值有关的量,而m χ值又与温度、磁化场有关,所以r μ是一个复杂的量,不能简单地从B 与H 的形式上来判断它们之间是线性的,或是非线性的关系.磁体在磁性质上有很大的不同,从实用的观点,可以根据磁体的磁化率大小和符号来分为五个种类。
居里温度的测量实验报告
居里温度的测量实验报告
实验目的:了解居里温度的概念及其测量方法,并学会使用实验仪器测量居里温度。
实验原理:
居里温度又称“居里点”,是指物质发生相变(例如磁性相变或压电相变)时的转变温度。
对于铁磁性材料来说,居里温度是指在该材料磁性相变前,温度和材料磁导率成正比。
居里温度的测量可以通过测量电导率或者磁导率的变化来实现。
实验仪器:
热电偶仪器、高精度恒温水槽、铁磁材料样品。
实验步骤:
1.将实验室温度调节至室温(约为20℃)。
2.准备一个铁磁样品并将它放入恒温水槽中。
3.将铁磁样品加热至较高温度,然后迅速将铁磁样品放入恒温水槽中。
4.使用热电偶仪器测量样品的温度,记录下转变温度。
5.将步骤3-4重复多次,测量多个样品的转变温度,并求取转变温度的平均值作为居里温度。
实验结果及分析:
经过多次实验测量并取平均值,我们得到了样品的居里温度为x℃。
居里温度的测量方法根据物质不同而有所不同。
本实验的测量方法是通过测量铁磁样品磁导率的变化得到其转变温度。
在实验过程中要注意保证温度控制恒定,以提高实验结果的准确性。
实验结论:
本实验学习了居里温度的概念及其测量方法,并使用实验仪器测量得到了样品的居里温度。
居里温度是不同物质在相变前的转变温度,对于铁磁性材料来说,它与材料磁导率成正比。
本实验中采用热电偶仪器和恒温水槽等实验仪器来实现了居里温度的测量。
10.6 居里温度测量
实验10.6 居里温度测量一、引言1.磁性材料的自发磁化来自磁性电子间的交换作用。
在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。
但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当升高到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,此即居里温度。
不同材料的居里温度是不同的。
材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。
因此,深入研究和测定材料的居里温度有着重要意义。
居里温度的测量方法:(1)通过测定材料的饱和磁化强度和温度依赖性得到M S—T曲线,从而得到M S降为零时所对应的居里温度。
这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及SQUID等。
图1示出了纯Ni的饱和磁化强度的度依赖性。
由图可以确定Ni的居里温度。
图1 Ni的Ms—T曲线图2 镍锌铁氧体的μi—T曲线(2)通过测定材料在弱磁场下的初始磁导率μi的温度依赖性,利用霍普金森效应,确定居里温度。
霍普金森效应指的是一些软磁材料的初始磁导率在居里点附近,由于磁晶各向异性常数K1随温度升高而趋于零的速度远快于饱和磁化强度随温度的变化,而初始磁导率μi∝M S2/K1,因此在局里温度附近,μi会显示一最大值,随后快速趋于零的现象。
图2示出了不同成分的镍锌铁氧体的初始磁导率随温度的变化,这些材料的霍普金森效应十分明显。
由图也可以确定各样品的居里温度。
(3)通过测量其他磁学量(如磁致伸缩系数等)的温度依赖性求得居里温度。
(4)通过测定一些非磁学量如比热、电阻温度系数、热电势等随温度的变化,随后根据这些非磁学量在居里温度附近的反常转折点来确定居里温度。
2.钙钛矿锰氧化物钙钛矿锰氧化物指的是成分为R1 x A x MnO3(R是二价稀土金属离子,A为一价碱土金属离子)的一大类具有ABO3型钙钛矿结构的锰氧化物。
铁磁性材料居里温度的测定
图(1)外磁场方向 图(2) 铁磁性材料居里温度的测定铁磁性物质的磁性随温度的变化而改变,当温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特征而转变顺磁性物质,这个温度称之为居里温度,以c T 表示。
测量c T 不仅对磁性材料、磁性器件的研发、使用,而且对工程技术乃至家用电器的设计都具有重要的意义。
一、[实验目的]1、初步了解铁磁物质由铁磁性转变为顺磁性的微观机理2、学习使用JLD -Ⅱ型居里点测试仪测量居里温度的原理和方法3、测定5个低温温敏磁环的居里温度 二、[仪器用具]JLD -Ⅱ型居里点测试仪一套(主机一台,加温炉一台,样品5只)、J2458型教学示波器一台三、[实验原理] 1、基本原理在铁磁性物质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域,这个区域的体积约为3610cm -,称之为磁畴。
在没有外磁场作用时,不同磁畴的取向各不相同,如图(1)所示。
因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。
当有外磁场作用时,不同磁畴的取向趋于外磁场的方向,任何宏观区域的平均磁矩不再为零,且随着外磁场的增大而增大。
当外磁场增大到一定值时,所有磁畴沿着外磁场方向整齐排列,如图(2)所示,任何宏观区域的平均磁矩达到最大值,铁磁物质显示出很强的磁性,我们说铁磁物质被磁化了,铁磁物质的磁导率μ远远大于顺磁物质的磁导率,铁磁物质被磁化后具有很强的磁性,但这种磁性是与温度有关的,随着铁磁物质温度的升高,金属点阵热运动加剧会影响磁畴磁矩的有序排列,但在未达到一定温度时,热运动不足以破坏磁畴磁矩基本的平行排列,此时任何宏观区域的平均磁矩仍不为零,物质仍具有磁性,只是平均磁矩随温度升高而减小。
而当与T κ(κ是波尔兹曼常数,T 是绝对温度)成正比的热运动能足以破坏磁畴磁矩的整齐排列时,磁畴被瓦解,平均磁矩降为零,铁磁物质的磁性消失而转变为顺磁物质,相应的铁磁物质的磁导率转化为顺磁物质的磁导率。
铁磁物质居里点温度的测定_包括高温居里点_
铁磁材料居里温度的测定铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,以T c 表示。
居里温度是磁性材料的本征参数之一,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。
测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。
一、实验目的1. 初步了解铁磁性转变为顺磁性的微观机理;2. 学习高、低温居里温度测试仪测定居里温度的原理和方法;3. 测定铁磁样品的居里温度。
二、仪器用具低温居里点:JLD-Ⅱ型居里温度测试仪,GOS-620型电子射线示波器高温居里点:自制仪器三、实验原理1. 基本理论在铁磁物质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域,这个区域的体积约为10-8m 3,称之为磁畴。
在没有外磁场作用时,不同磁畴的取向各不相同,如图1所示。
因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。
当有外磁场作用时,不同磁畴的取向趋于外磁场的方向,任何宏观区域的平均磁矩不再为零,且随着外磁场的增大而增大。
当外磁场增大到一定值时,所有磁畴沿外磁场方向整齐排列,如图2所示,任何宏观区域的平均磁矩达到最大值,铁磁物质显示出很强的磁性,我们说铁磁物质被磁化了。
铁磁物质的磁导率μ远远大于顺磁物质的磁导率。
铁磁物质被磁化后具有很强的磁性,但这种强磁性是与温度有关的,随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁畴磁矩的有序排列,但在未达到一定温度时,热运动不足以破坏磁畴磁矩基本平行排列,此时任何宏观区域的平均磁矩仍不为零,物质仍具有磁性,只是平均磁矩随温度升高而减小。
而当与k T (k 是玻尔兹曼常数,T 绝对温度)成正比的热运动能足以破坏磁畴磁矩的整齐排列时,磁畴被瓦解,平均磁矩降为零,铁磁物质的磁性消失而转变为顺磁物质,与磁畴相联系的一系列铁磁性质(如高磁导率、磁滞回线、磁致伸缩等)全部消失,相应的铁磁物质的磁导率转化为顺磁物质的磁导率。
居里温度的测量
实验十一 居里温度的测量居里温度是表征磁性材料性质和特征的重要参量,测量磁导率和居里温度的仪器很多,例如磁天平、振动样品磁强计、磁化强度和居里温度测试仪等,测量方法有感应法、谐振法、电桥法等.【实验目的】1. 初步了解铁磁性物质由铁磁性转变为顺磁性的微观机理.2. 学习JZB -1型居里温度测试仪测定居里温度的原理和方法.3. 学会测量不同铁磁样品居里点的方法.【实验原理】磁性是物质的一种基本属性,从微观粒子到宏观物体,以至宇宙天体,无不具有某种程度的磁性,只是其强弱程度不同而已,这里说的磁性是指物质在磁场中可以受到力或力矩作用的一种物理性质。
使物质具有磁性的物理过程叫做磁化,一切可以被磁化的物质都叫做磁介质.磁介质的磁化规律可用磁感应强度B 、磁化强度M 、磁场强度来H 描述,当介质为各向同性时,它们满足下列关系:()()H H H M H B r m μμμχμμ==+=+=0001 (1)其中m r χμ+=1,r μ称为相对磁导率,是个无量纲的量.为了简便,常把简称为r μ介质磁导率,m χ称为磁化率,m H /10470-⨯=πμ称为真空磁导率,r μμμ0=称为绝对磁导率.H M m χ=.在真空中时0=M ,H 和中只需一B 个便可完全描述场的性质.但在介质内部,H 和是两个不B 同的量,究竟用还是H 用来作为描B 述磁场的本征量,根据磁场的性质有各种不同的表现来选择.因为和两者H B 描述了不同情况下磁场的性质,它们都是描述磁场性质的宏观量,都是真正的物理量.在某些问题中,比如在电磁感应、霍尔效应、测量地磁水平分量等问题中,由于起作用的是磁通量的时间变化率,牵涉到的是B ;而如果考虑材料内部某处磁矩所受的作用时,起作用的就是H ,比如求退磁能及磁矩所做的功等。
居里温度的测量
2015-12-30
一、概述
1.居里温度 居里温度是指铁磁性或亚铁磁性材料由铁磁性或亚铁磁性状态转变
为顺磁性状态的临界温度。 温度对磁性有显著影响。分子热运动,对磁畴磁矩有序排列有破坏
作用,温度升高到一定数值,铁磁性消失。
Fe : Tc 770 C; Ni : Tc 358 C
T
Tc
2
一、概述
3
二、通过测定磁滞回线消失时的温度来测定居里温度
变压器
(降压、
220V 整流、 交流 滤波、
稳压)
1kHz 正弦波 发生器
数显 控温器
放
加热炉
ACDVM
积分 放大
大
励磁
感应
B
H
4
二、通过测定磁滞回线消失时的温度来测定居里温度
d k dB
dt
dt
Байду номын сангаас
R1
R2
B
(3)数据记录与数据处理过程中的误差。
10
谢谢聆听
Thank You
1 k
dt
L1
L2
5
1.测试仪器
6
7
8
9
4.误差分析 (1)温度测量受热电偶、水浴的影响,这不可避免的导致了测量
到得温度与样品实际温度间存在差异; (2)由于本实验是动态测量,各仪器的测量并不是完全同步的,
特别是在U和T都有明显变化的区域这一点造成的影响最为明显,而这一 区域恰巧是我们最为关注的区域(斜率);
居里温度的测定
居里温度的测定钙钛矿锰氧化物居里温度的测定摘要:本文简要介绍和讨论了磁性材料居里温度的测量方法,对钙钛矿锰氧化物的居里温度做了实验测量,并对实验结果进行了讨论。
关键词:居里温度;钙钛矿锰氧化物;磁化强度;临界指数一、 引言与材料科学中,居里温度(或称为居里点)是指铁磁性材料或亚铁磁性材料在升温过程中转变为顺磁性的临界温度。
在居里温度以上,磁性物质会失去其强磁性。
在居里温度以下,交换作用使得相邻原子磁矩呈平行取向(铁磁性材料),或者反平行取向(亚铁磁性材料)。
当温度升高时,原子的无序热运动将会逐步破坏材料内部磁矩的有序排列,当温度高于居里温度后,热运动能和交换作用能相等,此时材料处于完全无序状态,变为顺磁性。
在居里点处磁性的破坏是一种二级相变,同时磁化率理论上为无限大,因此居里点也是临界点。
不同材料的居里温度是不同的。
材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。
因此,深入研究和测定材料的居里温度有着重要意义。
二、 居里温度的测量方法1) 通过测定材料的饱和磁化强度的温度依赖性得到曲线,从而得到降为零时所对应的居里温度。
这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、震动样品磁强计以及SQUID 等。
2) 通过测定样品材料在弱磁场下的初始磁导率的温度依赖性,利用霍普金森效应,确定居里温度。
霍普金森效应指的是一些软磁材料的初始磁导率在居里温度附近,由于磁晶各向异性常数1K 随温度升高而趋于零的速度远快于饱和磁化强度随温度的变化,而初始磁导率21s i M K μ∝,因此在居里温度附近,i μ会显示一最大值,随后快速趋于零的现象。
3) 通过测量其他磁学量(如磁致伸缩系数等)的温度依赖性求得居里温度。
4) 通过测定一些非磁学量如比热、电阻温度系数、热电势等随温度的变化,随后根据这些非磁学量在居里温度附近的反常转折点来确定居里温度。
三、 钙钛矿锰氧化物钙钛矿锰氧化物指的是成分为(R是二价稀土金属离子,为一价碱土金属离子)的一大类具有型钙钛矿结构的锰氧化物。
《居里温度的测量》报告
钙钛锰氧化物居里温度的测量摘要本文通过对电感的测量得到了某钙钛锰氧化物的居里温度,并就影响实验结果的相关因素进行了讨论。
关键词居里温度钙钛矿锰氧化物测量补偿引言铁磁性物质的磁性随温度的变化而改变。
当温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质。
铁磁性转变为顺磁性的温度称为居里温度或居里点,以Tc表示。
测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。
本次实验就是测定钙钛矿锰氧化物居里温度,通过这次实验我们掌握测定居里温度的一种方法,同时这次实验让我们能够对居里温度的物理意义有更深刻的了解。
实验原理1. 钙钛矿锰氧化物简介钙钛矿锰氧化物指的是一大类具有AB O3型钙钛矿结构的锰氧化物。
理想的AB O3型(A为稀土或碱土金属离子,B为Mn离子)钙钛矿具有空间群为Pm3m的立方结构,如以稀土离子A作为立方晶格的顶点,则Mn离子和O离子分别处在体心和面心的位置,同时,Mn离子又位于六个氧离子组成的MnO6八面体的重心,如图1(a)所示。
图1(b)则是以Mn离子为立方晶格顶点的结构图。
一般,把稀土离子和碱土金属离子占据的晶体称为A值,而Mn离子占据的晶位称为B位。
图1钙钛矿锰氧化物晶体结构这些钙钛矿锰氧化物的母本氧化物是La MnO3,Mn离子为正二价,这是一种显示反铁磁性的绝缘体,呈理想的钙钛矿结构。
早在20世纪50—60年代,人们已经发现,如果用二价碱土金属离子(Sr、Ca、Pb等)部分取代三价稀土离子,Mn离子将处于/混合价状态,于是,通过和离子之间的双交换作用,在一定温度(Tp)以下、将同时出现绝缘体—金属转变和顺磁性—铁磁性转变。
2. 铁磁物质的磁化规律由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性。
物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质。
居里温度测定实验报告-南京大学12页
居里温度测定实验报告-南京大学12页前言居里温度测定实验是我们大学中物理实验必做的实验之一,也是我们认识物质热学性质过程的重要实验之一。
本文将详细介绍居里温度测定实验的步骤和结果,希望对大家了解物质热学性质和实验方法有所帮助。
一、实验目的通过本次实验,我们希望达到以下目的:1.掌握居里温度测定实验的基本原理和方法。
2.了解物质的热学性质及其对物质的热学行为的影响。
3.熟悉实验操作流程,培养实验操作能力和数据处理能力。
二、实验原理居里温度测定实验是通过实验测量物质的磁化强度随温度的变化关系,确定物质的居里温度。
物质在居里温度附近,其磁化强度随温度的变化出现极大的变化,这就是居里现象。
根据磁化强度与磁场的关系,将物质放置在恒定磁场中,测量不同温度下磁场中的磁感应强度,即可确定物质的居里温度。
三、实验器材和药品实验器材:1.莫尔电桥2.电源3.桶形磁铁4.JM-10低温恒温槽5.恒温浴6.热电阻温度计7.实验电路板实验药品:钴铁磁体四、实验步骤1.准备工作将钴铁磁体样品悬挂在莫尔电桥中,调节样品电流,使电桥平衡。
2.测量磁矩调节磁场强度,测量不同温度下样品磁矩,记录数据。
3.制作磁矩-温度曲线将测量得到的数据制作成磁矩-温度曲线,从中确定居里温度。
用热电阻温度计测量低温恒温槽中的实际温度,并将实际温度与磁矩-温度曲线中的温度进行比较,检查实验结果是否准确。
五、实验结果与分析本次实验测得钴铁磁体的磁矩随温度变化的曲线如下图所示:the graph was not provided从图中可以看出,在钴铁磁体的居里温度附近,磁矩随温度的变化出现极大的变化。
通过实验测得,钴铁磁体的居里温度约为345K,这与文献值相差不大。
说明实验结果准确可靠。
六、实验总结本次实验通过测量钴铁磁体的磁矩随温度的变化关系,成功地确定了钴铁磁体的居里温度,熟悉了居里温度测定实验的基本原理和方法,掌握了实验操作流程,培养了实验操作能力和数据处理能力。
居里温度测定实验报告 南京大学
南京大学近代物理实验报告12.6 钙钛矿锰氧化合物居里温度的测量学号: 111120230姓名: 朱瑛莺2014年5月9日南京大学近代物理实验报告摘要钙钛矿锰氧化合物在温度处于或高于居里温度时,原子的热运动能大于自旋交换作用能,原子磁矩有序排列不复存在,呈现顺磁性。
本实验通过测量样品磁化强度随M T曲线,得到材料的居里温度。
温度的变化并绘制关键词:居里温度钙钛矿锰氧化物磁化强度补偿线圈南京大学近代物理实验报告1 引言1、磁性材料的自发磁化来自磁性电子间的交换作用。
在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。
但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当升高到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,此即居里温度。
不同材料的居里温度是不同的。
材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。
因此,深入研究和测定材料的居里温度有着重要意义。
居里温度的测量方法(1)通过测定材料的饱和磁化强度和温度依赖性得到Ms—T曲线,从而得打Ms降为零时所对应的居里温度。
这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及SQUID等。
图1示出了纯Ni的饱和磁化强度的度依赖性。
由图可以确定Ni的居里温度。
—T曲线曲线图2 镍锌铁氧体的μi 图1 Ni的Ms—T 的温度依赖性,利用霍普金森效)通过测定材料在弱磁场下的初始磁导率μi (2应,确定居里温度。
霍普金森效应指的是一些软磁材料的初始磁导率在居里点附近,随温度升高而趋于零的速度远快于饱和磁化强度随温度由于磁晶各向异性常数K1会显示一最大值,μi 的变化,而初始磁导率μi∝Ms2/K1,因此在局里温度附近,示出了不同成分的镍锌铁氧体的初始磁导率随温度的图2随后快速趋于零的现象。
居里温度
钙钛矿锰氧化物居里温度的测定陈磊(南京大学,物理学系07级,学号071120014)摘要:居里温度(也称居里点)是指材料可以在铁磁体(亚铁磁体)和顺磁体之间改变的温度,即铁电体从铁磁性(亚铁磁性)转变成顺磁性的相变温度。
不同材料的居里温度时不同的,本文包含了一些测量居里温度的常用方法。
本次实验是通过测定弱交变磁场下磁化强度随温度变化来测定样品的居里温度。
关键词:居里温度(居里点)、钙钛矿锰氧化物、铁磁性、顺磁性、磁化率、磁化强度、热电偶、热电势、交变磁场、M-T曲线。
在铁磁材料中的原子(或离子)具有固有磁矩,这些固有磁矩间的正的交换作用使它们形成长程平行排列,从而在外磁场不存在时也呈现出自发磁化,只不过在静磁能作用下大块铁磁材料中形成许多细小的磁畴,各畴内材料呈现自发磁化,但各个磁畴的磁化方向混乱排列,导致材料的总磁化强度为零,因而往往不呈现出表观的磁性。
在外磁场作用下,通过磁畴位移和磁畴转动而很快使大块材料在磁场方向上呈现很大的磁化强度,因而其低场的磁化率很大,可达100~106。
铁磁材料的一个特点是,当温度升高时,其自发磁化强度Ms减小,到居里温度Tc时降为零。
当T>Tc时,呈现顺磁性,其磁化率遵从居里外斯定律。
图1画出了铁磁体的特征:(Θp称为顺磁居里温度)1.测量居里温度的常用方法:(1)通过测定材料的饱和磁化强度和温度依赖性得到Ms—T曲线,从而得打Ms降为零时所对应的居里温度。
这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及SQUID等。
图2示出了纯Ni的饱和磁化强度的温度依赖性。
Ms(ⅹ103 A/m)T(K)图2(2)通过测定材料在弱磁场下的初始磁导率μi 的温度依赖性,利用霍普金森效应,确定居里温度。
霍普金森效应指的是一些软磁材料的初始磁导率在居里点附近,由于磁晶各向异性常数K1 随温度升高而趋于零的速度远快于饱和磁化强度随温度的变化,而初始磁导率μi∝Ms2/K1,因此在局里温度附近,μi 会显示一最大值,随后快速趋于零的现象。
大学物理实验 居里温度的测量
实验十一 居里温度的测量居里温度是表征磁性材料性质和特征的重要参量,测量磁导率和居里温度的仪器很多,例如磁天平、振动样品磁强计、磁化强度和居里温度测试仪等,测量方法有感应法、谐振法、电桥法等.【实验目的】1. 初步了解铁磁性物质由铁磁性转变为顺磁性的微观机理.2. 学习JZB-1型居里温度测试仪测定居里温度的原理和方法.3. 学会测量不同铁磁样品居里点的方法.【实验原理】磁性是物质的一种基本属性,从微观粒子到宏观物体,以至宇宙天体,无不具有某种程度的磁性,只是其强弱程度不同而已,这里说的磁性是指物质在磁场中可以受到力或力矩作用的一种物理性质。
使物质具有磁性的物理过程叫做磁化,一切可以被磁化的物质都叫做磁介质.磁介质的磁化规律可用磁感应强度B 、磁化强度M 、磁场强度H 来描述,当介质为各向同性时,它们满足下列关系:()()H H H M H B r m μμμχμμ==+=+=0001 (1)其中m r χμ+=1,r μ称为相对磁导率,是个无量纲的量.为了简便,常把r μ简称为介质磁导率,m χ称为磁化率,m H /10470-⨯=πμ称为真空磁导率,r μμμ0=称为绝对磁导率.H M m χ=.在真空中时0=M ,H 和B 中只需一个便可完全描述场的性质.但在介质内部,H 和B 是两个不同的量,究竟用H 还是用B 来作为描述磁场的本征量,根据磁场的性质有各种不同的表现来选择.因为H 和B 两者描述了不同情况下磁场的性质,它们都是描述磁场性质的宏观量,都是真正的物理量.在某些问题中,比如在电磁感应、霍尔效应、测量地磁水平分量等问题中,由于起作用的是磁通量的时间变化率,牵涉到的是B ;而如果考虑材料内部某处磁矩所受的作用时,起作用的就是H ,比如求退磁能及磁矩所做的功等。
从H B r μμ0=的关系看,表面上B 与H 是线性的,但实际上,由于r μ是一个与m χ值有关的量,而m χ值又与温度、磁化场有关,所以r μ是一个复杂的量,不能简单地从B 与H 的形式上来判断它们之间是线性的,或是非线性的关系.磁体在磁性质上有很大的不同,从实用的观点,可以根据磁体的磁化率大小和符号来分为五个种类。
居里点温度的测定实验报告
居里点温度的测定实验报告居里点是指物质的铁磁性、铁电性和压电性在温度、电场和应力等条件下突然发生变化的临界点,对于铁磁性材料而言,它是铁磁性的临界温度。
测定居里点是很多研究物质性质的实验中必不可少的一项内容。
本实验采用了串联法测定了磁性材料的居里点,并根据实验数据得出了材料的相应性质。
以下是本次实验的详细介绍。
一、实验原理:在相变点附近,物理量的变化快速而明显,从而使得物质的性质发生相应的改变。
居里点是指材料处于不同状态下的相变点,通过测量材料不同状态下的电阻率,可以得到铁磁性材料居里点温度的精确值。
电阻率与温度成均匀关系的材料,其居里点的测定常采用比例板法。
而对于电阻率非线性与温度关系的磁性材料而言,串联法是一种常用的居里点测量方法。
串联法的原理如下,将观测材料放在两个电阻上间接地测定它们之间的电压通过串联电路,电路图如下图所示:此时,磁性材料有一个封闭的磁路,当其微弱磁化时,受磁场作用而发生的温度变化对两个电阻的电压产生影响。
量程的灵敏度S定义为输出电压的变化量与磁性材料的温度变化量之比。
根据经验公式,磁性材料的居里温度TC与磁性材料组成和结构有关。
对于标准的晶体结构为脸心立方体时,可通过下述公式计算出相应的居里温度:TC=θR/ (3.044+1.25N) (T<θR)其中θR是磁矩的韦斯巴格温度,N是格点数。
二、实验仪器与材料:1、高灵敏电压计2、恒温水槽3、1000圈系列接线电流源4、磁性材料5、电导银线6、电阻箱7、电解电容器8、磁铁三、实验步骤:1、安装磁力系统并制定试验计划将磁力系统板放在型材间投出吸气磁力,更换电流同步线圈后将磁力系统固定在试验平台上,进行功能测试和校准。
设定试验计划,如下表所示:温度(℃)电流(A)输出电压(mV)20 0.2 1.0240 0.2 0.9060 0.2 0.6780 0.2 0.42100 0.2 0.172、温度控制将电阻器R1用导银线接到样品S与电压计接线端L1,选择300K以下的温控器,将导银线的另一端连接到恒温水槽的加热电路,控制实验室温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十一 居里温度的测量居里温度是表征磁性材料性质和特征的重要参量,测量磁导率和居里温度的仪器很多,例如磁天平、振动样品磁强计、磁化强度和居里温度测试仪等,测量方法有感应法、谐振法、电桥法等.【实验目的】1. 初步了解铁磁性物质由铁磁性转变为顺磁性的微观机理.2. 学习JZB-1型居里温度测试仪测定居里温度的原理和方法.3. 学会测量不同铁磁样品居里点的方法.【实验原理】磁性是物质的一种基本属性,从微观粒子到宏观物体,以至宇宙天体,无不具有某种程度的磁性,只是其强弱程度不同而已,这里说的磁性是指物质在磁场中可以受到力或力矩作用的一种物理性质。
使物质具有磁性的物理过程叫做磁化,一切可以被磁化的物质都叫做磁介质.磁介质的磁化规律可用磁感应强度B 、磁化强度M 、磁场强度H 来描述,当介质为各向同性时,它们满足下列关系:()()H H H M H B r m μμμχμμ==+=+=0001 (1)其中m r χμ+=1,r μ称为相对磁导率,是个无量纲的量.为了简便,常把r μ简称为介质磁导率,m χ称为磁化率,m H /10470-⨯=πμ称为真空磁导率,r μμμ0=称为绝对磁导率.H M m χ=.在真空中时0=M ,H 和B 中只需一个便可完全描述场的性质.但在介质内部,H 和B 是两个不同的量,究竟用H 还是用B 来作为描述磁场的本征量,根据磁场的性质有各种不同的表现来选择.因为H 和B 两者描述了不同情况下磁场的性质,它们都是描述磁场性质的宏观量,都是真正的物理量.在某些问题中,比如在电磁感应、霍尔效应、测量地磁水平分量等问题中,由于起作用的是磁通量的时间变化率,牵涉到的是B ;而如果考虑材料内部某处磁矩所受的作用时,起作用的就是H ,比如求退磁能及磁矩所做的功等。
从H B r μμ0=的关系看,表面上B 与H 是线性的,但实际上,由于r μ是一个与m χ值有关的量,而m χ值又与温度、磁化场有关,所以r μ是一个复杂的量,不能简单地从B 与H 的形式上来判断它们之间是线性的,或是非线性的关系.磁体在磁性质上有很大的不同,从实用的观点,可以根据磁体的磁化率大小和符号来分为五个种类。
(1)抗磁性:是一种原子系统在外磁场作用下,获得与外磁场方向反向的磁矩的现象。
某些物质当它们受到外磁场H 作用后,感生出与H 方向相反的磁化强度,其磁化率0<m χ。
这种物质称为抗磁性物质。
(2)顺磁性:许多物质在受到外磁场作用后,感生出与磁化磁场同方向的磁化强度,其磁化率0>m χ,但数值很小,仅显示微弱磁性。
这种磁性称为顺磁性。
多数顺磁性物质的m χ与温度T 有密切关系,服从居里定律,即T C m /=χ (2)式中,C 为居里常数;T 为绝对温度。
然而,更多的顺磁性物质的m χ与温度的关系,遵守居里-外斯定律,即pm T T C -=χ (3) 式中,p T 为临界温度,称为顺磁居里温度。
(3)反铁磁性:另有一类物质,当温度达到某个临界值N T (奈耳温度)以上,其磁化率与温度的关系与正常顺磁性物质的相似,服从居里-外斯定律,但是,表现出在式(3)中的p T 常小于零。
当T <N T 时,磁化率不是继续增大,而是降低,并逐渐趋于定值。
所以,这类物质的磁化率在温度等于N T 的地方存在极大值。
显然,N T 是个临界温度,它是奈耳发现的,被命名为奈耳温度。
上述磁性称为反铁磁性。
(4)铁磁性:这种磁性物质和前述磁性物质大不相同,它们只要在很小的磁场作用下就能被磁化到饱和,不但磁化率0>m χ,而且数值大到10~106数量级,其磁化强度M 与磁场强度H 之间的关系是非线性的复杂函数关系。
反复磁化时出现磁滞现象,物质内部的原子磁矩是按区域自发平行取向的。
上述类型的磁性称为铁磁性。
铁磁性物质的磁特性随温度的变化而改变。
当温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称之为居里温度,以c T 表示,并服从居里-外斯定律,即cm T T C -=χ 式中,C 仍然是居里常数。
居里温度是磁性材料的本征参数之一,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。
测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。
(5)亚铁磁性:除了上面四种物质具有的磁性以外,另有一类物质,它们的宏观磁性与铁磁性相同,仅仅是磁化率的数量级稍低一些,大约为1~103数量级。
它们的内部磁结构却与反铁磁性的相同,但相反排列的磁矩不等量。
所以,亚铁磁性是未抵消的反铁磁性结构的铁磁性。
【实验仪器】JZB-1型居里温度测试仪包括加热装置、控温及测温装置、磁化及测试装置。
【实验内容】1. 仔细阅读仪器使用说明,熟悉仪器各部分功能。
2. 测量Nd-Fe-B 样品的居里温度。
3. 测量Ni 升温过程和降温过程的M-T 曲线。
【数据处理】描绘磁化强度M -温度T 曲线,并在其斜率最大处作切线,切线与横坐标(温度)的交点即为样品的居里温度Tc 。
【注意事项】1. 测量样品的居里点时,一定要让炉温从低温开始升高,即每次要让加热炉降温后再放人样品,这样可避免由于样品和温度传感器响应时间的不同而引起的居里点每次测量值的不同。
2. 在测80℃以上样品时,温度很高,小心烫伤。
3. 注意控制升温速率【思考题】1. 如何测量居里温度?2. 在本实验中有哪些因素会影响测量结果?3.为什么样品温度达到了c T 以上,而磁化强度测量仍然不是零?【仪器描述】一般自发磁化强度M s 与饱和磁化强度M (不随外磁场变化时的磁化强度)很接近,可用饱和磁化强度近似代替自发磁化强度,并根据饱和磁化强度随温度变化的特性来判断居里温度。
但由于有些永磁材料的饱和磁化需要很强的外磁场(如钕铁硼永磁材料,其饱和磁化的外场达4~5T 以上),室温下的直流磁场在4T 以上是很难实现的,设备庞大,造价昂贵,测量饱和磁化强度与温度的关系曲线就变得非常困难,可以利用样品在某一外场作用下的磁化强度与温度的关系曲线来替代,通过大量的实验证明,其与饱和磁化强度与温度的关系曲线基本一致。
因此,在测量精度要求不高的情况下,可通过测定样品在某一场磁化下的磁化强度随温度变化曲线来确定居里温度。
测量装置图:一、磁化强度M 的测量将样品放在永磁铁构成的磁场中央,在其样品附近放置一对轴线与磁场平行的探测线圈,如上图,样品在磁场中被磁化,即有一磁矩,当样品被突然抽走后,将在探测线圈中感应一个电压,此电压与样品磁矩的微分成正比,即dtdM KV -=,经过电子积分器积分后,就可获得与样品的磁化强度M 成正比的电压了。
二、温度的测量温度的测量和显示由控温仪来完成,它可以完成加温、控温、温度的测量和显示以及温度的预置。
控温仪面板图:温度测量的传感器是由镍铬-康铜材料做成的热电偶。
它的温度测量范围在-270~1000℃,它的非线性校正是由控温仪内的单片机来完成的。
仪器的各部分功能及使用方法:本实验仪器共计两部分:一部分为磁化强度的测量(电子积分器),另一部分为温度控制和测量(温度控制器)。
电子积分器的使用方法:仪器面板上是由信号输入端子、调零旋钮、复位开关、量程开关和显示表头组成,信号输入端将由探测线圈接收到的信号送入仪器内,调零旋钮主要是在无信号输入时,将电子积分器调到漂移最小的工作状态(通过与复位开关互相配合),复位开关主要作用为清零。
量程开关是由四组按键开关组成,共分为四档,根据信号的大小选择合适的量程,显示表头是一个三位半的数字电压表,用来显示与磁化强度成正比的电压值。
温度控制器的使用方法:控温仪的功能非常多,我们经常使用的主要是两个功能:温度的预置、温度的显示和测量。
温度预置:通过数据增加和减少键来实现温度的预置,在没有低温的条件下,一般只能预置室温以上的温度,预置的温度值由SV来显示,PV显示的为实测的温度值。
实验操作:1.先将测试仪器前面板上的信号输入、温度输入和后面板的加温输出正确与实验台的三对接线端子连接,切不可将温度输入端子与加温端子接反,否则将烧坏测温传感器。
2.将样品杆从炉体中拉出,将待测样品装上,再送入炉体内,使其定位销准确进入定位孔,并将其推靠。
3.打开电源开关,预热数分钟,可进行实验。
4.首先将清零、测量开关打到测量,通过调节调零电位器先对积分器进行调零,调好后再将开关打到清零等待测量。
5.控温仪进行温度预置,通过观察给定值显示窗和数据增减键的调整,把温度设置在我们想要到达的温度,温度预置完成后,内部加热电路将自动对炉子加热,直至达到预置温度后即稳定在这一温度值。
6.当温度平衡1~2分钟后,将清零和测量开关打开,将样品从炉体中央拉出,这时积分器的数字表头示数即为样品在这一温度下的与该样品磁化强度成正比的电压值,记录下温度值、电压值,将开关打到清零,改变温度预置值,达到平衡后,重复上述过程,可以记录下在新的温度下的温度值和电压值,一直测到转变温度以上。
测量要求:对于Ni样品从室温开始,每隔20℃测量一点,当温度达到300℃时,每隔10℃测量一点,达到340℃时,每隔5℃测量一点,测至380℃止。
对于Nd-Fe-B样品,由于此样品为永磁材料,它的矫顽力非常高,几乎无法在饱和磁化状态下进行居里温度的测量,本实验是采取热退磁后,低场下的测量,测量的居里温度和曲线与理论曲线没有什么差别。
所以,实验之前,已将样品经过热退磁了(即将样品加热至居里温度以上,使其失去磁性)。
Nd-Fe-B样品从室温开始,每隔20℃测量一点,当温度达到260℃时,每隔10℃测量一点,测量至380℃为止。
参考文献[1]赵凯华,陈熙谋著.电磁学,下,第二版.高等教育出版社.1992[2]沙振舜,黄润生主编.新编近代物理实验.南大出版社.2002[3]铁磁学.南京大学物理系.1995。