第二节城轨车辆制动方式
《城市轨道交通车辆》课件——电制动的原理
再生制动的原理
再生制动:发生制动时,电动机M变成发电机状态运行,将车辆的动能转换成电能,经VVVF 逆变器整流,形成直流电反馈与接触网,供列车所在接触网供电区段上的其他车辆牵引,以及本
车的其他系统(如辅助系统)使用。
电阻制动原理
电阻制动:再生制动时产生的电能回馈至接触网,若该供电区内无其他列车处于牵引状态, 则将该部分电能施加到制动电阻上,转换成电阻的热能消耗掉。电阻制动又称为能耗制动。
感谢聆听
电制动的原理
一、电制动概念认知
电制动Biblioteka 再生 制动制动时,将电力机车或用电力牵引的摩托车组的牵引电动机转变为 发电机,将列车的动能转变为电能反馈回电网(供电网范围内的其他 列车牵引使用)。是将列车的动能转变为可利用的电能的制动方式。
电阻 制动
制动时,将牵引电机转换为发电机,把列车的动能转换为电能,再 由电阻器转换为热能散发到大气的制动方式。
城市轨道交通车辆制动方式
城市轨道交通车辆制动方式一、引言城市轨道交通作为现代城市公共交通的重要组成部分,其安全性和稳定性是保证运营质量的关键因素之一。
而车辆制动作为车辆控制系统中的重要组成部分,对于保证列车的安全运行起着至关重要的作用。
本文将从城市轨道交通车辆制动方式入手,详细介绍城市轨道交通车辆制动方式及其特点。
二、电阻制动电阻制动是城市轨道交通常用的一种制动方式。
它是利用列车牵引系统中装有电阻器,在列车行驶过程中通过改变电路连接方式,使电能转化为热能而达到减速目的。
这种制动方式具有以下特点:1. 制动效果稳定可靠:由于电阻器可以根据列车运行状态进行调整,因此可以实现精确控制列车速度。
2. 制动过程平稳:由于电阻器可以逐渐降低输出功率,因此可以实现平滑减速。
3. 能量回收效果差:由于电能转化为热能而散失掉了大量能量,因此不能实现能量回收。
三、空气制动空气制动是城市轨道交通常用的一种制动方式。
它是利用列车牵引系统中的压缩空气,通过控制空气压力来控制列车的制动力。
这种制动方式具有以下特点:1. 制动效果稳定可靠:由于空气制动可以实现精确控制列车速度,因此具有较高的稳定性和可靠性。
2. 制动过程平稳:由于空气制动可以逐渐降低输出压力,因此可以实现平滑减速。
3. 能量回收效果差:由于空气制动不能实现能量回收,因此在长时间停车时会浪费大量能量。
四、电磁吸盘制动电磁吸盘制动是城市轨道交通常用的一种辅助制动方式。
它是利用列车底部装有的电磁吸盘,在紧急情况下通过控制电磁吸盘工作来实现快速停车。
这种制动方式具有以下特点:1. 制动效果强劲:由于电磁吸盘可以产生很大的吸力,因此可以在紧急情况下迅速停车。
2. 制动过程突然:由于电磁吸盘制动是一种紧急制动方式,因此制动过程会比较突然。
3. 能量回收效果好:由于电磁吸盘可以将列车的动能转化为电能进行回收利用,因此具有较好的能量回收效果。
五、再生制动再生制动是城市轨道交通常用的一种能量回收方式。
城轨车辆制动方式介绍
城轨车辆制动方式按照制动时列车动能的转移方式不同城轨车辆的制动主要可以分为摩擦制动和电制动。
一,摩擦制动通过摩擦副的摩擦将列车的运动动能转变为热能,逸散于大气,从而产生制动作用。
城轨车辆常用的摩擦制动方式主要有闸瓦制动,盘形制动和轨道电磁制动。
(一)闸瓦制动闸瓦制动又称为踏面制动,它是最常见的一种制动方式。
制动时闸瓦压紧车轮,车轮与闸瓦发生摩擦,将列车的运动动能通过车轮与闸瓦间的摩擦转变为热能,逸散于空气中。
在车轮与闸瓦这一对摩擦副中,由于车轮主要承担着车辆行走功能,因此其他材料不能随便改变。
要改善闸瓦制动的性能,只能通过改变闸瓦材料的方法。
目前城轨车俩中大多数采用合成闸瓦。
但合成闸瓦的导热性较差,因此也有采用导热性能良好,且具有良好的摩擦性能的粉末冶金闸瓦。
在闸瓦制动中,当制动功率较大时,产生的热量来不及逸散到大气,而在闸瓦与车轮踏面上积聚,使他们的温度升高,摩擦力下降,严重时会导致闸瓦熔化和轮毂松弛等,因此,在闸瓦制动时,对制动功率有限制。
(二)盘形制动)盘形制动有轴盘式和轮盘式之分,一般采用轴盘式,当轮对中间由于牵引电机等设备使制动盘安装发生困难时,可采用轮盘式。
制动时,制动缸通过制动夹钳使闸片夹紧制动盘,使闸片与制动盘间产生摩擦,把列车的动能转变为热能,热能通过制动盘与闸片逸散于大气。
(三)轨道电磁制动轨道电磁制动也叫磁轨制动。
是一种传统的制动方式,这种制动方式是在转向架前后两轮之间安装包升降风缸,风缸顶端装有两个电磁铁,电磁铁包括电磁铁靴和摩擦板,电磁铁悬挂安装在距轨道面适当高度处,制动时电磁铁落下,并接通励磁电源使之产生电磁吸力,电磁铁吸附在钢轨上,列车的动能通过磨耗板与钢轨的摩擦转化为热能,逸散于大气。
轨道电磁制动可得到较大的制动力,因此常被用作于紧急制动时的一种补充制动,这种制动不受轮轨间黏着系数的限制,能在保证旅客舒适性条件下有效地缩短制动距离。
当磨耗板与轨道摩擦产生的热量多,对钢轨的磨损也很严重。
城轨交通车辆制动方案
城轨交通车辆制动方案随着城市化进程的加快和人们生活水平的提高,城轨交通系统已经成为城市公共交通系统的重要组成部分。
城轨交通车辆制动方案作为城轨交通系统的重要技术之一,对车辆的性能和安全性起着至关重要的作用。
本文将从城轨交通车辆制动方案的基本原理、各种制动方式及其优缺点、制动装置的结构和选择等方面进行详细探讨,为城轨交通车辆制动方案的设计和开发提供一定的参考。
基本原理城轨交通车辆制动的基本原理就是利用制动系统的能量耗散来减速和停车。
制动系统的能量来源是车辆运动的动能,其能量体现为车轮与轨道之间的制动力矩。
车辆运动的动能通过刹车系统的转换能力不断耗散,从而达到减速和停车的目的。
制动方式及其优缺点电力制动电力制动是指通过电机制动控制器施加的逆向电压,利用电机产生的逆电动势来达到制动目的。
电力制动具有制动力矩大、制动灵敏度高、制动距离短等优点。
但其缺点在于高能耗和高制动温度,同时对egu电机造成较大的机械磨损和电刷磨损,需要进行维护和更换。
电阻制动电阻制动是指利用伺服电机制动、同时将伺服电流通过外部的电阻器耗散来达到制动目的。
电阻制动的优点是使用简便,成本低廉。
而缺点在于制动短时间内难以产生大的制动力矩,同时在长时间制动过程中会产生大量的能量耗散和高温问题。
机械制动机械制动是指利用机械接触实现制动的方式,大部分采用制动盘和刹车片结构。
机械制动的优点在于稳定、耐久和抗高温性能好。
但缺点在于制动力矩受制于刹车片面积,制动响应不够精细。
液压制动液压制动是指利用液体动力传递控制机械部件实现制动的一种方式。
液压制动的优点在于高效、适应性强,能快速产生高制动力矩从而达到紧急刹车要求。
但缺点在于维护成本较高,制动距离相对较长。
制动装置的结构和选择制动装置一般由制动盘、制动片、制动机构、刹车系统传动装置等组成。
其结构设计应考虑制动力矩和传递装置的联同应对。
制动装置的选择应考虑到制动的应答时间、效率、刹车距离等,同时需要综合考虑制动装置的使用成本、制动性能和耗能水平等因素。
城市轨道交通车辆制动系统ppt课件
由此可见,自动式空气制动机的特点是列车管 排气(减压)时制动缸充气(增压),发生缓 解。优点是,当列车发生分离事故,制动软管 被拉断时,列车管风将急剧下降,三通阀(主) 活塞将自动而迅速地左移到制动位,由于各车 都有副风缸分别向制动缸供风,制动缸动作较 快,故列而且列车前后部开始制动作用的时间 表差小,即制动和缓解的一致性较好,适用于 编组较长的列车。因此在世界各国(包括中国) 铁路上得到最广级最持久的应用。
19
(二)按制动原动力和控制方式的不同分类 按制动原动力和操纵控制方式的不同,
铁路机车车辆制动机可分为:手制动机、空 气制动机、电空制动机、电磁制动机和真空 制动机。
20
1.手制动机 手制动机是以人力制动原动力,以手轮的转
动方向和手力大小来操纵控制。构造简单, 费 用低廉,是铁路历史上使用最久远、生命力 最顽强的制动机。铁路发展初期,机车车辆 上只有这种制动机,每车或几个车配备一名 制动员,按司机笛声号令协同操纵,由于制 动力弱,动作缓慢,不便于司机直接操纵, 所以很快就被非人力制动机取而代之,手制 动机成辅助的备用制动机。
25
但是,如果在制动缸降压过程中将制动阀手柄由缓 解位移至保压位,则列车管和副风缸虽能停止充风增 压,三通阀(主)活塞都仍停留在右极端(缓解位), 制动缸的风仍继续排向大气,直至完全缓解。制动阀 手柄反复在缓解位和保压位之间移动,只能使列车管 和副风缸的风压呈阶段式上升,都不能使制动缸实现 阶段缓解,即只能实现“一次彻底缓解”,又称“轻 易缓解”。
城市轨道交通车辆制动系统 绪论
1
第一节 列车制动的几个基本概念 制动:人为的制止物体的运动,包括使其减
速、阻止其运动或加速运动。
缓解:对已经实行制动的物体,解除或减弱 其制动作用。
城轨车辆制动基础知识
1.2 制动方式
1)空气制动
空气制动又称摩擦制动或机械制动,是指动能通过摩擦的方式转化为热能,并散发到 空气中的制动方式。空气制动可分为闸瓦制动、盘形制动和磁轨制动。
(1)闸瓦制动。 闸瓦制动又称踏面制动,是我国城轨车辆最常用的一种制动方式,如图6-2所示。
图6-2 闸瓦制动
1.2 制动方式
1)空气制动
城市轨道交通车辆构造
图6-4 磁轨制动
1.2 制动方式
2)电制动
电制动又称动力制动,是指动能通过电动机转化为电能后,电能被送回电网或直接变 成热能散发到大气中的制动形式。电制动可分为再生制动和电阻制动。
(1)再生制动。 再生制动是指动能通过电动机转化为电能后,电能被送回电网供其他列车使用的制动 形式。这种制动既可节约能源,又可减少制动时对环境的污染,且基本无磨耗。因此,再 生制动是一种比较理想的制动方式。 (2)电阻制动。 电阻制动又称能耗制动,是指将电动机发出的电能加于电阻器中,使其发热,从而将 电能转化为热能并散于大气的制动形式。这种制动一般能提供较稳定的制动力,但电阻箱 体积较大。
城市轨道交通车辆构造
任务引入
2017年4月27日,北京地铁2号线 和平门站内环(开往宣武门方向)一乘 客突然进入运营轨道正线,列车立即进 行了紧急制动,车站工作人员采取了接 触轨停电措施。随后该乘客被抬上站台, 14时25分接触轨恢复送电,运营秩序 逐步恢复。
思考:为了使列车具有良好的制动 效果,设计列车制动系统时需满足哪些 要求?
(2)盘形制动。 盘形制动又可分为轴盘式制动和轮盘式制动,如图6-3所示。
(a)轴盘式
(b)轮盘式
1—轮对;2—制动盘;3—单元制动缸;4—制动夹钳;5—牵引电动机。
城市轨道交通车辆—制动系统
2)滑行状态。车轮在钢轨上滑行,此时车轮与钢轨之间的滑动摩擦力为列车制动力。这是一种必 须避免的事故状态,由于滑动摩擦系数远小于静摩擦系数,因此一旦发生滑行,制动力将大大减 少,制动距离会延长;同时车轮在钢轨上的长距离滑行,将导致车轮踏面的擦伤,危及行车安全。
制动类型
电制动
再生制动 (动能→ 牵引电机→电能→接触网)
1)再生制动。当车辆施加常用制动时,牵引电机变成发电机状态,将车辆的 动能转变成电能,电能经过整流后反馈至接触网,供列车所在的接触网供电 分区上其它车辆牵引和供本车其它系统(辅助系统等)使用,即再生制动。 再生制动取决于接触网的接收能力,也取决于网压的高低和载荷利用能力。
以电磁力为源动力的制动方式称为电制动;
空气(摩擦)制动
以压缩空气为源动力的制动方式称为空气制动,如踏面 制动、盘式制动等都为空气制动方式;
其他制动
还有机械制动、液压制动等方式。
制动源动力 不同
城市轨道交通车辆牵引电传动系统采用先进的调频调压交流感应电机驱 动系统,在高速时具有良好的电制动性能。
但是由于电制动的效率随着运行速度的降低而降低,所以在车速降低到 一定程度后必须采用空气制动系统。
列车制动时,将牵引电机变为发电机,动能转化为 电能。
动能转移方 式不同
制动类型
粘着制动 利用轮、轨之间的粘着力来实现制动。
制动力获取 方式不同
非粘着制动 制动力的提供不再依靠轮轨之间的粘着力,可获得超过轮轨粘着 力的制动力。
城市轨道交通车辆的制动模式
城市轨道交通车辆的制动模式城市轨道交通是一种快速、高效的公共交通工具,其安全性是保证城市交通运行的关键。
而车辆的制动系统就是保障城市轨道交通安全的一个重要组成部分。
本文将介绍城市轨道交通车辆的制动模式。
一、电制动电制动是城市轨道交通车辆的主要制动方式之一。
电制动是通过电机逆变器控制车辆电机的电流,使车辆产生制动力,从而实现制动的过程。
在电制动中,车辆电机的电流变成负值,电机产生制动力,将车辆减速甚至停下来。
电制动具有制动平稳、制动距离短、制动效率高等优点。
二、空气制动空气制动是城市轨道交通车辆的另一种主要制动方式。
空气制动通过控制车辆的空气制动系统,将车辆制动盘与车轮接触,产生制动力从而实现制动的过程。
空气制动具有制动力大、制动效率高、制动距离短的优点。
但由于空气制动需要耗费空气制动缸内的压缩空气,因此其制动距离和制动平稳性都会受到影响。
三、再生制动再生制动是城市轨道交通车辆的一种辅助制动方式。
再生制动通过逆变器控制电机的电流,将旋转的车轮所带动的电机转换成电能,并将这些电能反馈给车辆的电源系统,从而实现制动的过程。
再生制动具有制动平稳、制动距离短、不会消耗太多能量的优点。
四、紧急制动紧急制动是城市轨道交通车辆的一种应急制动方式。
紧急制动可以通过手柄或按钮等操作,使车辆的制动系统立即切断牵引电源,同时加紧空气制动或电制动以实现制动的过程。
紧急制动具有制动力大、制动距离短、制动效率高等特点,但也容易产生车轮滑动,增加制动距离和制动平稳性的难度。
城市轨道交通车辆的制动模式有电制动、空气制动、再生制动和紧急制动等多种方式。
在实际运行中,不同的制动模式可以根据车辆的具体情况和运行状态进行选择,以保证城市轨道交通的安全、高效运行。
城市轨道交通制动系统
(1)制动位
驾驶员要实施制动时,首先把操纵手柄
放在制动位.总风缸的压缩空气经制动阀进入
制动管。制动管是一根贯通整个列车、两端封
闭的管路,压缩空气由制动管进入各个车辆的
制动缸,压缩空气推动制动缸活塞移动,并通
过活塞杆带动基础制动装置,使闸瓦压紧车轮
,产生制动作用。
制动力大小,取决制动缸内压缩空气的压力 。
能实现阶段缓解和阶段制动。 制动力大小靠司机操纵手柄在制动位放置时间长短决
定,因此控制不太精确。 制动时全列车制动缸的压缩空气都由总风缸供给;缓
解时,各制动缸的压缩空气都须经制动阀排气口排人 大气。因此前后车辆的制动的一致性不好。
(一)直通式空气制动机原理图
制动阀
制动阀有缓解位、保压位和制动位3 个不同位置。
《城市轨道交通机车车辆》
制动系统
城市轨道交通车辆
王勇麟 付 杰
主要学习内容
一、空气制动系统的控制方式 二、电制动 三、制动模式
一、空气制动系统的控制方式
(一)直通式空气制动机 (二)自动空气制动机 (三)直通自动空气制动机
(一)直通式空气制动机原 理图
直通空气制动机特点是:
制动管增压制动、减压缓解,列车分离时不能自动停 车。
由于制动缸的风源与排气口离制动缸较近, 其制动与缓解不再通过制动阀进行,因此制 动与缓解一致性较直通制动机好,列车纵向 冲动较小,适合于较长编组的列车。
有阶段制动及一次缓解性能。
(二)自动空气制动机原理图
三通阀工作原理
(a)充气缓解位 (b)制动位 (c)保压 位
(1)制动位
(2)缓解位
制动电阻器箱
一般每个动车都安装有制动电阻器箱 ,里面装有足够的制动电阻。电阻材料 一般采用合金带钢条.这种合金带钢条 不仅具有稳定的电阻率,而且有相当大 的热容性。
《城市轨道交通车辆》课件——盘型制动原理
1. 可以大大减轻车轮踏面的热负荷和对车轮的机械磨耗。 2. 可按制动要求选择最佳“摩擦副”(采用闸瓦制动时,作为“摩擦副”一方
的车轮的构造和材质不能根据制动的要求来选择),盘形制动的制动盘可以 设计成带散热筋的,旋转时它具有半强迫通风的作用,以改善散热性能,为 采用摩擦性能较好的合成材料闸片创造了有利的条件,适宜于高速列车。 3. 制动平稳,制动作用力大,几乎没有噪声。
盘型制动的优缺点
但是,盘形制动也有它不足之处
1. 车轮踏面没有闸瓦的磨刮,轮轨粘着将恶化,所以,还要考虑加装踏面清扫 器(或称清扫闸瓦),或采用以盘形为主、盘形加闸瓦的混合制动方式,否 则,即使有防滑器,制动距离也比闸瓦制动要长。
2. 制动盘使簧下重量及其引起的冲击振动增大,运行中还要消耗牵引功率。
盘型制动原理
目录
01 什么是盘型制动 02 盘型制动分类 03 盘型制动工作原理 04 盘型制动的优缺点
什么是盘型制动
盘型制动属于一种摩擦制动方式。制动时,制动缸通过制动夹钳使闸片夹紧 制动盘,使闸片与制动盘产生摩擦,把列车的动能转变为热能,热能通过制 动盘与闸片逸散于大气。
什么是盘型制动
盘型制动方式可以选择高性能的摩擦副材料和良好的散热结构,可以获得比 闸瓦制动大得多的制动功率。
盘型制动工作原理
盘形制动装置的构造由单元制动缸、 夹钳装置,闸片和制动盘组成。
制动时,制动缸活塞杆推出,制动 缸缸体和活塞杆带动两根杠杆,通 过杠杆和支点拉板组成的夹钳,使 装在闸片托上的闸片同时夹紧制动 盘的两个摩擦面,产生制动作用。
缓解时,制动缸排气,活塞杆回缩, 使闸片释放制动盘,形成缓解作用。
盘型制动工作原理
盘形制动是随着高速列车而产生并 发展起来的。要想列车从很高的速 度下降到低速或停止,必然要求有 一个高效的基础制动装置,而盘形 制动采用制动盘和制动闸片相互摩 擦作用,将动能转化成热能消耗掉, 制动高效,而且不会损伤轮对的踏 面。这种制动方式在高速列车和动 车组中得到广泛的应用。
城轨车辆制动系统课件
制动控制方式
城轨车辆制动系统采用多种制动控制 方式,如电制动、空气制动等,以满 足不同情况下的制动需求。
制动系统在城轨车辆中的实践案例
北京地铁
北京地铁采用具有自主知识产权的城轨 车辆制动系统,实现了列车的安全、可 靠制动。
VS
上海地铁
上海地铁采用进口的城轨车辆制动系统, 为列车提供稳定的制动和停车功能。
对于不符合法规与标准的行为,需要进行整改和处罚,加强监管和执法力度,提高城轨车辆制动系统的 安全性和可靠性。
制动系统相关法规与标准的未来发展与完善
随着城市轨道交通的快速发展和技术进步,制 动系统相关法规与标准也需要不断更新和完善 ,以适应新的安全需求和技术发展趋势。
未来发展与完善过程中,需要加强国际交流与 合作,借鉴国际先进经验和技术成果,推动制 动系统相关法规与标准的国际化和标准化。
制动系统的发展趋势与未来展望
智能化
01
随着技术的发展,城轨车辆制动系统将更加智能化,实现自动
化控制和故障诊断。
节能环保
02
未来城轨车辆制动系统将更加重视节能环保,采用更加高效的
制动方式,减少能源消耗和环境污染。
自主创新
03
未来城轨车辆制动系统将更加重视自主创新,研发具有自主知
识产权的核心技术,提升我国城轨交通产业的竞争力。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
01
城轨车辆制动系统概述
制动系统的定义与功能
定义
城轨车辆制动系统是用于控制列 车运行速度并在必要时使列车安 全停止的系统。
功能
城轨车辆制动系统具有减速、停 车和保持车辆静止等基本功能, 同时还可以根据需要调车辆制动系统通过制动器将车辆动能转化为热能散发到空气中,从而实现 制动。
城轨车辆制动系统 ppt课件
第二阶段:接近停车时(列车速度0.5Km/h),一个小于制动指令 (最大制动指令的70%)的保压制动开始自动实施,即瞬时地将制动缸压 力降低。
2020/12/27
18
一、城轨制动基础知识
2020/12/27
2020/12/27
7
一、城轨制动基础知识
• 缓解:对已经施行制动的物体,解除或减弱其制 动作用,均可称之为“缓解”。
列车制动停车后起动加速前或运行途中限速制动后加速前均要解除制 动作用,即施行缓解作用。
• 使列车减速或阻止其加速的力称为制动力,而产 生并控制这个制动力的装置叫做制动机,也称制 动装置。基础制动装置:传送制动原动力并产生 制动力的制动执行装置。
空气制动。
2020/12/27
15
一、城轨制动基础知识
城轨车辆制动模式
2020/12/27
16
一、城轨制动基础知识
城轨车辆制动模式
快 紧急情况下、制动系统各部分作用均正常时所采取的一种制 速 动方式 制 电制动不起作用,仅空气制动,制动过程可以施行缓解。 动 受冲击率限制,具有防滑保护和载荷修正功能。
2020/12/27
21
一、城轨制动基础知识
城轨车辆制动控制方式
常用制动力分配原则
(1)电制动力的分配原则:由于车辆编组每单元为三节,假设每 单元自己提供制动力,总共需要300%的制动力,而电制动时只 有动车能提供制动力,每单元的三节车中只有两节动车,因此 每节动车承担150%的制动力。 (2)气制动力的分配原则:由A、B和C车组成的单元车则需300% 的气制动力,每节车的 (气制动控制单元)根据本车的载荷重量 负责本车100%的制动力。
城市轨道交通车辆的制动模式
城市轨道交通车辆的制动模式随着城市轨道交通的快速发展,轨道交通车辆的制动系统也得到了极大的改进和完善。
车辆的制动模式是指车辆在运行过程中,通过何种方式来减速和停车。
目前,常见的城市轨道交通车辆制动模式主要包括电制动、气制动和机械制动。
电制动是城市轨道交通车辆中最常见的制动模式之一。
它是通过电动机的反向工作将车辆动能转化为电能,再通过电阻器将电能转化为热能来实现减速和停车。
电制动具有制动力大、响应速度快、制动距离短等优点,是车辆制动的首选模式。
此外,电制动还可以通过调整电机的工作方式来实现不同的制动效果,如再生制动和电阻制动。
气制动是城市轨道交通车辆中另一种常见的制动模式。
它是通过压缩空气来产生制动力,实现车辆的减速和停车。
气制动主要由制动踏板、空气压缩机、储气罐和制动器组成。
当司机踩下制动踏板时,空气压缩机会将空气压缩并储存在储气罐中,当需要制动时,空气会通过制动器释放出来,产生制动力。
气制动具有制动力稳定、可靠性高等优点,适用于高速运行的轨道交通车辆。
机械制动是城市轨道交通车辆中较为传统的制动模式,主要通过摩擦力来实现减速和停车。
机械制动主要由制动盘、刹车片和刹车踏板组成。
当司机踩下刹车踏板时,刹车片会与制动盘接触并产生摩擦力,从而减速和停车。
机械制动具有结构简单、制动力稳定等优点,但相对于电制动和气制动来说,制动效果较差。
除了上述三种主要的制动模式,城市轨道交通车辆还常常采用辅助制动模式,如惯性制动、再生制动和电阻制动。
惯性制动是指利用车辆的惯性来实现减速和停车,通过调整车辆的传动装置来改变车辆的运动状态。
再生制动是指利用电动机的工作原理,将车辆动能转化为电能并回馈给电网,实现能量的回收和再利用。
电阻制动是指通过调整电阻器的工作状态,将电能转化为热能来实现制动。
城市轨道交通车辆的制动模式主要包括电制动、气制动和机械制动。
电制动具有制动力大、响应速度快的优点;气制动具有制动力稳定、可靠性高的特点;机械制动结构简单、制动力稳定。
城轨交通车辆制动系统—电制动系统
一、再生制动
如
图
如图5-3所示,当城轨交通车辆施行常 用制动作用时,电机M变成发电机状态运行, 将车辆的动能变成电能,经VVVF逆变器整 流成直流电反馈于接触网,供列车所在接触 网供电区段上的其他车辆牵引用和供给本车 的其他系统,称为再生制动。再生制动取决 于第三轨(或接触网)的接收能力,亦即取决 于网压高低和负载利用能力。
四、制动控制系统
2.模拟指令式 制动控制系统
系统的另一个重要部件是制动控制单元,它由模 拟控制阀、紧急制动阀、负载限压阀、中继阀等电磁 阀组成,集成安装在一块内通管路的模板上,接受电
缸压力进行制动。
四、制动控制系统
如
图
5-5
制动系统逻辑框图如 图5-5所示。
5-3
二、电阻制动
如
图
如图5-4所示,如果制动列车所在的接 触网供电区段内无其他列车吸收该制动能量, VVVF则将能量反馈在线路电容上,使电容 电压迅速上升,当电容电压达到最大设定值 1 500 V时,DCU启动能耗斩波器模块A14 上的门极可关断晶闸管(gate turn off thyristors,GTO)V1,GTO打开制动电阻 RB,制动电阻RB与电容并联,将电机上的 制动能量转变成电阻的热能消耗掉,称为电 阻制动。
2.模拟指令式 制动控制系统
模拟指令式制动控制技术是将变量输入计算机,计算机经过 逻辑运算控制电磁阀,由电磁阀控制气阀,由气阀直接控制制动 缸压力,从而达到控制制动力的目的,是一种先进的电控控制系 统。其核心部分是电子控制单元,它输入制动命令、电制动施加 信号、车体载荷信号(即乘客的多少)、空气制动实际值的反馈 信号,经综合运算后输出的电气模拟转换和防滑控制的电信号, 控制各种电磁阀,根据制动要求和实际情式
城市轨道交通车辆制动系统
城市轨道交通车辆制动系统1. 背景介绍城市轨道交通作为一种重要的公共交通工具,在现代城市中扮演着至关重要的角色。
为了确保城市轨道交通的安全性和可靠性,车辆制动系统是不可或缺的重要组成部分。
本文将对城市轨道交通车辆制动系统的原理、结构和功能进行详细介绍。
2. 制动系统的原理城市轨道交通车辆制动系统的原理是通过施加力量来减速或停止车辆运动。
在制动系统中,力量通常是由制动装置产生的。
制动力可以通过以下几种方式产生:2.1 机械制动力机械制动力是通过机械装置施加力来产生的。
常见的机械制动装置有摩擦制动器和齿轮制动器。
摩擦制动器通过增加两个物体之间的摩擦力来产生制动力,而齿轮制动器则通过齿轮之间的相互作用力来产生制动力。
2.2 液压制动力液压制动力是通过液压装置施加压力来产生的。
液压制动系统由液压液、液压泵、液压缸和制动器组成。
当驾驶员踩下制动踏板时,液压泵将液压液送入液压缸中,产生压力,将制动器施加在车轮上,实现制动功能。
2.3 电子制动力电子制动力是通过电子装置生成电信号来产生的。
电子制动系统使用信号传感器来检测车辆的速度和制动需求,并将信号传输给电子控制单元。
电子控制单元根据接收到的信号来控制电动机或电磁阀产生制动力。
3. 制动系统的结构城市轨道交通车辆制动系统通常包括以下几个组件:3.1 制动器制动器是车辆制动系统的核心部件,用于产生制动力并将其传递到车轮上。
常见的制动器包括摩擦制动器、齿轮制动器和电子制动器。
3.2 控制系统控制系统用于监测车辆的制动需求,并控制制动器的工作。
控制系统可以是机械、液压或电子控制系统,具体取决于车辆制动系统的类型和设计。
3.3 辅助系统辅助系统包括供电系统、供油系统和供气系统等。
供电系统为制动器和控制系统提供所需的电力,供油系统为液压制动系统提供液压液,供气系统为空气制动系统提供压力。
3.4 监测系统监测系统用于检测车辆的制动状态和性能。
通常包括制动压力传感器、车速传感器和制动温度传感器等。
第二节 城市轨道交通车辆
编组特征:列车首尾两节车都带司机室,中间每节车之间
均为贯通状态。
这样编组的好处:乘客可沿全列车走动→使乘客在全列
车中均匀分布;→便于列车发生事故时乘客有秩序地撤离 (沿司机室前端安全门)
实用文档
6节车辆编组的特点
➢ 运量较大,动力性能较好 ➢ 故障运行和故障救援能力也比较好 ➢ 能够适应线路的需要 ➢ 电制动能满足常用制动的需要,减少了气
实用文档
观察在驶过的列车中,Tc、Bp、M车各有
几节,其编组方式是哪种?
Tc车:带司机室的拖车 Mp车:带受电弓的动车。 M车:不带受电弓的动车。
实用文档
三、车辆的选型
1、城市轨道交通车辆的特殊要求
(1)车辆要在地下隧道、高架和地面轨道运行,站距短、线路曲线半径小、坡 度大; (2)客流量大而集中,乘客上下车频繁,高峰时会超载。 (3)站距短,需有较高的起动加速度和制动减速度,以达到起动快、制动距离 短、有较高平均速度的目的; (4)车辆的设计应遵循减少能耗、减少发热设备的原则,需尽量减轻自重,选 择效率高的传动系统; (5)运转密度较高,为确保安全行车,信号系统比较复杂,车载通信信号设备 及车辆的控制系统,应有良好的适应能力。
实用文档
电气连接装置
➢贯通装置位于两节车厢的连接处,是连接两车辆通道 的重要组成部分。 ➢由风挡、内饰板和渡板组成 ➢具有良好的防雨、防风、防尘和隔音功能,保证乘客 能随时、安全、方便地经过这里,从一个车厢到另一 个车厢。
实用文档
制动 系统
➢制动系统 ➢制动方式
实用文档
制动系统
➢人为地使运动物体减速或阻止其加速叫做制动。 ➢使运行中的列车迅速地减速或停车; ➢避免列车在下坡道因重力作用或风力吹动而加速或溜走; 制动系统包括制动控制系统和制动执行系统。
城市轨道交通-制动
一车体
二转向架
三车钩缓冲装置四制动装置
五空调通风系统
制动装置的特点
能产生足够的制动力,保证城市轨道交通车辆在规定的制动距离内停车;车组前后车辆的制动、缓解作用一致;采用电制动和空气制动的联合制动方式;在长大坡道上运行时,制动力不衰减;可自动进行空重车制动力大小的调整;具有紧急制动性能车辆的制动形式
Ø按城市轨道交通车辆制动时动能的转移方式:摩擦制动、电制动Ø按制动力的获取方式: 黏着制动、非黏着制动
制动、制动力、缓解
常用制动是在正常运行情况下调节列车运行速度或使列车在预定地点
停车的制动常用制动
紧急制动是在紧急情况下使列车减速并达到在最短距离内紧急停
车的制动紧急制动
能达到紧急制动的效果,但是可以随时撤销制动指令快速制动停放制动是列车静止停放时,为防止停放过程中溜车所施加的制动停放制动车辆制动操作模式。
城轨车辆制动介绍
四、城轨车辆制动方式
按照制动时列车动能的转移方式不同城轨车 辆的制动主要可以分为
4.1摩擦制动
4.2电制动
4.1摩擦制动
通过摩擦副的摩擦将列车的运动动能转变为 热能,逸散于大气,从而产生制动作用。城 轨车辆常用的摩擦制动方式主要有
4.1.1闸瓦制动
4.1.2盘形制动
4.1.3轨道电磁制动
4.1.1闸瓦制动
• 从能量变化的角度理解,制动过程就是一个能量转移 过程,是将列车运行所具有的动能人为控制地转变成 其他形式能量的过程,因此列车的制动过程必须具备 两个基本条件:第一、实现能量转换;第二、控制能 量转换。 此时,制动装置是用以实现和控制列车动能 转换的一套装置。
1.2列车制动系统
• 为了能制动或缓解制动,需要在列车上安装 一整套完整可操纵并能进行控制和执行的系 统总称为列车制动系统。由于城市轨道交通 车辆与铁路车辆的编组形式不同,一般由动 车和拖车组成,因此也可按其编组形式的不 同分为动车制动装置和拖车制动装置。
4.2.2电磁涡流制动
为了充分发挥轨道电磁制动的优点,规避其 不足,又设计出了电磁涡流制动。 电磁涡 流制动就是利用电磁涡流在磁场下产生洛伦 兹力,利用洛伦兹力的作用方向与物体运动 的方向相反的物理原理来设计的一种电池制 动方式,这种制动方式具有无摩擦,无噪声, 体积小制动力大的优点。 目前,轨道交通车辆利用电磁涡流制动的方 式主要有盘形涡流制动和轨道直线涡流制 动 •
紧急制动具有如下特点: ①电制动不起作用, 仅空气制动; ②高压断路器断开,受电弓降 下 ③不受冲击率极限的限制,在1.7S内可达 到最大制动力的90% ④紧急制动实施后是不 能撤除的,列车必须减速,直到完全停下 来; ⑤具有防滑保护和载荷修正功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二) 盘形制动
盘形制动有轴盘式和轮盘式之分,一般采
用轴盘式,当轮对中间由于牵引电机等设
备使制动盘安装发生困难时,可采用轮盘 式。制动时,制动缸通过制动夹钳使闸片 夹紧制动盘,使闸片与制动盘间产生摩擦, 把列车的动能转变为热能,热能通过制动 盘与闸片逸散于大气。
空气簧
阻尼器 盘式 制动器
(三)轨道电磁制动
(二)电磁涡流制动
电磁涡流制动就是利用电磁涡流在磁场下产生 洛伦磁力,利用洛伦磁力的作用方向与物体运 动的方向相反的物理原理来设计的一种电池制 动方式,这种制动方式具有无摩擦,无噪声, 体积小制动力大的优点。目前,轨道交通车辆 利用电磁涡流制动的方式主要有盘形涡流制动 和轨道直线涡流制动
1. 盘形涡流制动
作 业
P21 1、4、5题
(一) 动力制动
由于现代城市轨道交通车辆一般采用了电 力牵引的电动车组,采用直流或交流电动 机作为牵引动力,因此以动力制动作为主 要制动方式已经成为城市轨道交通车辆的 发展趋势。电动车组中既有动车又有拖车, 除了拖车没有电动机只能使用摩擦制动外, 所有动车都可以进行动力制动,并且还可 以承担部分拖车的制动力。
盘形涡流制动利用安装在车轴上的圆盘切割 磁力线产生涡流和洛伦磁力,根据产生磁场的 机理可分为电磁涡流盘形制动和永磁涡流盘形 制动。 日本新干线的高速动车组采用的是电磁涡流 形的制动原理
永磁涡流盘形制动是利用永磁铁产生电磁场, 制动盘在磁场中产生涡流阻止磁场增加,产生 制动转矩,产生制动作用。
轨道电磁制动也叫磁轨制动。是一种传统 的制动方式,这种制动方式是在转向架前 后两轮之间安装包升降风缸,风缸顶端装 有两个电磁铁,电磁铁包括电磁铁靴和摩 擦板,电磁铁悬挂安装在距轨道面适当高 度处,制动时电磁铁落下,并接通励磁电 源使之产生电磁吸力,电磁铁吸附在钢轨 上,列车的动能通过磨耗板与钢轨的摩擦 转化为热能,逸散于大气。
盘形涡流制动结构类似于机械盘形制动,但没 有制动圆盘与闸片间的磨耗。对列车制动来说, 还需受到轮轨黏着系数的限制。
2. 轨道直线涡流制动
轨道直线涡流制动通过对安装于转向架两侧之 间的条形磁铁励磁,在钢轨上产生涡流使车辆 制动,具有无摩擦、制动迅速等优点。同时, 轨道直线涡流制动装置可增加车辆轴重。提高 车辆粘着力。
二 电制动
从能量的观点来看,制动的本质就是将列车的动能 转移成别的形式的能量。制动系统转移动能的能力 成为制动功率。一般的,在一定的安全制动距离下, 列车的制动功率是其速度的三次函数。 现代化轨道交通车辆的速度都很高,列车质量也很 大,其制动功率如果仅仅以一种机械的方式实现转 移是很难达到的。 为了减少机械摩擦,应尽量采用无污染的制动方式, 目前最好的方法就是使用电制动。而电制动按照其 制动原理的不同又可以分时列车动能的转移方式不同城 轨车辆的制动主要可以分为摩擦制动和 电制动。
一 摩擦制动
通过摩擦副的摩擦将列车的运动动能转变 为热能,逸散于大气,从而产生制动作用。城
轨车辆常用的摩擦制动方式主要有闸瓦制动,
盘形制动和轨道电磁制动。
(一)闸瓦制动
闸瓦制动又称为踏面制动,它是最常见 的一种制动方式。制动时闸瓦压紧车轮, 车轮与闸瓦发生摩擦,将列车的运动动 能通过车轮与闸瓦间的摩擦转变为热能, 逸散于空气中。