甲壳素的酶解研究

甲壳素的酶解研究
甲壳素的酶解研究

壳聚糖酶的研究进展

【摘要】目的壳聚糖的降解产物壳寡聚糖在医药领域中有着广泛的应用前景,而壳聚糖酶是酶法制备壳寡聚糖的专一性酶。本文综述了壳聚糖酶的研究概况,主要是壳聚糖酶的酶学特性、分离纯化以及分子生物学研究进展,同时展望了其应用前景。

【关键词】壳聚糖; 壳聚糖酶; 糖苷水解酶

Abstract:Objective Chitooligosaccharides,degradation product of chitosan,have extensive potential application prospect in medical field.Chitosanase are key enzyme for specifically hydrolyzing chitosan into chitooligosaccharides.In this summary,the achievement of stidies on chitosanases,including its enzymatic properties,isolation and purification,molecular biology and prospects for application was discussed.

Key words:chitosan;chitosanase;glucoside hydrolase

几丁质(chitin)又名甲壳素、甲壳质,是N-乙酰-D-葡萄糖胺以β-1,4-糖苷键相连而成,是地球上仅次于纤维素的第二大类天然高分子化合物。壳聚糖(chitosan)为几丁质脱乙酰化后的产物,是一种阳离子型多糖,也是目前唯一的商品化碱性多糖。壳聚糖是一种高分子阳离子絮凝剂,由于具有无毒、可被生物降解、良好的生物容性和成膜性等优良特性,在医药卫生、农业等方面得到广泛的应用[1]。如可作为离子交换剂,毛发固定剂、保湿剂和柔软剂,药物缓释剂、增溶剂,饲料添加剂,种子处理剂等。但是壳聚糖的分子量大,水溶性较差,在人体内不易吸收,使其应用受到限制。而壳聚糖的降解产物壳寡聚糖(Chitooligosaccharides)不仅具有水溶性好、易吸收等优点,近年来更是发现,低分子量壳寡聚糖(如五糖、六糖)具有抗肿瘤、抗菌、免疫激活及保湿吸湿等特点,使其在医药领域有着广泛的应用前景[1,2]。

壳寡糖的制备大多数是以虾、蟹等为原料,经过脱乙酰基等处理得到壳聚糖,再进一步水解得到壳寡糖。目前,由壳聚糖制备壳寡糖主要有两种水解方法:酸解法和酶解法。

酸解法一般是用盐酸部分水解壳聚糖[3],用甲醇除去水解液中产生的大量单糖,经加Dowex离子交换树脂分离得到壳寡糖。酸水解法的缺点是反应产物单糖较多,而壳寡糖含量低,反应条件苛刻,工艺烦琐,同时这一工艺由于产生大量废弃酸液,易给环境造成污染。酶解法是指采用酶制剂在较温和的条件下降解壳聚糖。一般分为两类:非专一性水解酶和专一性水解酶[5]。非专一性酶工艺,是利用如脂肪酶、溶菌酶等壳聚糖非专一性水解酶,降解壳聚糖。但降解程度有限,而且产物复杂,不易分离,酶量使用大。专一性水解酶是利用以壳聚糖为专一性底物的壳聚糖酶,专一性水解壳聚糖,该反应条件温和,可通过反应时间控制水解产物,为大规模生产壳寡糖提供了可能,是一种较为理想的壳寡糖制备方法。壳聚糖酶(Chitosanase,EC.3.2.1.132)是催化壳聚糖降解的专一性酶。壳聚糖经壳聚糖酶降解后生成低分子量壳寡糖,壳聚糖酶在降解壳聚糖多聚物、大规模生产壳寡糖中发挥着重要作用[6]。

1 壳聚糖酶概述

1.1 壳聚糖酶的发现

Monaghan在研究细菌和真菌过程中,首先提出壳聚糖酶(chitosanase,EC3.2.1.99)是一种不同

于几丁质酶的新酶,能够降解完全脱乙酰化的壳聚糖,被认为是对线性的壳聚糖具有水解专

一性的一种酶。在1992年国际酶学命名会议上,壳聚糖酶被系统命名。

1.2 壳聚糖酶的分布

壳聚糖酶主要存在于真菌和细菌细胞中,现已经从细菌(如Myxobacter,Artyrobacter,Bacillus),放线菌(如Streptomyces、Nocardioides),真菌(如Rhizopus,Penicillum,和Basidiomycete),病毒(Chlorella virus PBCV-1、CVK-2)中发现壳聚糖酶的存在,并已从发

酵液中纯化得到壳聚糖酶。各种来源的壳聚糖酶的性质详见表1[9~27]。

1.3 壳聚糖酶的理化性质

壳聚糖酶的分子量在23~50 KD之间,低于几丁质酶的分子量(31~115 KD)。一般来说,从

微生物中分离得到的壳聚糖酶分子量为20 000~40 000。但也存在少数高分子量的壳聚糖酶,如曲霉Aspergillus fumigatus KH-94有2种壳聚糖酶,其中一种酶的分子量高达108 KD[7]。但不是所有的壳聚糖酶都是单亚基蛋白,如Streptomyces griesus产生的壳聚糖酶利用变性凝胶电泳测定结果为35 000,凝胶过滤结果却为10 000,显示这种壳聚糖酶的分子结构及组成可能有别于一般的壳聚糖酶,但是其空间结构尚未确定。

壳聚糖酶大部分为碱性蛋白,等电点(pI)变化范围比较大,在4.0~10.1之间。最适pH

为4.0~8.0,Bacillus circulans WL-12的壳聚糖酶的最适pH为9.5[8]。而且Myxobacter AL-1的壳聚糖酶有两个最适pH分别为5.0和6.8。

大多数微生物的壳聚糖酶具有较好的热稳定性,最适反应温度在30~60℃之间。在pH为6.0~8.0,37℃时壳聚糖酶非常稳定,超过40℃后酶很快失活,从Bacillus产生的壳聚糖酶的最适温度大约为60℃。Bacillus sp.strain CK4的壳聚糖酶的耐热性很高,60℃处理30 min仍然能保持全部酶活性,80℃处理30 min和60 min后剩余酶活分别为85%、66%,只有在90℃处理60 min后酶才完全失活[9]。从Bacillus sp. KFB-C108纯化的壳聚糖酶其最适温度为55℃,80℃热处理10 min或70℃热处理30 min酶活性仍然保持稳定,而且酶稳定性也比较强,但Co2+离子能抑制酶的活性[9]。

1.4 壳聚糖酶的催化性质

来源于不同微生物的壳聚糖酶对不同脱乙酰化程度的壳聚糖和壳聚糖相关物(乙二醇壳杂糖、羧甲基纤维素和羟乙基壳聚糖)有不同特异性,但是一般不能降解胶体几丁质和纤维素,这

也是判断壳聚糖酶和几丁质酶的一个重要标准。Hutadilok等研究了壳聚糖酶对部分N-乙酰化的壳聚糖和不同O-取代壳聚糖衍生物的水解作用的动力学行为,在均相反应中,随着N-乙酰度的提高,米氏常数Km增加,而最大反应速度Vmax降低;当N-取代的脂肪族酰基

中碳链增长时,Km增加,而Vmax影响很小;对其它衍生物的水解作用则Km为:O-羧甲基壳聚糖>壳聚糖>O-羟乙基壳聚糖,而Vmax为壳聚糖>O-羟乙基壳聚糖>O-羧甲基壳

聚糖。

目前发现的壳聚糖酶大多都是诱导酶,其中一些不仅具有降解壳聚糖活性,还有其它催化作用。B.subtilis KH1壳聚糖酶则对氨基葡萄糖寡聚体(2~6聚体)具有糖基转移酶活性[11]。

B.circulans WL-12产生的壳聚糖酶同时具有β-1,3-1,4-葡聚糖酶活性,酶的主要底物是壳聚

糖和β-1,3-1,4-葡聚糖,这种广泛的底物特异性有助于B.circulans WL-12充分降解和利用真

菌的细胞壁成份[12]。这种多酶活性特点可能与生物的不同生长环境有关。1.5 壳聚糖酶降解壳聚糖的作用方式及产物

壳聚糖酶对壳聚糖的降解方式可分为内切酶和外切酶两种。大部分壳聚糖酶属于内切酶,降解壳聚糖生成壳二糖、壳三糖等寡聚体的混合物,反应速度很大程度上依赖于壳聚糖的乙酰化程度。在放线菌Nocardia orientalis和真菌Trichoderma reesei PC-3-7中分离纯化了外切型壳聚糖酶[13]。但是生物体体内并不一定只存在一种类型的壳聚糖酶。从Aspergillus fumigatus KH94中纯化出2种壳聚糖酶能被壳聚糖酶Ⅰ具有内切酶活性,能水解壳聚糖生成壳二糖;而壳聚糖酶Ⅱ则具有外切酶活性,能水解壳聚糖生成氨基葡萄糖;另外,当反应初

始底物中壳聚糖含量高过2%时,壳聚糖酶还具有糖基转移酶活性。从Aspergillus

sp.CJ22-326中也分离出了两种内型的壳聚糖酶,且性质类似Aspergillus fumigatus KH94[14]。表1 壳聚糖酶的理化性质注: 表示GF(凝胶过滤)法获得分子量,NA表示无法获得确切资料,ND表示未确定。

壳聚糖酶作用部分乙酰化壳聚糖的产物经过减压浓缩后,用柱色谱(如Sephadex)洗脱,将洗脱液浓缩干燥并采用β-氨基葡萄糖苷酶(β-GlcNase)和β-乙酰氨基葡萄糖苷酶(β-GlcNAcase)

两种酶作用上述产物,从而可以鉴定出产物还原端的组成和产物的序列,也可以利用亚硝酸

降解含有氨基葡萄糖(GlcN)残基不降解含有乙酰氨基葡萄糖(GlcNAc)残基的寡糖进一步确

认产物的组成。

1.6 壳聚糖酶的分类

按照对壳聚糖的降解方式,壳聚糖酶可以分为外切酶和内切酶;按照酶的产生又可以分为诱导型(如白僵菌)[15]和组成型(如腐皮镰孢菌)[16]。但是比较公认的分类方法主要是按照酶作用底物和降解产物来进行分类。壳聚糖酶最初分为两类,一类只是分解壳聚糖,另一类可以分解壳聚糖和羧甲基纤维素。但是对壳聚糖酶的研究不断深入,由于壳聚糖酶和其他水解酶(如几丁质酶、溶菌酶、胞外N-乙酰β-D-氨基葡萄糖酶、胞外β-D葡萄糖酶)区

分模糊,研究人员建议根据壳聚糖酶降解部分乙酰化壳聚糖的降解性能而分为三类,Ⅰ类酶

的产物是杂合寡糖,糖的还原末端为GlcNAc,Ⅱ类酶不产生任何杂合寡糖, Ⅲ类酶的产物也

是杂合寡糖,其还原末端为GlcN。所有研究过的壳聚糖酶有一个共同性质就是要求糖苷键

的一侧至少有一个GlcN残基,而不能催化GlcNAc-GlcNAc键的断裂[17]。这又是壳聚

糖酶与几丁质酶的一个重要区别。

1.7 壳聚糖的制备

目前研究公认大多数微生物来源的壳聚糖酶属于诱导酶,基因表达大多受阻遏物/诱导物系统控制,一般以壳聚糖为诱导物,它们的降解产物(GlcNAc或是GlcN)为阻遏物。因此当以壳聚糖作为唯一碳源时,微生物的产壳聚糖酶的能力就能被诱导出来。根据此理论,筛选产壳聚糖酶微生物多采用“透明圈平板法”:即采用以壳聚糖为唯一碳源和氮源的固体培养基平板进行富集培养,限制大多数不能利用壳聚糖的微生物生长,而能产生壳聚糖酶的微生物由于能利用壳聚糖的降解产物进行生长繁殖。在这种白色不透明胶体壳聚糖平板上,由于壳聚糖被微生物降解,在产壳聚糖酶的微生物菌落周围就会形成一个透明圈,通过比较透明圈直径和菌落直径的比值,就可以初步定量的确定产壳聚糖酶活力的大小。由于天然菌株产壳聚糖酶的能力一般较低,现在大多都使用诱变育种。

大多数的报道都是以壳聚糖作为唯一碳源诱导微生物产壳聚糖酶。Fenton等[18]用盐酸溶解壳聚糖作为微生物生长的唯一碳源和氮源,诱导Penicillium islandicum产生了壳聚糖酶。

Pelletier等以片状壳聚糖作为唯一碳源诱导产生了壳聚糖酶,粗酶液的酶活力可达1U/ml。Shimosaka等用2%的凝胶化壳聚糖培养基诱导Frusarium solant产生了壳聚糖酶,酶活力高达9.9mU/ml。

Shimosaka还发现氮源的成分对壳聚糖酶的产生有着较大的影响,当在培养基中添加蛋白胨、酵母粉等组成的复合氮源时,菌种产生的壳聚糖酶活力有较大幅度的提高。中国科学院的杜昱光等人利用蛋白胨、酵母浸膏和干酪素组成复合氮源,诱导球孢白僵菌产生壳聚糖酶。不同菌种生产壳聚糖酶的产酶培养条件差别不大,一般来讲的产酶最佳温度是28℃~30℃之间,pH在4.0~7.0之间。Fenton等利用Penicillium islandicum生产壳聚糖酶时,培养的初始pH为5.5,最佳产酶温度是28℃。Youshihara等采用假单孢菌生产壳聚糖酶的最佳条件为培养温度为30℃,最佳产酶pH在4.0~7.0之间[18]。

2 壳聚糖酶的分离纯化

目前,国内外在壳聚糖酶分离纯化方面已经做了大量研究,Masashiro等对芽孢杆菌属Bacillus cereus S1产壳聚糖酶做了分离纯化和性质研究:60 h后的发酵液3 000 r离心除去菌体,然后采用90%饱和度的硫酸铵盐析,9 000 r离心收集蛋白沉淀,将其溶于100 ml水中,使用70%冷丙酮进行抽提,沉淀离心收集后采用Sephadex G-25和Super Q Toyopearl进行分离,收集蛋白活性峰,得到电泳纯的单带蛋白,分子量约为45KD,最适pH为7.0,最适温度为60℃。该酶不仅能降解壳聚糖,而且对几丁质和纤维素有一定的降解活性。通过对该酶降解寡聚糖的产物分析,该酶是内切酶,不能降解壳二糖和壳三糖,最小降解底物为壳四糖[19]。

Makoto[20]等对放线菌属Acinetobacter sp.Strain CHB101产壳聚糖酶进行了分离纯化工作。发酵液离心去菌体后,加入70%硫酸铵进行盐析,收集沉淀经过透析后,使用CM-Sepharose CL-6B和Sephadex G-100进行分离后,酶液比活提高了16倍,收率为16%,活性蛋白在SDS-PAGE上呈现两条带,一条分子量为30KD,一条为37KD。前者对壳聚糖有着很高的专一性,而后者则不仅能降解壳聚糖,对于几丁质和纤维素也有不同程度的降解性能。两种酶均是属于内切酶。Yoon HG[24]等对Bacillus sp菌株产壳聚糖酶进行了纯化研究。发酵液通过30%~70%硫酸铵盐析后,再使用DEAE离子交换层析,Butyl-Toyopearl层析,

Tsk-Gel HW-55F凝胶过滤,得到了SDS-PAGE上单一条带,酶分子量为38KD。该酶能降解壳聚糖,但不能降解几丁质和纤维素。Co2+对酶活有将强影响。

方祥年、杜昱光等[15]研究了球孢白僵菌胞外壳聚糖酶的纯化和性质。发酵液通过60%~90%饱和度的硫酸铵沉淀蛋白,收集蛋白透析后通过两次Sephadex G-75和Chitosan bead亲和层析,得到了在SDS-PAGE上呈单一条带的纯酶,回收率为18.75%,纯化倍数高达67.5倍。该酶除较强降解壳聚糖的活性外,能轻微降解CMC和胶体几丁质。

Xiao Chen等研究了从Aspergillus sp.CJ 22-326中壳聚糖酶的分离纯化和性质研究。采用CM-Sepharose和Sephacryl S-200对发酵液进行分离纯化,从中纯化出两种壳聚糖酶。其中一个酶分子量为29 000,另一个为109 000。前者具有内切酶活性,后者这是外切酶活性。

3 壳聚糖酶分子生物学研究进展

从酶的分类学上讲,壳聚糖酶(chitosanase,EC 3.2.1.99)属于O-糖苷水解酶

(O-Glycosidehydrolases,EC 3.2.1),这是一组广泛的催化2个或多个糖分子、或者一个糖分子与另一个非糖分子之间糖苷键的酶。由于酶的氨基酸顺序与分子折叠相似性之间有直接的联系,根据酶的氨基酸序列的相似性,糖苷水解酶分成不同的家族(除去不能分类的),共有87个。根据已知的壳聚糖酶氨基酸序列,壳聚糖酶分属其中的4类:46、75、80和8号[22,23]。

46号族主要包括从Bacillus、Streptomyces、Nocardioides、Burkholderia以及病毒Chlorella virus 中发现的壳聚糖酶。该族也是目前分子水平上研究最为深入和成功的一类壳聚糖酶。

利用Nocardioides sp.N106、Streptomyces sp.N174和Bacillus.circulan MH-K1的壳聚糖酶基因的核苷酸顺序推导出氨基酸顺序后进行比较,前二者壳聚糖酶在氨基酸水平的同源性达到75%,但是后二者在中间和C-末端相差很大,只是三个壳聚糖酶的氨基酸序列中N-末端有一段保守序列,具有显著的同源性(例如B.circulan的壳聚糖酶前体氨基酸59-107和Streptomyces sp.N174壳聚糖酶前体的氨基酸44-90),这段保守序列包含在基因csn的0.38 spbl-sbcⅡ碎片中。基因csn已经从Streptomyces sp.N174中克隆到Streptomyces lividans菌株中,大量产生壳聚糖酶[21]。

目前,Bacillus circulans MH-K1和Streptomyces sp.N174的壳聚糖酶3级结构已被测定,Streptomyces sp.N174的壳聚糖酶3级结构与细菌噬菌体T4溶菌酶的3级结构相似。虽然Bacillus circulans MH-K1和Streptomyces sp.N174种壳聚糖酶在氨基酸序列上有20%的相似性,但总的分子构像相似,两者分子结构有3个显著差别:1在MH-K1壳聚糖酶的N末端有2个额外的α螺旋,共16个氨基酸残基,长于N174的壳聚糖酶;2MH-K1壳聚糖酶上区域的顶部α6螺旋后有2个β折叠片,而在N174的壳聚糖酶中仅有1个α5螺旋;32个壳聚糖酶的C末端的二级结构完全不同,MH-K1壳聚糖酶的C末端是α螺旋结构,而N174壳聚糖酶的C末端则是2个β折叠片。通过比较2个酶的3级结构可以得知,虽然Bacillus circulans MH-K1和Streptomyces sp.N174壳聚糖酶都同属于糖苷酶46号,但由于这2个酶的活性位点结构不同和主链取向不同,因而能识别不同的底物,催化不同的β-1,4-糖苷键,降解不同类型的壳聚糖。真菌A.oryzae IAM2 660、Nectria haematoco的壳聚糖酶基因碱基

序列与来自A.fumigatus KH94和昆虫病原真菌绿僵菌Metarhizium anisopliae、球孢白僵菌Beauveria bassiana的壳聚糖酶相似,5种酶同属于糖苷水解酶家族75号,它们彼此之间显著同源,但与46号没有同源性,说明真菌壳聚糖酶在进化起源上与细菌壳聚糖酶不同。

M.chitosanotabidus 3001壳聚糖酶氨基酸序列与Sphingobacterium multivorum壳聚糖酶高度相似,这2种酶被归类为80号。成熟的M.chitosanotabidus 3001壳聚糖酶的N端有15个氨基酸:AAAAGVIPVGDSRVY。M.chitosanotabidus 3001是一个新的壳聚糖酶[11],氨基酸序列与蛋白质数据库中其他糖苷水解酶(包括已知的壳聚糖酶、几丁质酶及N-乙酰葡萄胺糖苷酶)没有明显的同一性。

序列对比分析表明80号壳聚糖酶可能与46号家族的酶有着共同的、高度保守的“活性部位”组件:E-[D/N/Q]-x(8,17)-Y-x(7)-D-x-[R/D]-[G]-x-[T/S]-x(4)-G-x(5,11)-D,它包括来自B.circulans MH-K1、Streptomyces sp.N174壳聚糖酶的对维持酶活性和稳定性所必需的几个氨基酸。因此,有人建议将46号与80号归为一族。

4 壳聚糖酶应用开发前景的展望

壳聚糖酶在工业上可用于壳寡聚糖(Chitooligosaccharides,简称COSs)的制备,由于COSs 较好的水溶性,更利于人体吸收,因而COSs在食品工业中上可作为添加剂;COSs在医药、诊断试剂等方面有着非常诱人的前景,特别是聚合度在5、6的COSs更是具有较强的抗感染、抑制肿瘤的活性;COSs具有抗菌作用,能对植物病原菌产生拮抗作用,诱导植物产生抗菌物质。但是利用化学合成方法生产COSs(尤其是具有较强生理活性的壳五糖和六糖)非常困难,产率低、生产成本较高且易污染环境,而使用专一性的壳聚糖酶通过降解生产COSs却有着高效、环保等有点,因此利用壳聚糖酶生产COSs已经成为目前研究应用的热点。

研究发现,壳聚糖酶是一种RP蛋白,可以提高植物的抗病能力。同时利用壳聚糖酶降解一些真菌细胞壁,用以鉴定细胞壁的精细结构,可以更有效的防治病原菌,提高农作物产量。因此壳聚糖酶可以作为农业应用中的生物控制剂。

从已报道的微生物产酶能力来看,目前获得的壳聚糖酶酶活普遍较低,纯品酶活一般都在5~250 U/mg之间,参率一般在1.2%~77%。目前报道产酶活力最高的Streptomyces sp.N174的基因工程菌所产的发酵液粗酶液酶活为36.8 U/ml[22]。这也是目前唯一的商品化壳聚糖酶。

虽然目前壳聚糖酶已经商品化,但是由于原始的菌株产壳聚糖酶能力仍然普遍偏低,使得壳聚糖酶的来源有限,生产成本高,导致商品壳聚糖酶价格据高不下。同时现在商品壳聚糖酶在热稳定性等方面还不足以适应大规模工业化降解壳聚糖的生产。因此为了向医药工业生产提供更加廉价、高效的壳聚糖酶,一方面需要继续寻找不同微生物来源的壳聚糖酶,筛选产壳聚糖酶能力更强的菌株,寻找具有工业化潜在应用价值的新酶源;另一方面通过基因工程生产和改造现有的壳聚糖酶。

壳聚糖原料来源广泛,其降解产物壳寡聚糖的应用非常广泛,有着及其广阔的应用前景。采用特异性的壳聚糖酶进行酶法降解壳聚糖制备壳寡聚糖,不仅有高效、产物质量好等特点,同时可以大大降低传统工艺给环境带来的污染。随着研究的深入,人们对壳聚糖酶的作用方式和特点将会了解得更加透彻,从而给生产带来更大的经济效益。

【参考文献】

[1]Jeon Y J,Park P T,Kim S K.Antimicrobial Effect of Chitooligosaccharides Produced by Bioreactor[J].Carbohydrate Polymer,2001,44:71-76.

[2]Suzuki S.Depolymerization of Chitosan with end of Papin.Enzyme[J].Fragraoce Journal.1996,15:61-68.

[3]Defaye J,Gadelle A,Pedersen C[J].Carbohydrate Research,1994,261:267-277.

[4]Masato I.Preparation of N-acetylchitooligosaccharides from Enzymatic Hydrolyzates of Chitosan[J].Biosci Biorech Biochem,1992,56(8):1 372-1 328.

[5]Somasherkar D,Joseph R.Chitosanase Properties and Applications [J]:A review.Bioresource Technol,1996,55(1):35-45.

[6]Cheng C Y,LiY-K.An Aspergillus Chitosanase with Potential for Large-scale Preparation of Chitosan Oligosaccharides[J].Biotechnol Appl Biochem,2000,32:197-203.

[7]Park J K,Shimono K,Ochiai N,et al.Purification,Characterization and Gene Analysis of a Chitosanase(ChoA) from Matsuebacter chitosanotabidus 3001[J].J Bacteriol,1999,181:6 642-6 649.

[8]Zhang Y,Dai A L,Kuriowa K,et al.Cloning and Characterization of a Chitosanase Gene from the Koji Mold Aspergillus oryzae Strain IAM 2660[J].Biosci Biotechnol

Biochem,2001,65:977-981.

[9]Sekiguchi Y,Kariya K,Ogawa K.Purification and some Properties of a Novel Chitosanase from Bacillus subtilis KH1[J].Appl Microbiol,1999,46:16-27.

[10]Masaru M,Makoto I,Asako U,et al.Chitosanase Activity of the Enzyme Previously Reported as β-1,3-1,4-glucanase from Bacillus circulans WL-12[J].Biosci Biotech Biochem,1998,62(11):2 107-2 114.

[11]Sekiguchi Y,Kariya K,Ogawa K.Purification and some Properties of a Novel Chitosanase from Bacillus Subtilis KH1[J].Appl Microbiol,1999,46:16-27.

[12]Xiao C,Wenshui X,Xiaobin Y.Purification and Characterization of two types of Chitosanase from Aspergillus sp.CJ22-326[J].Food Research International,2005,38:315-322.

[13]方祥年,杜昱光,黄秀梨,等.球孢白僵菌胞外壳聚糖酶的纯化和性质[J].菌物系统,2002,21(1):77-83.

[14]Makoto S,Masahiro N,Yasuyo O.Chitosanase from the Plant Pathogenic Fungus,Fusarium Solani f.sp.phaseoli-Purification and Some Properties[J].Biosci Biotech

Biochem,1993,57:231-235.

[15]Fukamizo T,Ohtakara T,Ikeda Y,et al.Specificity of Chitosanase from Bacillus Pumilus [J].Biochim Biophys Acta,1994,1205:183-188.

[16]Makoto S,Masahiro N,Xiu-Ying W,et al.Appl Environ Microbiol,1995,61:438-442.

[17]Masahiro K,Shou Y,Kiromi N,et al.Current Microbiology,2000,40:6-9.

[18]Makoto S,Masahiro N,Xiu-Ying W,et al.Appl Environ Microbiol,1995,61:438-442.

[19]Grenier J,Asselin A.Molecular Plant-Microbe Interact,1990,3:401-407.

[20]Henrissat B,Bairoch A.Updating the Sequence-based Classification of Glycosyl Hydrolases [J].Biochem J,1996,316:695-696.

[21]The Chitosanase Web Page.https://www.360docs.net/doc/7e2729574.html,herb.ca/-rbrzezin/.

[22]Yoon HG,Kim HY,Kim HK,et al.Properties and Action Pattern of a Chitosanase from Bacillus sp.PI-7S[J].Biosci Biotech Biochem,2001,65(4):802-809.

昆虫几丁质酶及其在植物保护中的应用

吴青君 女 岁 现在中国农业大学应用化学系攻读博士学位 主要从事农药学和昆虫毒理学研究?通讯地址 北京海淀区白石桥路 号 中国农业科学院蔬菜花卉研究所植保室?收稿日期 2 2 昆虫几丁质酶及其在植物保护中的应用 吴青君 张文吉 中国农业大学应用化学系 北京 张友军 中国农业科学院蔬菜花卉研究所 北京 Ινσεχτχηιτινασεανδιτσποτεντιαλυσεινπλαντπροτεχτιον ? ± 2 ∏ ? 2 ?επαρτμεντοφΑππλιεδΧηεμιστρψ ΧηιναΑγριχυλτυραλΥνι?ερσιτψ ≤ ≠ ∏2 ∏ Ινστι2τυτεοφ?εγεταβλεσανδΦλοωερσ ΧηινεσεΑχαδεμψοφΑγριχυλτυραλΣχιενχεσ ≤ Αβστραχτ × ∏ 2 ∏ ∏ √ Κεψωορδσ ∏ 摘 要 本文从生理学!生物化学和分子生物学 个方面综述了昆虫几丁质酶的研究进展 并概述了它在害虫防治!主要是在抗虫育种中作为重要的基因源中的应用?关键词 几丁质 昆虫几丁质酶 植物保护 应用

几丁质是由 )乙酰葡萄胺通过Β) 键连接起来的直链多聚物 是自然界中含量最丰富的多糖之一 在昆虫的外骨骼和肠道内壁 真菌和一些藻类的细胞壁及甲壳动物的外壳中均发现它的存在?催化水解几丁质的水解酶广泛地存在于含几丁质的有机体及不含几丁质的生物 如微生物!高等植物和动物中?不同生物源的几丁质酶具有不同的生物功能 昆虫和甲壳动物的几丁质酶主要作用是蜕去外骨骼 真菌几丁质酶负责细胞的生长和分裂 细菌几丁质酶则分解几丁质提供营养源 而植物几丁质酶主要用于防御害虫和病菌的侵袭 增加植物的抗逆能力? 植物在逆境胁迫下体内几丁质酶的含量迅速升高 植物几丁质酶的诱导及防卫反应机制的研究是目前分子生物学研究的热点之一?大量的植物几丁质酶基因或 ? 被克隆 某些基因已被成功地导入植物中 成为抗病育种中的重要基因源?几丁质是昆虫表皮独特的组份 昆虫蜕皮时约有 的几丁质被降解≈ 因此 昆虫几丁质及其水解酶对昆虫的生长!发育起重要的作用 人们对它的重视也由来已久 但在总体研究水平上要落后于植物几丁质酶?进入 年代后 由于相关知识和精密技术不断被引入昆虫学领域 人们对昆虫几丁质酶的物理学!化学!动力学和基因调控特点 以及作为生物农药的发展潜力≈ 主要是在植物抗虫性方面的研究正在不断地探索 并取得了实质性进展?本文将综述该领域有关方面的主要研究进展? 1昆虫几丁质酶的生理学功能 昆虫的蜕皮和变态机制一直是昆虫生理学家研究的重点 早在 年 的一篇专题论文中有关家蚕Βομβψξμορι解剖学问题中就首次描述过蜕皮液 但人们对蜕皮液的功能认识很模糊 甚至有观点认为它主要用于贮存和释放营养物质≈ ?直到进入 世纪后才逐渐明确蜕皮液的功能是昆虫在蜕皮前用于消化旧的表皮? 昆虫周期性地蜕去旧表皮并合成新表皮 这一复杂的过程是由旧表皮和表皮层之间累积的蜕皮液中几丁质酶的精确滴度调节的 需要多种类型酶的参与 每种酶又具有多种异构形式?现已明确的有两种类型的几丁质水解酶?将从内部裂解 ≤多聚链的酶被称作几丁质酶 ∞≤ 从链的非还原性末端依次切下 ≤单体的酶为Β) )乙酰葡萄胺酶 ∞≤ ? ∏ 和 ≈ ? 以烟草天蛾Μανδυχασεξτα为模式昆虫 建立的二元酶系统模型较合理地解释了几丁质的水解机制?首先 不溶性的几丁质被几丁质酶随机裂解为寡糖 这些可溶性的寡糖即成为Β) )乙酰葡萄胺酶的底物 从链末端依次切下几丁质二糖 释放出 ≤ 2 ≤最终又被循环利用参与新表皮的形成?同时研究发现 这两种酶在分解几丁质中还具有较强的增效活性?几丁质酶和Β) )乙酰葡萄胺酶以适宜比例混合 分解几丁质的速度是二者单独作用速度总和的 倍? 除昆虫表皮外 在其肠道组织中也检测到几丁质酶的活性?肠道几丁质酶具有分解肠道内和围食膜中的几丁质及消化的功能?昆虫蜕皮过程完成后 肠道几丁质酶能够将蜕皮消化参与合成新的围食膜≈ ? 昆虫蜕皮机制问题的解决 促进了昆虫蜕皮液的生理学和生物化学的发展 其中最主要的几丁质酶和Β) )乙酰葡萄胺酶已被分离纯化 得到 ? 克隆 并有可能用于植物抗虫性的转基因育种研究中? 2昆虫几丁质酶的基因结构及表达 2 1昆虫几丁质酶基因的结构 昆虫几丁质酶基因的研究最早见于烟草天蛾? 年 等≈ 分离得到编码烟草天蛾几丁质酶基因的全长 ? 克隆 并进行了序列分析? 由 个核苷酸组成 可译框架含 个核苷酸 起始密码子 × 在 位 终止于 位 所编码的蛋白为 个氨基酸残基 分子量为 ??其 χ)端非翻译区含有 个核苷酸 # # 昆虫知识∞ × ≤ ? ∞? ∞

甲壳素实验指导书

O *O * O H N H C O C H 3 n 54 3 2 1 6H O 从虾壳中提取甲壳素 实验原理 1甲壳素性质 甲壳素(Chitin),又称几丁质、壳多糖、甲壳质,是由N-乙酰-2-氨基-2-脱氧-D-葡萄糖以-1,4-糖苷键形式连接而成的,即N-乙酰-D-葡萄糖胺的聚糖。 甲壳素结构式 甲壳素,无论是在酸性或碱性的水溶液中都不会溶解,只溶于浓盐酸、硫酸、浓磷酸、无水甲酸等,但同时会伴随部分主链的降解,此外还可溶于某些复合溶剂如酰胺/LiCl 。 2甲壳素提取方法及原理 甲壳素制备一般采用盐酸脱钙(简称H 法)氢氧化钠脱蛋白质,但这两种化学品对甲壳素的分子链都有损坏,而且能耗高,废弃物对环境污染较为严重。而采用EDTA 代替盐酸制备甲壳素(简称E 法),由于EDTA 所特有的脱钙机理,同等条件下,其脱钙效果较好,所得的甲壳素分子量较高,而且EDTA 可回收利用,减少了环境污染,并不增加成本。 从天然产物虾壳中提取甲壳素,需要将虾壳中的无机盐(主要为碳酸钙)、蛋白质、脂肪及虾壳色素去除。从虾壳主要成分可以确定提取甲壳素的主要方法,分别进行酸处理脱除无机盐、碱处理脱除蛋白质和脂肪及虾壳的脱色处理,同时确定检测指标为灰分和含氮量,通过灰分的测定可以研究酸在处理无机盐时的效率,含氮量的测定则可以说明碱处理对产品的氮含量影响或者间接地显示碱对脱除蛋白质的影响。对此我们可以将整个流程表示为以下几个部分。 (1)脱除无机盐 由于虾壳中无机盐主要成分为CaCO3,实验室最常用的酸有盐酸、硫酸、硝酸和磷酸。硫酸与碳酸钙反应生成硫酸钙微溶于水不利于脱除,硝酸虽然可以与碳酸钙反应且不生成沉淀但是其有氧化性对甲壳素有较大影响,磷酸对甲壳素提取影响较之以上两种小,但是相比较盐酸而言还是不如,由此此次实验脱除无机盐采用盐酸作为主要的试剂。相关反应式如下:

昆虫的体壁和几丁质酶

几丁质酶 几丁质酶是以几丁质为作用底物的水解酶。在昆虫中,几丁质是围食膜及体壁的主要组成成分之一,通过几丁质酶对其有规律地降解以保证昆虫正常生长发育。若编码该酶的基因在不适当的时候表达或该表达时未表达,都会对昆虫造成伤害。在植物害虫防治中,昆虫几丁质是几丁质酶的一个极具吸引力的作用靶标。 1.1昆虫几丁质酶生物化学与生理作用 昆虫几丁质酶存在于中肠、蜕皮腺及某些昆虫的毒腺中,是一种糖蛋白,可以水解昆虫体壁和中肠中的几丁质,酶切位点通常随机发生在链中间的任何一个部位,其最终产物是可溶低分子量的GlcNAC寡聚物。昆虫蜕皮时约有90%的几丁质被降解,几丁质酶和几丁质之间的作用是一种动态过程,包括经过几丁质结合区的吸附过程、水解过程、解吸附作用及活性催化区在作用底物表面的配置过程。昆虫几丁质酶分泌到肠道中,以无活性酶原形式存在,在需要时被胰蛋白酶激活而降解围食膜。蜕皮腺中的几丁质酶可调节昆虫的周期性蜕皮并合成新表皮。毒腺中的几丁质酶有助于毒腺物质在取食对象的组织中扩散渗透。 1.2昆虫几丁质酶基因的体内表达 昆虫几丁质酶的表达受蜕皮激素的诱导,而保幼激素抑制其表达。有研究表明,在没有几丁质酶基因表达的虫期,蜕皮激素类似物能够诱导云杉卷叶蛾几丁质酶基因的表达,在诱导36h后表达量最大,且几丁质酶基因仅在体壁表达,这种现象可能是因为诱导表达是一种间接表达,需要某些只在体壁才具有的因子参与。在昆虫生长发育过程中,几丁质酶表达具有组织特异性。 影响昆虫几丁质酶活性因素主要有温度、pH、紫外线等因子均可影响昆虫几丁质酶的活性。昆虫几丁质酶pH范围较宽,使其能在微酸(血淋巴)和微碱性环境(内脏)中起作用。昆虫几丁质酶在pH为4~8范围内具有活性,在30~60℃之间昆虫几丁质酶活性较高且较久。底物不同时,昆虫几丁质酶表达的适宜pH、温度也不尽相同。pH值对昆虫几丁质酶活性的影响,可能是因为昆虫几丁质酶在多区结构及氨基酸序列方面的不同造成的。某些二价阳离子也影响昆虫几丁质酶的活性。 对昆虫几丁质酶的利用,包括使昆虫体内的几丁质酶水平低于或高于正常水平两个方面,从而扰乱昆虫正常的生长发育节律,甚至使昆虫死亡。Blattner-R

甲壳素壳聚糖相关研究资料

甲壳素/壳聚糖相关研究资料 11.1 国内外甲壳素发展大事记 人类利用甲壳素资源始于中国,著名的《本草纲目》中就记载:蟹壳有破淤消积的功能。“蟹”字本身即指:解毒的虫类。除蟹之外,自古以来,地球上许多民族就有食用蜜蜂幼虫、蚂蚁的习惯,对健康大有裨益。 ? 18世纪印第安人也用龟壳治病...... ? 1811年法国科学家布拉克诺(H.Braconnot) 首先从蘑菇中提取到一种类似于植物纤维的六碳糖聚合体,把它命名为Fungine(蕈素)意为真菌纤维素。 ? 1823年法国科学家欧吉尔(A.Odier)从甲壳昆虫的翅鞘中分离提取了这种物质,并命名为chitoin(几丁质)。 ? 1859年C.Rouget将甲壳素用浓碱处理,得到了脱乙酸化的甲壳素,即变性甲壳素。 ? 1894年F.Hoppe-Seiler将变性的甲壳素命名为壳聚糖(Chitosan)。一百多年来,由于对甲壳素的化学结构和组成难以确定,限制了它的应用。 ? 1950年前苏联医学院与列支敦士敦(LIECHTENSTEIN)公国共同合作研究甲壳素与壳聚糖,主要应用于军事工业。 ? 1965年美国与中国大陆开始进行农业与工业领域的应用。 ? 1977年4月第一次甲壳素、壳聚糖国际学术研讨会在美国召开。 ? 1982年4月日本政府农水省制定了“未利用生物资源”的十年研究开发计划(1983-1992)。这是世界上第一个由政府倡导的壳糖胺开发利用计划。1985年文部省拨款60亿日元,资助全国13所大学及医疗机构,利用10年时间,上千人从事有关甲壳素的开发利用与基础研究。 ? 1982年7月第二次甲壳素、壳聚糖国际学术研讨会在日本召开。

甲壳素的主要制备方法与应用

甲壳素的主要制备方法与应用 1 引言 1.1 甲壳素的研究背景 经过世界各国科学家、学者对甲克素的不懈探索和认真研究,人类开始逐步认识甲壳素这一新的化学物质,并将之应用于生活的各个领域。在探索和研究甲克素的历史过程中,首先要提的是法国科学家Henli Brocronna,其在1811年第一次从蘑菇中成功分离并提取到了甲壳素,由此揭开了甲克素的神秘面纱,让人们清晰的看清甲克素的面容;其次,法国学者Rouget 在1859年发现甲壳素溶于有机酸这一重要化学性质,这为人们初步了解甲壳素开启了一扇大门。再次,从二十世纪六十年代起,世界各国开始广泛关注甲克素,有关甲壳素的研究也逐渐变得活跃起来。比如在1982年,日本将甲克素列为"1982~1992"十年开发计划,并且在1984年拨款50亿美元用于13所知名大学研究和开发利用甲壳素。 最后,经过不断探索和科学研究,华盛顿大学的学者于1986年首次发现甲克素具有生理活性。该发现引起了人们对甲克素的兴趣,以致于后来其成为甲壳素发展的坚实理论基础。关于甲克素,曾经有人说:"甲壳素是唯一一种被广泛研究和应用的物质。"甚至也有人说:甲壳素是二十一世纪最具研究希望的多糖。 1.2 甲壳素的来源 在绵长的海岸线的滋养下,我国每年都出产大量的海产品、

水产品。同时,庞大的人口基数也使得我国成为消费海产品、水产品的大国。在东南沿海城市,数量繁多的加工厂在加工海产品、水产品时,每天都有大量的虾皮、蟹壳(见表1)等废弃物产生,污染环境的同时也让这些富含甲克素的宝贵资源--虾皮、蟹壳流之于壑,造成极大地浪费。然而,我们可以利用这些废弃物生产出含有甲壳素及其衍生物的一系列用品。目前的研究发现表明,甲克素是一种应用极其广泛的化学物品,它比纤维素有更大工业价值和用途。现在甲克素已广泛应用于国防、医疗、化工、食品等各个领域。另外,借助于我国独特的海洋资源优势和原料价格优势,国内甲克素的生产成本普遍较低,成本优势使得甲壳素及其衍生物在市场竞争中极具价格优势。广泛的应用领域催生出甲克素巨大的市场需求,而投资风险小、原料成本低等优点也让众多厂家大量生产甲克素及其衍生物。因此,可以说以甲克素为中心的利益链已经越来越紧密。在甲克素及其衍生物系列产品的生产过程中,经济效益会从不同方向流向生产厂家、普通百姓,而最重要的是能减少环境污染,保护自然环境,大大显现良好的社会效益。 1.3 甲壳素及其衍生物的研究意义 甲壳素的独特之处在于它是自然界中一种带正电荷的天然高分子材料,而且只能通过生物法降解。根据国外诸多研究机构的最新研究,甲壳素在调节生物体特别是人体方面具有重要作用,如在增强免疫、保护胃肠道、降血压、降血脂等有着非常好的效果,在医学界已经开始临床使用。壳聚糖是甲壳素的N-脱乙酰基衍生物,具有生

产几丁质酶的筛选及活力测定

产几丁质酶的筛选及活力测定 一、实验材料 1.菌种:白僵菌,或其他菌种及土壤采样等(菌种接种于PDA斜面上,28℃,80%RH 培养14 d后分别置于4℃和20℃备用。) 2.试剂:DNS试剂:(称取3,5-二硝基水杨酸3.15 g,加水500 mL。,搅拌5 s,水浴至45。然后逐步加入100 mL 0.2g/mL的氢氧化钠溶液,同时不断搅拌。直到溶液清澈透明(注意:在加入氢氧化钠过程中,溶液温度不要超过48℃)。再逐步加入四水酒石酸钾钠91.0 g苯酚2.5 g和无水亚硫酸钠2.5 g。继续45"C水浴加热,同时补加水300 mL,不断搅拌,直到加入的物质完全溶解。停止加热,冷却至室温后,用水定容至1000 mL。用烧结玻璃过滤器过滤,取滤液,储存在棕色瓶中,避光保存。室温下存放7 d后可以使用。) 几丁质酶基础培养基(g/L):葡萄糖5.09,蛋白胨5.09,KH2P04、KCI、MgS04·7H20各0.59,FeS04·2H20 0.1 g,pH 7.0。 几丁质酶诱导培养基(g/L):蛋白胨5.09,KH2P04、KCI、MgS04·7H20各0.59,ZnS04·7H202 0.01 g,胶体几丁质10 ml,pH 7.0。(胶体几丁质固体培养基。0.5 g K2HPO4,0.5 gKH2PO4,0.5 g MgSO4·H2O,0.1 g FeSO4·7H2O,0.1 gZnSO4·7H2O 500 ml 1%胶体几丁质,500 ml蒸馏水,15 g 琼脂,pH7.2,121℃灭菌15 min,冷却至50℃左右倒平板) 马铃薯培养基(PDA);去皮的马铃薯200 g切块,沸水煮30 min,纱布过滤,20 g蔗糖,209琼脂,加热至全部溶解,定容至1 L。

(行业分析)甲壳素行业分析

甲壳素行业分析 甲壳素是一种多糖类生物高分子,在自然界中广泛存在于低等生物菌类,藻类的细胞,节支动物虾、蟹、昆虫的外壳,软体动物(如鱿鱼、乌贼)的内壳和软骨,高等植物的细胞壁等,甲壳素每年生命合成资源可达2000亿吨,是地球上仅次于植物纤维的第二大生物资源,是人类取之不竭的生物资源。 甲壳素是自然界中唯一“带正电荷的天然活性产物”,被誉为除糖类、蛋白质、脂肪、维生素、矿物质之外的“人体第六生命要素”,在人体的生理活动中起到非常重要的作用。广泛用于食品、医药、化妆品、生物工程、造纸、化工、农业、饲料、纺织、印染、卷烟、污水处理等领域。 自20世纪80年代以来,在全世界范围内掀起开发甲壳素、壳聚糖的研究热潮后,世界各国都在加大甲壳素、壳聚糖的开发力度,日本更是走在各国的前列。在美国、韩国、印度、荷兰、挪威、加拿大、波兰、法国等都已能生产。自然界中每年生物合成的甲壳素约有10亿吨左右,是仅次于纤维素的天然高分子化合物,也是地球上最丰富的有机物之一。 甲壳素应用 甲壳素的应用范围十分广泛,产品大致可分为食品级和工业级两个方面。食品级产品可作为食品添加剂、保健功能食品等;工业级产品的用途则更为广泛,可广泛用于农业、纺织、工业助剂等方面,目前市场上已经出现添加甲壳素的内衣。而甲壳素的衍生物的应用范围

则更加广泛,还可用于医用敷料等新材料的用途,另外国内现有研究人员研究使用甲壳素系列产品制成人造眼角膜。 1、食品工业 1.1 食品添加剂:如食品结构形状的控制,优化食品的风味,改善食品的流动性,控制粘度,增加食品中的纤维含量等。壳聚糖与酸性多糖反应,生成壳聚糖的酸性多糖络盐,此络盐呈肉状组织纤维,可作为组织形成剂,与猪肉、牛肉、鱼和禽肉等混合,制成优质和低热量的填充食品,也可通过添加香料、调料和色素等制成各种人造肉,供既喜欢吃肉又不能吃肉的人食用;可作为增稠剂和稳定剂用于蛋黄酱、花生酱芝麻酱、奶油代用品、含沙司罐装食品等;还可以作为调味品、豆腐凝固剂等。 1.2 功能原辅料:如功能性食品包括降酸食品、减肥食品、肠内微生物群调节食品、补充微量元素食品,抑菌保鲜剂、可食性包装材料或缓释材料等。 1.3 液体处理剂:饮用水的净化,从废水中回收蛋白质,饮料及酒类的澄清,如澄清糖汁、净化糖蜜、果酒和果汁的澄清,果汁脱酸和防止醋沉淀,降低液体中的总固体含量等。 2 医疗卫生 甲壳素在医疗卫生方面的用途多以衍生物的形式应用,例如脱乙酰甲壳素等。 2.1 缝合线

1293462556几丁质酶

几丁质酶(chitinase)是以几丁质(chitin)为作用底物的水解酶。几丁质又称甲壳素或甲壳质,存在于节肢动物、线虫和软体动物的体壁、真菌细胞壁(除卵菌)和一些藻类等生物的细胞壁中。在昆虫中,几丁质是围食膜及体壁的主要组成成分之一,通过几丁质酶对其有规律地降解以保证昆虫正常生长发育。如果编码该酶的基因在不适当的时候表达或该表达时未表达,都会对昆虫造成伤害。由于植物中不含几丁质,因此在植物害虫防治中,昆虫几丁质是几丁质酶的一个极具吸引力的作用靶标。 一、昆虫几丁质酶生物化学与生理作用 昆虫几丁质酶存在于中肠、蜕皮腺及某些昆虫的毒腺中,是一种糖蛋白,可以水解昆虫体壁和中肠中的几丁质,酶切位点通常随机发生在链中间的任何一个部位,其最终产物是可溶低分子量的GlcNAC寡聚物。昆虫蜕皮时约有90%的几丁质被降解,几丁质酶和几丁质之间的作用是一种动态过程,包括经过几丁质结合区(CBD)的吸附过程、水解过程、解吸附作用及活性催化区在作用底物表面的配置过程。昆虫几丁质酶除能降解几丁质外,还担负许多重要生理功能,如昆虫肠道组织中的几丁质酶具有分解肠内和围食膜的几丁质和消化作用。昆虫几丁质酶分泌到肠道中,以无活性酶原形式存在,在需要时被胰蛋白酶激活而降解围食膜。蜕皮腺中的几丁质酶可以调节昆虫在生长发育中周期性蜕皮并合成新表皮。毒腺中的几丁质酶有助于毒腺物质在取食对象的组织中扩散渗透。 二、昆虫几丁质酶分子特征 1993年,编码昆虫几丁质酶的cDNA序列首次从烟草天蛾Manduca sexta中克隆出来。目前已克隆得到烟草天蛾、家蚕Bombyx mori和美国白蛾Hyphantria cunea等十几种昆虫的几丁质酶cDNA序列。这些克隆的基因主要集中在鳞翅目昆虫中,双翅目、鞘翅目和膜翅目仅有少数几丁质酶基因被克隆的报道。昆虫几丁质酶分子量在40~85kDa之间,比植物几丁质酶(25~40kDa)和细菌几丁质酶(20~60kDa)大。酶活性范围为pH4~8,等电点在5~7之间,大都属于18家族几丁质酶。昆虫几丁质酶为多结构域蛋白,一般都包含信号肽区、一个或多个N-端催化区、富含丝氨酸和苏氨酸(S/T)的糖基化位点区(linker区)、一个或多个fibronectin-like区和C-端富含半胱氨酸(Cys)的几丁质结合区(CBD)。但不同昆虫的几丁质酶,其多区结构有所不同,如一种寄生蜂Chelonus sp.的几丁质酶大小为52kDa,有一个富含丝氨酸和苏氨酸的区域,但缺少C-端富含半胱氨酸的区域。这些结构域构成上的变化以及氨基酸序列的不同导致了昆虫几丁质酶在最适pH、催化活性、对几丁质的亲合力及稳定性方面的差异。昆虫几丁质酶的多个结构区独自发挥功能,互不影响,其中N-端催化区序列具有保守性,决定酶的催化活性。连接N-端催化区和几丁质结合区的linker区,是经过O-位高度糖基化修饰,而催化区只是适度的N-位糖基化修饰,linker区使几丁质酶易于分泌到细胞外,并且在有蛋白水解酶存在的情况下,保持几丁质酶的稳定性。几丁质结合区(CBD)基本功能是使几丁质酶结合不溶性的底物并提高降解效率。具有多个CDB区时,能增强昆虫几丁质酶对大分子不溶底物的结合能力及作用活性,提高催化区在水解不溶性底物时的催化效率,linker区也可能影响碳水化合物结合区的功能。昆虫几丁质酶的CBD约为65个氨基酸,且不同的昆虫几丁质酶CBD序列有高度的相似性,其中6个Cys最为保守,存在于所有昆虫几丁质酶的CBD中。研究表明, 几丁质酶的活性仅与活性催化区有关,而昆虫几丁质酶与体壁和中肠几丁质的相互作用依赖于几丁质结合区和活性催化区同等、共同的作用。昆虫几丁质酶中有几个重要的氨基酸残基保守位点:W145,D144,E146和D142。W145维持几丁质酶催化区域结构,对酶的催化活性产生重要影响。如以甘氨酸替代则活性完全丧失,但是W145对几丁质酶与几丁质之间的结合并不是必需的。E146在水解中起酸碱催化剂的作用,D144维持一种电离平衡,D142影响几丁质酶最适pH值,该位点的突变可使几丁质酶最适PH由碱性变为酸性。三、昆虫几丁质酶基因的体内表达 昆虫几丁质酶的表达受蜕皮激素的诱导,而保幼激素抑制其表达。研究表明,在没有几丁

甲壳素酶学研究现状

《生物工程进展》2000,Vol.20,No.5 甲壳素酶学研究现状 夏文水 吴焱楠 (无锡轻工大学食品学院,无锡 214036) 摘要 本文介绍了甲壳素在生物合成和分解代谢过程中所涉及的相关酶,如甲壳素合成酶、甲壳素水解酶和其它相关酶,讨论了它们在分离纯化、结构鉴定、作用机制与模型、酶的固定化、基因工程以及应用等方面的研究现状和进展,对甲壳素的研究开发以及相关领域具有理论和实际意义。 关键词 甲壳素酶学 甲壳素合成酶 甲壳素水解酶 甲壳素脱乙酰化酶 前言 甲壳素(chitin)的生物合成和分解代谢是在甲壳素相关酶的催化下进行的。这些酶存在于动物、植物和微生物中,在生物体内控制着各种生理功能,如机体保护和支持、防御机制、致病性、消化作用和生态平衡。近几年来,对这些酶的研究日益增多并十分活跃,1993年5月在意大利召开了首届甲壳素酶学(chitin enzymology)国际学术讨论会,第二届会议也已于1996年5月在意大利召开。这表明甲壳素酶学研究正在受到科学家们的普遍关注和重视。今天甲壳素酶学研究比起甲壳素研究中其它专题进展更快,已成为甲壳素学(chitinology)中的一个重要分支[1]。 甲壳素酶学涉及生态学、动物学、生物学、医学、生物技术、农业、化学等学科领域。甲壳素相关酶主要包括甲壳素合成酶、甲壳素水解酶和其它相关酶。本文将介绍这些酶在分离纯化、结构鉴定、作用机制与模型、酶的固定化、基因工程以及应用等方面的研究现状和进展。 1 甲壳素合成酶 甲壳素的生物合成主要由甲壳素合成酶(chitin synthesase,ES2.4.1.16)控制,将分散在细胞质中的N2乙酰葡糖胺(N2acetylglucosamine,G LcNAc)聚合成长链甲壳素。此酶存在于细胞质或细胞膜附近的液泡中,本身为一种酶原,需经位于细胞膜附近的特殊蛋白酶活化,才具有催化活力[2]。甲壳素合成酶是一种糖蛋白,在活性状态时非常不稳定,在其活化过程中二价金属离子(如Mg++和Mn++)是至关重要的,且受反应物尿苷二磷酸N2乙酰葡糖胺(uri2 dine2diphospho2G LcNAc UDP2G LcNAc)、G LcNAc 和N2乙酰甲壳二糖(N2diacetylchitobiose)所活化,缺乏底物该酶将发生不可逆失活,产物尿苷二磷酸UDP对其具有很强抑制作用[3]。 甲壳素合成酶因与脂肪和蛋白质结合力强,难以被分离和纯化。目前,已从酿酒酵母、担子菌、灰盖鬼伞(Copri nus ci nereus)和鲁氏毛霉(M ucor rouxii)的细胞壁组成中分离出部分纯化的甲壳素合成酶[4]。最近一个重要的进展就是Machida和Saito从灰绿犁头霉(A bsi dia glauca)中纯化得到30K Da的甲壳素合成酶的酶原,当被胰蛋白酶(trypsin)部分降解后转变为一种28.5K Da的活性多肽[5]。这个结果的意义在于首次清楚地证实了甲壳素合成酶与激活蛋白酶之间的相互作用,向阐明甲壳素合成酶的作用机制迈进了一步。 甲壳素合成酶除合成甲壳素外,也与甲壳素脱乙酰酶(chitin deacetylase)共同催化合成壳聚糖(chitosan)。首先UDP2G LcNAc受甲壳素合成酶催化进行聚合反应以生成甲壳素,然后脱乙酰酶再与甲壳素结合发生脱乙酰反应而生成壳聚糖[6]。在细胞表面究竟是合成甲壳素还是壳聚糖,主要取决于甲壳素合成酶在细胞膜上排列的紧密程度。在鲁氏毛霉细胞表面合成甲壳素过程中,若甲壳素合成酶紧密排列在细胞膜上时,形成的甲壳素会结晶化成纤维状,对脱乙酰酶的抵抗性较高;反之,分散式的甲壳素合成酶合成较松散的甲壳素链或为过渡态的链状聚合物,对脱乙酰酶具有较高的亲和性,结果生成壳聚糖[7]。 此外,与许多糖酶一样,甲壳素合成酶具有形成新的糖苷键的转糖苷作用也已得到证实,该酶可使四聚体或五聚体聚合成六聚体和七聚体[8]。 2 甲壳素水解酶 甲壳素被水解成G LcNAc是由甲壳素水解酶 21

产几丁质酶酵母菌的筛选与鉴定

第35卷第8期东 北 林 业 大 学 学 报Vol.35No.8 2007年8月JOURNAL OF NORT HE AST F ORESTRY UN I V ERSI TY Aug.2007 产几丁质酶酵母菌的筛选与鉴定1) 惠丰立 冯金荣 杨柯金 文祯中 (南阳师范学院,南阳,473061) 摘 要 从番茄果实表面筛选到1株产几丁质酶酵母菌株CY-6,该菌株产生的几丁质酶对番茄镰刀菌果腐 病菌(Fusarium oxysporum)有较强的抗菌活性并具有较广的抗菌谱。形态及生理生化特征测定结果表明:菌株CY- 6与伊萨酵母属(Issatchenkia)中的陆生伊萨酵母(I.terricola)种的特征基本一致;测定了该菌株的26S r DNA D1/ D2区域序列并根据26S r DNA构建了系统发育树;在系统发育树中,菌株CY-6与陆生伊萨酵母形成一个类群, 序列同源性高达99.6%。因此,将菌株CY-6鉴定为陆生伊萨酵母。 关键词 菌株CY-6;几丁质酶;26S r DNA;系统发育 分类号 S476 Screen i n g and I den ti f i ca ti on of Ch iti n a se2Produc i n g Y ea st/Hui Fengli,Feng J inr ong,Yang Kejin,W en Zhenzhong (College of L ife Science and Technol ogy,Nanyang Nor mal University,Nanyang473061,P.R.China)//Journal of Northeast Forestry University.-2007,35(8).-66~67,70 A chitinase2pr oducing yeast is olate CY26was screened fr o m the surface of t o mat o fruits.The chitinase pr oduced by strain CY26could str ongly inhibit the gr o wth of Fusariu m oxysporu m and exhibited inhibiti on against a wide2range of p lant pathogenic fungi.Mor phol ogical,physi ol ogical and bi oche mical characteristics of strain CY26sho wed that the characteristics of strain CY26 were essentially consistent with those of Issatchenkia terricola.The analysis of26S r DNA D1/D2do main sequence fr o m strain CY26suggested that strain CY26was clustered t ogether with I.terricola in the phyl ogenetic tree,and the sequence identity be2 t w een strain CY26and I.terricola was99.6%.The result indicates that strain CY26bel ongs t o I.terricola. Key words Yeast CY26;Chitinase;26S r DNA;Phyl ogenetic analysis 果蔬采后的病害主要由病原真菌引起[1]。长期以来,使用化学合成杀菌剂一直是控制果蔬采后病害发生的主要手段之一,但是随着人类对食品安全、环境保护和克服有害生物抗性等问题的日益重视,化学杀菌剂的使用正受到越来越严格的限制[2-3]。因此,研究和开发控制果蔬采后病害的新方法,对于降低腐损率、控制农残量、确保食用安全和提高产品国际竞争力具有十分重要的意义。 几丁质酶(Chitinase,Ec.3.2.14)被普遍认为是一种与重寄生、抗病防卫反应有关的酶类,许多拮抗菌通过产生几丁质酶来降解病原菌细胞壁[4]。因此,几丁质酶产生菌在果蔬采后病害防治方面有巨大的应用潜力。近年来,酵母菌分泌的胞外几丁质酶在果蔬采后病害生物防治中的作用已引起人们的重视。范青等人[5]利用膜毕赤酵母(Pichia m e m branefaciens Hansen)和季也蒙假丝酵母(Candida guillier m ondii)防治桃采后的真菌病害,发现这2种酵母菌产生的几丁质酶对桃软腐病菌(Rhizopus stolonifer(Ehrenb:Fr)Vuill)孢子萌发有明显的抑制作用。本研究从番茄果实表面分离筛选到1株产几丁质酶酵母菌株CY-6,该菌株产生的几丁质酶对番茄镰刀菌果腐病菌(Fusarium oxysporum)有较强抑制作用,并对其进行了形态、生理生化鉴定及基于26S r DNA序列的系统发育分析。 1 材料与方法 菌株CY-6是从番茄果实表面分离得到;番茄镰刀菌果腐病菌(Fusarium oxysporum)及其供试病原菌由本实验室分离保存。 1)河南省自然科学基金项目(0411032300)。 第一作者简介:惠丰立,男,1965年7月生,南阳师范学院生命科学与技术学院,教授。 收稿日期:2006年10月17日。 责任编辑:潘 华。 固体几丁质培养基:胶状几丁质15.0g、酵母粉5.0g、(NH 4 ) 2 S O41.0g、M gS O4?5H2O0.3g、KH2P O41.36g、H2O 1L,pH为4.5;液体几丁质培养基:固体几丁质培养基不加琼 脂;P DA培养基:马铃薯200g、葡萄糖15g、琼脂13g、H 2 O1mL。 菌株的分离筛选:从市场上购买新鲜的苹果、梨、桃、番茄等水果样品,分别取果皮组织5g,加入45mL液体几丁质培养基中,28℃180r/m in振荡培养48h。取0.1mL稀释一定倍数的稀释液均匀涂于固体几丁质平板上,28℃培养6d后,挑取具有明显透明圈的菌株纯化,置于4℃保存。将初筛菌株接种于50mL液体几丁质培养基中,28℃180r/m in摇瓶发酵72h后,测定发酵液几丁质酶活力。 几丁质酶活性测定:参照Ant oni o和Masarus方法[6-7]。1mL胶体几丁质与稀释的1mL酶液放于50℃水浴保温1h,上清液中的还原糖按DNS法测定。一个酶活力单位定义为每小时释放相当于100μg N-乙酰氨基葡萄糖的还原糖所需的酶量。 酶抗菌活性测定:采用打孔法[8]。将供试病原菌接种于直径为9.0cm的P DA平板上,28℃培养2~4d,在菌苔周围1.0cm处打3个孔(d=0.5cm),孔中加入50μL质量浓度分别为100、200mg/L的几丁质酶,对照以等量的无菌水代替,继续培养2~3d,观察抑菌情况。 形态和培养特征:参照微生物学实验手册[9]对菌株CY-6进行形态和培养特征观察。 生理生化特征:参照微生物学实验手册和酵母菌的特征与鉴定手册[9-10],对菌株CY-6进行糖发酵、碳源同化、氮源同化、无维生素培养基生长等生理生化鉴定。 26S r DNA序列分析:参照白逢彦等方法[11]提取菌株CY-6基因组DNA,用引物NL1(5’-GCA T AT C AA T AA GCG G AGG AA AAG-3’)和NL4(5’-GGT CCG TGT TTC AAG

甲壳素, 壳聚糖开发和研究进展

甲壳素, 壳聚糖开发和研究进展 摘要 作为一种资源丰富, 用途广泛的天然高分子化合物, 甲壳素?壳聚糖的开发研究和应用范围越来越受到重视, 本文对该领域开发和研究进展进行简要评述。 关键词甲壳素; 壳聚糖 甲壳素(Chitin) 又名甲壳质、几丁质、壳多糖、聚乙酰氨基葡萄糖等[ 1 ] , 是1, 4—连接 的2—乙酰基—2—脱氧—B—D —葡萄糖, 广泛存在于昆虫、甲壳纲动物外壳及真菌细胞壁中[ 2 ] , 是自然界中仅次于纤维素的多糖。在甲壳素分子中, 因其内外氢键的相互作用, 形成了有序的大分子结构, 溶解性能很差, 这限制了它在很多方面的应用。就目前的研究情况, 除了少量用作医用敷料外, 在其它方面的应用很少, 而甲壳素经脱乙酰化处理的产物—壳聚糖(Chitosan) , 却由于其分子结构中大量游离氨的存在, 溶解性能大大改观, 具有一些独特的物化性质及生理功能, 在医药、食品、化妆品、农业及环保诸方面具有广阔的应用前景。本文将介绍甲壳素?壳聚糖产品的开发研究进展情况。 1 甲壳素?壳聚糖产品的开发研究概况 自80 年代以来, 在全球范围内形成了甲壳素?壳聚糖的开发研究热潮, 各国都加大了对甲 壳素?壳聚糖的开发研究力度, 其中又以日本走在各国的前列。日本政府曾投资60 亿日元委托数十家高校及科研机构历时10 余年进行甲壳素?壳聚糖产品的开发研究, 取得了大量的科研成果, 并将部分成果实现了产业化, 仅以壳聚糖为主要原料的保健品就有20 个左右的品种上市。 我国早在50 年代就对甲壳素的制备及其应用进行了研究。1958 年起, 国内首先将乙酰化甲壳素应用于印染工业, 从1977 年起, 每隔几年召开一次关于甲壳素及壳聚糖的国际会议, 极大的促进了这方面的研究。进入90 年代, 中国对于甲壳素?壳聚糖资源的开发研究也越来越重视, 如在甲壳素?壳聚糖的酶法降解方面、壳聚糖的溶液性质、壳聚糖净化用作药用絮凝剂、壳聚糖降解制备低聚壳聚糖及更低分子量的水溶性壳聚糖等方面进行研究, 现又将研究领域扩展到甲壳素?壳聚糖在化妆品、医药敷料等方面的应用研究, 尤其是壳聚糖的高分子微包囊药物释放体系, 成为新一轮研究的热点。

几丁质酶活性检测试剂盒说明书 可见分光光度法

几丁质酶活性检测试剂盒说明书可见分光光度法 注意:正式测定前务必取2-3个预期差异较大的样本做预测定。 货号:BC0820 规格:50T/24S 产品内容: 提取液:液体80mL×1瓶,4℃保存。 试剂一:液体40mL×1瓶,4℃保存,使用前摇匀。 试剂二:液体15mL×1瓶,4℃保存。 标准品:粉剂×1瓶。5mg N-乙酰氨基葡萄糖,4℃保存。临用前加入2.27mL蒸馏水配成10μmol/mL 的标准溶液。 产品说明: 几丁质酶主要存在于虾、蟹、昆虫等甲壳类动物的外壳与软体动物的器官(例如乌贼的软骨),以及真菌类的细胞壁中。而几丁质酶(EC3.2.1.14)可催化几丁质水解,具有抵御真菌侵染的作用,成为抗真菌病害的研究热点。 几丁质酶水解几丁质产生N-乙酰氨基葡萄糖,进一步与3,5-二硝基水杨酸产生棕红色化合物,在540nm 处有特征吸收峰,吸收值增加速率反映了几丁质酶的活性。 自备实验用品及仪器: 天平、水浴锅、离心机、可见分光光度计、1mL玻璃比色皿、研钵/匀浆器、蒸馏水。 操作步骤: 一、粗酶液提取 1.组织:按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.15g组织,加入1.5mL 提取液)进行冰浴匀浆,然后10000pm,4℃离心20min,取上清,置冰上待测。 2.真菌:按照细胞数量(104个):提取液体积(mL)为500~1000:1的比例(建议750万细胞加入1.5mL 第1页,共3页

提取液),冰浴超声波破碎细胞(功率300w,超声3s,间隔7s,总时间3min);然后12000rpm,4℃,离心20min,取上清置于冰上待检。 3.培养液:直接测定。 二、测定操作表: 1、可见分光光度计预热30min。波长调至540nm,蒸馏水调零。 2、将标准溶液稀释为4、 3、2.5、2、1μmol/mL的标准溶液备用。 3、在EP管中分别加入: 试剂名称测定管对照管标准管空白管 样品(mL)0.50.5--标准溶液(mL)--0.5- 蒸馏水(mL)---0.5 试剂一(mL)0.5-0.50.5 混匀,37℃水浴1h,沸水浴5min。 试剂一(mL)-0.5-- 8000rpm常温离心10min,分别取上清液0.8mL于新的EP管中。 试剂二(mL)0.20.20.20.2 混匀,沸水浴反应10min,立即置于冰上至室温。测定每管在540nm下的吸光度,记为A测定管、A 对照管、A标准管、A空白管。计算ΔA测定=A测定管-A对照管,ΔA标准=A标准管-A空白管。 三、计算公式 1、标准曲线的绘制: 以ΔA标准为y轴,标准溶液浓度为x轴,绘制标准曲线,得到标准方程y=kx+b。将ΔA测定带入标准方程中,得到x(μmol/mL) 2、几丁质酶活的计算: (1)按照样本重量计算 酶活性定义:37℃下,每g组织每小时分解几丁质产生1μmol N-乙酰氨基葡萄糖的酶量为一个酶活性单位。 几丁质酶活性(U/g鲜重)=x×V样÷(V样÷V样总×W)÷T=1.5×x÷W。 第2页,共3页

甲壳素_壳聚糖的制备与应用

甲壳素/壳聚糖的制备与应用 郭建民1,徐晓军2,李林1 (1.宁波市环境保护科学研究设计院,浙江宁波315010; 2.青岛建筑工程学院,山东青岛266000) [摘要]甲壳素/壳聚糖是一种资源丰富、用途广泛的天然高分子。简介了其物理化学性质及 常见的制备方法;详细介绍了功能化甲壳素/壳聚糖近期的研究状况;综述了甲壳素/壳聚糖的应用;展望了我国甲壳素/壳聚糖资源的开发利用趋势。[关键词]甲壳素;壳聚糖;制备;功能化;应用 [中图分类号]TQ282 [文献标识码]A [文章编号]1006-1878(2004)07-0126-03 甲壳素(chitin )学名为无水-N -乙酰基-D -氨基葡聚糖,是一种重要的天然高分子,其结构与纤维素相似,通常分子量为几百万,是多糖化合物中最重要的一种聚氨基葡萄糖。甲壳素因主要来源于节肢动物如虾、蟹等的甲壳而得名。它也广泛存在于低等植物如真菌、藻类的细胞壁中。据统计,自然界中每年甲壳素的生物合成量在1000kt 以上,可见其自然界储量之丰富。 壳聚糖(chitosan )是甲壳素脱乙酰化而得到的一种生物高分子。由于壳聚糖分子中有大量游离氨的存在,其溶解性大大优于甲壳素,兼具有甲壳素的天然、无毒、生物相容性好与易于降解等优点,所以壳聚糖有十分良好的经济应用价值。人们对壳聚糖的研究十分活跃,其应用领域也不断拓宽。 我国有着丰富的甲壳素资源。充分利用现有资源,结合区域优势,加强对甲壳素的开发研究及产业化是我国甲壳素化学工业发展的必然趋势。 1 甲壳素的提取 目前,甲壳素主要还是从工业废弃的虾、蟹壳中 提取。把甲壳中的甲壳素,蛋白质和无机物质分离开,最后再进行脱色,获得纯净的甲壳素,其工艺流程为:虾蟹壳—水洗—酸浸(6%HCl )—碱煮(10% NaOH )—脱色(KMnO 4)—干燥—甲壳素成品。可见甲壳素的制备过程主要由简单的酸碱处理 工艺组成,技术难度不大。但是以这种传统的工艺制得的甲壳素存在着一些不足,如溶解度不高,溶液过滤性差等。近年来又提出了一些新的方法,使传统工艺得到了改进。如采用浓度递减,循环酸浸以及脱蛋白质交叉工艺制取的甲壳素可以获得较高的粘度。但是在甲壳素的制取过程中,对于动物壳中 的蛋白质和有机肥料的综合利用程度低及工艺过程中排放的废水量大等缺点,仍然是甲壳素制备工艺中需要改进的问题。此外,从蚕蛹壳、蝉和蝇蛹中提取甲壳素都有过系统的报道。 由于壳聚糖还是真菌细胞壁的常见组成部分,因此以微生物发酵来制取壳聚糖也有着巨大的环保意义。陈忻等采用生物发酵放射毛霉为原料制备了壳聚糖。研究表明,在反应温度为28℃,摇床转速为250r/min ,p H 为7.4~7.6,培养时间为45h 的条件下,壳聚糖对菌丝体产率为15.68%,脱乙酰度85%~90%。谭天伟等提出了以发酵工业废菌丝体为原料生产壳聚糖的新工艺。该工艺成本低廉,经济效益可观。 2 甲壳素的功能化改性 活性侧基的存在,赋予甲壳素较之其他多糖更强的功能性,而通过化学修饰在高聚物骨架上引入其他基团,从而改变高分子的物理化学性质,赋予其新的功能,即高分子的功能化。它已经成为甲壳素应用研究的一个热点。甲壳素/壳聚糖的功能化主要是利用分子结构中的羟基/氨基等活性基团,通过对其进行酰化、酯化、交联、醚化等反应来完成。功能化后的甲壳素/壳聚糖的物化性质得到了改善而具有优异的功能。2.1 交联反应 为了使壳聚糖得到很好的应用,需要把它制成[收稿日期]2003-12-18;[修订日期]2004-02-12 [作者简介]郭建民(1977— )男,河北省宣化市人,宁波市环境保护科学研究设计院工程师,硕士,主要从事环保药剂的开发与三废处理技术研究。 ? 621?2004年第24卷 化 工 环 保 ENV IRONMEN TAL PRO TECTION OF CHEMICAL INDUSTR Y

土壤里的根际菌产几丁质酶的定性检测

土壤里的根际菌产几丁质酶的定性检测 1 材料与方法 1.1 供试菌株 土壤中的根际菌。 1.2 培养基和试剂PDA 培养基; 产酶发酵培养基( g/ L ) :NH4NO3 3 g , KH2PO4 2 g , MgSO4 ·7H2O 0.6 g ,FeSO4·7H2O 0.1 g ,胶体几丁质5 g 粉状几丁质制备,pH:5~6 ;胶体几丁质PDA (g/ L) :马铃薯200g ,葡萄糖20 g ,琼脂17 g ,胶体几丁质2 %粉状几丁质制备; 1.3 几丁质酶活性测定 1.3.1 根际菌发酵液的制备将根际菌菌株接种到PDA 培养基平板(直径9 cm) 上,在光照恒温恒湿培养箱25 ℃、60 %湿度培养。按根际菌菌株产酶发酵培养基组分配制液体培养基,以每瓶100 mL分装于250 mL 的摇瓶中,灭菌后备用。把布满根际菌的平板用灭菌水浸泡3~5 min ,用棉签轻轻刮洗下菌体,用脱脂棉或4 层纱布过滤除去菌体,滤液即为孢子悬浮液。根据血球记数板法进行计数,每瓶按6 10mL 孢子量接种5mL ,置于恒温摇床以180 r/ min、27~28 ℃培养一段时间。将发酵液经4 层纱布过滤,滤液再以10 000r/ min 离心30min,弃去沉淀,得到灭菌的发酵上清液。 1.3.2 胶体几丁质PDA 平板透明圈实验胶体几丁质的制备按胶体几丁质PDA 组分制备培养基,并灭菌倒平板备用。在平板的中央用直径0.5 cm 的打孔器打孔,无菌操作。用灭菌枪头吸取40μl 灭菌的

发酵上清液(用孔径为0.20 μm 细菌滤器过滤灭菌) 加到孔中,用密封胶带封口,于恒温箱28 ℃保温,一段时间后开始观察透明圈情况胶体。 1.4 几丁质平板透明圈实验:观察可发现,根际菌发酵上清液在胶体几丁质平板上就可出现清晰的透明圈,透明圈的出现说明发酵液中存在催化分解几丁质的几丁质酶,通过胶体几丁质平板透明圈实验能够检测几丁质酶的存在。

相关文档
最新文档