1997年诺贝尔物理学奖
曾获得诺贝尔奖的八位华人科学家
曾获得诺贝尔奖的八位华人科学家1957年因发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现获诺贝尔物理学奖。
李政道(T sung-Dao Lee,1926年11月24日-),美籍华人物理学家。
1957年,31岁的他与杨振宁一起,以弱作用下宇称不守恒的发现获得诺贝尔物理学奖。
他们的发现由吴健雄的实验证实。
李政道和杨振宁是首两位获诺贝尔奖的中国籍人士。
李政道出生于中国上海,祖籍江苏苏州,李政道曾在苏州东吴附中,江西联合中学等校就读。
因抗日战争,中学未毕业。
1943年在贵阳以同等学力考入迁至贵州的浙江大学物理系,走上物理学之路。
1944年日军进入贵州,浙江大学停学。
1945年转学到在昆明的西南联合大学为二年级生。
1946年赴美进入芝加哥大学,师从费米教授。
1950年获得博士学位之后,与合作者一起从事统计物理的相变以及凝聚态物理的极化子的研究。
1953年,他任哥伦比亚大学助理教授,主要研究工作是在粒子物理和场论领域。
三年后,在他29岁时,成为哥伦比亚大学二百多年的历史上最年轻的正教授。
1984年获得全校级教授这一最高级职称。
至今他仍活跃在物理研究的第一线,不断发表科学论文。
李政道于1962年加入美国国籍。
自从1970年代初,他和夫人秦惠莙开始回中国访问,他为中国的科学和教育事业做了很多贡献。
他向有关方面建议重视科技人才的培养、重视基础科学研究:促成中美高能物理的合作,建议和协助建立北京正负电子对撞机;建议成立自然科学基金;于1980年代设立CUSPEA考试,对优秀本科毕业生提供奖学金赴美攻读物理学博士;建议建立博士后制度;成立中国高等科学技术中心,北京大学和浙江大学的近代物理中心等学术机构。
1996年11月29日李政道的夫人秦惠莙因患肺癌离开人世。
为纪念夫人,1997年李政道及其亲友捐赠30万美元“秦惠莙与李政道中国大学生见习进修基金”,简称莙政基金。
莙政基金现支持北京大学、复旦大学、苏州大学、兰州大学与国立清华大学(台湾)等五所高校的优秀本科学生进行基础领域的科学研究工作,入选的学生则被命名为莙政学者。
历届诺贝尔物理学奖大全
1934年 未颁奖
1935年 J.查德威克(英国)
发现中子
1936年 V.F.赫斯(奥地利)
发现宇宙射线;
C.D.安德森(美国)
发现正电子
1937年 C.J.戴维森(美国)、G.P.汤姆森(英国)
1910年 J.O.范德瓦尔斯(荷兰)
从事气态和液态议程式方面的研究
1911年 W.维恩(德国)
发现热辐射定律
1912年 N.G.达伦(瑞典)
发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置
1913年 H.卡麦林·昂尼斯(荷兰)
发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究
1908年 G.李普曼(法国)
发明了彩色照相干涉法(即李普曼干涉定律)
1909年 G.马克尼(意大利)、 K . F. 布劳恩(德国)
开发了无线电通信
O.W.理查森(英国)
从事热离子现象的研究,特别是发现理查森定律
发现了光电效应定律等
1922年 N.玻尔(丹麦)
从事原子结构和原子辐射的研究
1923年 R.A.米利肯
从事基本电荷和光电效应的研究
1924年 K.M.G.西格巴恩(瑞典)
发现了X 射线中的光谱线
1925年 J.弗兰克、G.赫兹(德国)
历届诺贝尔物理学奖,截至2009年
相关搜索: 物理学奖
1901年 W.C.伦琴 (德国)
发现X 射线
1902年 H.A.洛伦兹、P. 塞曼(荷兰)
研究磁场对辐射的影响
1903年 A.H.贝克勒尔(法国)
发现物质的放射性
历届诺贝尔奖获奖名录10(1990~1999年度)
1990~1999年度诺贝尔奖获奖名录1990年12月10日第九十届诺贝尔奖颁发。
美国科学家弗里德曼、肯德尔、加拿大科学家泰勒因发现夸克的第一个证据而共同获得诺贝尔物理学奖。
美国科学家科里因创立关于有机合成的理论和方法获诺贝尔化学奖。
美国医生默里因成功地完成第一例肾移植手术、美国医生托马斯因开创骨髓移植而共同获得诺贝尔生理学或医学奖。
墨西哥作家帕斯因作品“体现了一种完整的人道主义”获诺贝尔文学奖。
苏联总统戈尔巴乔夫获诺贝尔和平奖。
美国经济学家马克威茨因发展了有价证券理论、美国经济学家米勒因对公司财政理论的贡献、美国经济学家夏普因提出资本资产定价模式而共同获得诺贝尔经济学奖。
1991年12月10日第九十一届诺贝尔奖颁发。
法国科学家热纳因把研究简单系统有序现象的方法,应用到更为复杂物质、液晶和聚合体的组合上作出贡献获诺贝尔物理学奖。
瑞士科学家恩斯特因对核磁共振光谱高分辩方法发展作出重大贡献获诺贝尔化学奖。
德国科学家内尔、扎克曼因发现细胞中单离子道功能,发展出一种能记录极微弱电流通过单离子道的技术而共同获得诺贝尔生理学或医学奖。
南非女作家戈迪默因小说《贵宾》、《七月一家人》和《自然资源保护论者》获诺贝尔文学奖。
缅甸反对党全国民主联盟领导人昆山素季获诺贝尔和平奖。
美国经济学家科斯因揭示交易价值在经济组织结构的产权和功能中的重要性获诺贝尔经济学奖。
1992年12月10日第九十二届诺贝尔奖颁发。
法国科学家夏帕克因发明多线路正比探测器,推动粒子探测器发展获诺贝尔物理学奖。
美国科学家马库斯因对化学系统中的电子转移反应理论作出贡献获诺贝尔化学奖。
美国科学家费希尔、克雷布斯因在逆转蛋白磷酸化作为生物调节机制的发现中作出巨大贡献而共同获得诺贝尔生理学或医学奖。
圣卢西亚作家沃尔科特因以其植根于多种文化的历史想像力作出了光辉的诗作获诺贝尔文学奖。
危地马拉女政治家门楚因为其冲破不同种族、文化和社会疆界所做出的努力获诺贝尔和平奖。
【历届诺贝尔奖得主(九)】1997年物理学奖1
1997年12月10日第九十七届诺贝尔奖颁发。
物理学奖美籍华裔科学家朱棣文、美国科学家菲利普斯、法国科学家科昂·塔努吉因发明了用激光冷却和俘获原子的方法,而共同获得诺贝尔物理学奖。
朱棣文(StevenChu,1948年2月28日-),美国华裔物理学家,生于美国圣路易斯;因“发展了用激光冷却和捕获原子的方法”而获得1997年诺贝尔物理学奖。
现任美国能源部部长。
生平简介朱棣文(1948.2)男,祖籍江苏太仓,生于美国密苏里州圣路易斯。
汉族,1997年获诺贝尔物理学奖。
中国工作的朱棣文科学院外籍院士,美国第56届当选总统奥巴马提名美国能源部长。
工作的朱棣文朱棣文的父亲朱汝瑾是太仓人,母亲李静贞是天津人,他的祖父母也是太仓人。
他们40年代来到美国育有三子,都学有所成。
朱棣文排行老二。
在太仓创建了朱棣文小学,1998年曾经访校一次。
朱棣文1970年毕业于罗切斯特大学,获数学学士和物理学学士学位,1976年获加利福尼亚大学伯克利分校物理学博士学位,后留校做了两年博士后研究,1978年到贝尔电话实验室工作,1983年任该实验室量子电子学研究部主任。
1987年任美国斯坦福大学物理学教授,1990年任该校物理系主任。
1993年6月被选为美国国家科学院院士。
1997年因“发明了用激光冷却和俘获原子的方法”荣获诺贝尔物理学奖,与他同获该奖项的是美国科学家威廉·菲利普斯和一名法国学者。
还曾获费萨尔国王国际科学奖。
1998年6月5日,当选为中国科学院外籍院士。
2004年6月被任命为位于加利福尼亚州的美国能源部下属的劳伦斯·伯克利国家实验室主任。
2008年获得美国第56届当选总统奥巴马提名出任美国能源部长。
朱棣文高中毕业时,父亲本不赞成他选择物理学,认为善於绘画的他应该去学建筑,因为物理学界高手太多,不易出成就,而且做实验是枯燥无味的,然而朱棣文却对物理学情有独钟,学问做得津津有味。
从1983年起朱棣文开始从事原子冷却技术的研究,1985年发表第一篇学术论文。
【历届诺贝尔奖得主(九)】1997年物理学奖2
同时他在行政管理上亦有相当经验,曾在斯坦福大学领导物理学系,又曾在贝尔实验室领导电子化研究工作。
自2004年起,他出任劳伦斯·伯克利国家实验室的负责人,该实验室每年预算规模6.5亿美元,辖下有4000名员工。
致力于环保工作朱棣文在职业生涯中一直致力于环保工作。
掌管劳伦斯·伯克利实验室后,朱棣文即把研究重点转到新型的生化能源、人工光合作用和太阳能等一系列“绿色工程”上。
此外,他还大力提倡政府引进措施,减少排放温室气体。
对于把环保理念引进家庭生活,朱棣文曾说每户国民只需投资1000美元成本就可提升能源效益,可惜的是民众多宁愿把钱花在花岗石的厨台上。
去年夏天,朱棣文在美国拉斯维加斯举行的全国清洁能源会议上说,除非能源工作由专业人士而非说客承担,否则提高能源利用效率、降低能源使用成本的目标将难以实现。
朱棣文是继1957年的杨振宁、李政道,1976年的丁肇中和11年前的李远哲之后,第五位获诺贝尔奖的华裔科学家。
在他之后,还有两位华人——普林斯顿大学教授崔琦和英美双国籍华裔高锟又获诺贝尔物理学奖。
七位华裔获奖人中,除李远哲和钱永健为诺贝尔化学奖外,其余皆是物理奖。
年表朱棣文1948年2月28日,出生于美国密苏里州的圣路易市,祖籍中国江苏省太仓县(今太仓市)朱棣文1968年获颁罗彻斯特大学斯托达数学奖1970年罗彻斯特大学斯托达物理奖及伍德罗?威尔逊奖学金1970-1974年获颁国家科学基金会博士预备生奖学金1976-1978年在加州大学伯克利分校做博士后研究1977-1978年获颁国家科学基金会博士后奖学金1978年担任美国物理学会理事1978-1983年担任电磁现象研究贝尔实验室研究人员1983-1987年担任美国电话、电报公司贝尔实验室量子电子学研究部主任1987年获颁美国物理学会在激光光谱领域的布洛依达奖1987年担任斯坦福大学物理和应用物理教授迄今1987-1988年担任哈佛大学莫里斯洛伯讲师1989年担任实验天体物理联合研究所特邀访问学者1990年担任美国光学学会理事及法国学院访问教授1990年受邀美国物理学会和美国物理教师学会的理直脱迈耶纪念奖讲演1990-1993年担任斯坦福大学物理系主任1992年担任美国艺术和科学院院士1993年获颁费塞尔国王国际科学奖及担任美国国家科学院院士1994年获颁美国物理学会在激光科学领域的亚瑟萧洛奖及美国光学学会的威廉梅格斯奖1997年朱棣文因“发明了用激光冷却和俘获原子的方法”荣获诺贝尔物理学奖。
解读诺贝尔物理学奖系华人拿奖最多诺奖奖项
按照规定,一项诺贝尔奖最多可颁给两项不同的成就,一份奖金最多由3人分享。
截至2016年,在诺贝尔物理学奖项中,已有47次颁给一个人、32次颁给两人、31次颁给3人。
据统计,诺贝尔物理学奖的获奖者平均年龄为55岁。
其中年龄最大的是雷蒙德·戴维斯,他在2002年以88岁的年龄得奖;年龄最小的是劳伦斯·布拉格。
1915年,小布拉格与父亲合作,靠“拼爹”以25岁的“稚嫩”年龄与父亲共同获得诺贝尔物理学奖的殊荣。
此外,诺贝尔物理学奖获奖者中有4对父子、两名女性及一对夫妻,即著名的居里先生与夫人。
解读诺贝尔物理学奖系华人拿奖最多诺奖奖项物理学奖在全球华人诺奖成绩单里占据重要位置。
据统计,自诺贝尔奖1901年首次颁奖以来,物理学奖是华人拿奖最多的奖项,共有6位华人科学家获此殊荣。
诺贝尔物理学奖是诺贝尔各奖项中颁发次数最多的,也是华人科学家获奖最多的诺贝尔奖项。
近年来获奖的物理学理论,往往显得“高冷神秘”,如“上帝粒子”和“拓扑相变”理论。
——物理学奖知多少?110次颁发203人获奖最年轻获奖者靠“拼爹”诺贝尔物理学奖是根据瑞典著名化学家阿尔弗雷德·贝恩哈德·诺贝尔的遗嘱,以其部分遗产作为基金创立的5个奖项之一,旨在奖励对人类物理学领域里作出突出贡献的科学家。
据诺贝尔奖官网统计,1901年至2016年间,诺贝尔奖各类奖项共计颁发579次,其中物理学奖颁发次数最多,为110次。
该奖项共颁发给了204人次。
约翰·巴丁曾经两次获得这一殊荣,因此事实上共有203人获得过这一奖项。
PRIZE IS NOT FAR AWAY|封面故事|◎ 编辑|刘伟鹏| Grand Garden of Science | 23——华人收获颇丰摘下6座物理学奖杯系华人拿奖最多的诺奖奖项物理学奖在全球华人诺奖成绩单里占据重要位置。
据统计,自诺贝尔奖1901年首次颁奖以来,物理学奖是华人拿奖最多的奖项,共有6位华人科学家获此殊荣。
历年诺贝尔物理学奖得主(1901-2018)
历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位)1902年亨得里克·洛仑兹荷兰“关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰1903年亨利·贝克勒法国“发现天然放射性”皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的共同研究”玛丽·居里法国1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩)1905年菲利普·爱德华·安东·冯·莱纳德德国“关于阴极射线的研究”1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究"1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究”1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法”1909年古列尔莫·马可尼意大利“他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律”1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀”1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成”1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象”1915年威廉·亨利·布拉格英国“用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射”1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展”1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象”1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现”1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现”1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作”1924年卡尔·曼内·乔奇·塞格巴恩瑞典“他在X射线光谱学领域的发现和研究”[3]1925年詹姆斯·弗兰克德国“发现那些支配原子和电子碰撞的定律”古斯塔夫·赫兹德国1926年让·佩兰法国“研究物质不连续结构和发现沉积平衡”1927年阿瑟·康普顿美国“发现以他命名的效应”查尔斯·威耳逊英国“通过水蒸气的凝结来显示带电荷的粒子的轨迹的方法”1928年欧文·理查森英国“他对热离子现象的研究,特别是发现以他命名的定律”1929年路易·德布罗意公爵法国“发现电子的波动性”1930年钱德拉塞卡拉·文卡塔·拉曼印度“他对光散射的研究,以及发现以他命名的效应”1932年维尔纳·海森堡德国“创立量子力学,以及由此导致的氢的同素异形体的发现”1933年埃尔温·薛定谔奥地利“发现了原子理论的新的多产的形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程)保罗·狄拉克英国1935年詹姆斯·查德威克英国“发现中子”1936年维克托·弗朗西斯·赫斯奥地利“发现宇宙辐射”卡尔·戴维·安德森美国“发现正电子”1937年克林顿·约瑟夫·戴维孙美国“他们有关电子被晶体衍射的现象的实验发现”乔治·汤姆孙英国1938年恩里科·费米意大利“证明了可由中子辐照而产生的新放射性元素的存在,以及有关慢中子引发的核反应的发现”1939年欧内斯特·劳伦斯美国“对回旋加速器的发明和发展,并以此获得有关人工放射性元素的研究成果”1943年奥托·施特恩美国“他对分子束方法的发展以及有关质子磁矩的研究发现”1944年伊西多·艾萨克·拉比美国“他用共振方法记录原子核的磁属性”1945年沃尔夫冈·泡利奥地利“发现不相容原理,也称泡利原理”1946年珀西·威廉斯·布里奇曼美国“发明获得超高压的装置,并在高压物理学领域作出发现”1947年爱德华·维克托·阿普尔顿英国“对高层大气的物理学的研究,特别是对所谓阿普顿层的发现”1948年帕特里克·梅纳德·斯图尔特·布莱克特英国“改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现”1949年汤川秀树日本“他以核作用力的理论为基础预言了介子的存在”1950年塞西尔·弗兰克·鲍威尔英国“发展研究核过程的照相方法,以及基于该方法的有关介子的研究发现”1951年约翰·道格拉斯·考克饶夫英国“他们在用人工加速原子产生原子核嬗变方面的开创性工作”欧内斯特·沃吞爱尔兰1952年费利克斯·布洛赫美国“发展出用于核磁精密测量的新方法,并凭此所得的研究成果”爱德华·珀塞尔美国1953年弗里茨·塞尔尼克荷兰“他对相衬法的证实,特别是发明相衬显微镜”1954年马克斯·玻恩英国“在量子力学领域的基础研究,特别是他对波函数的统计解释”瓦尔特·博特德国“符合法,以及以此方法所获得的研究成果”1955年威利斯·尤金·兰姆美国“他的有关氢光谱的精细结构的研究成果”波利卡普·库施美国“精确地测定出电子磁矩”1956年威廉·布拉德福德·肖克利美国“他们对半导体的研究和发现晶体管效应”约翰·巴丁美国沃尔特·豪泽·布喇顿美国1957年杨振宁中国“他们对所谓的宇称不守恒定律的敏锐地研究,该定律导致了有关基本粒子的许多重大发现”李政道中国1958年帕维尔·阿列克谢耶维奇·切连科夫苏联“发现并解释切连科夫效应”伊利亚·弗兰克苏联伊戈尔·叶夫根耶维奇·塔姆苏联1959年埃米利奥·吉诺·塞格雷美国“发现反质子”欧文·张伯伦美国1960年唐纳德·阿瑟·格拉泽美国“发明气泡室”1961年罗伯特·霍夫施塔特美国“关于对原子核中的电子散射的先驱性研究,并由此得到的关于核子结构的研究发现”鲁道夫·路德维希·穆斯堡尔德国“他的有关γ射线共振吸收现象的研究以及与这个以他命名的效应相关的研究发现”1962年列夫·达维多维奇·朗道苏联“关于凝聚态物质的开创性理论,特别是液氦”1963年耶诺·帕尔·维格纳美国“他对原子核和基本粒子理论的贡献,特别是对基础的对称性原理的发现和应用”玛丽亚·格佩特-梅耶美国“发现原子核的壳层结构”J·汉斯·D·延森德国1964年查尔斯·汤斯美国“在量子电子学领域的基础研究成果,该成果导致了基于激微波-激光原理建造的振荡器和放大器"尼古拉·根纳季耶维奇·巴索夫苏联亚历山大·普罗霍罗夫苏联1965年朝永振一郎日本“他们在量子电动力学方面的基础性工作,这些工作对粒子物理学产生深远影响”朱利安·施温格美国理查德·菲利普·费曼美国1966年阿尔弗雷德·卡斯特勒法国“发现和发展了研究原子中赫兹共振的光学方法”1967年汉斯·阿尔布雷希特·贝特美国“他对核反应理论的贡献,特别是关于恒星中能源的产生的研究发现”1968年路易斯·沃尔特·阿尔瓦雷茨美国“他对粒子物理学的决定性贡献,特别是因他发展了氢气泡室技术和数据分析方法,从而发现了一大批共振态”1969年默里·盖尔曼美国“对基本粒子的分类及其相互作用的研究发现”1970年汉尼斯·奥洛夫·哥斯达·阿尔文瑞典“磁流体动力学的基础研究和发现,及其在等离子体物理学富有成果的应用”路易·奈耳法国“关于反铁磁性和铁磁性的基础研究和发现以及在固体物理学方面的重要应用”1971年伽博·丹尼斯英国“发明并发展全息照相法”1972年约翰·巴丁美国“他们联合创立了超导微观理论,即常说的BCS理论”利昂·库珀美国约翰·罗伯特·施里弗美国1973年江崎玲于奈日本“发现半导体和超导体的隧道效应”伊瓦尔·贾埃弗挪威布赖恩·戴维·约瑟夫森英国“他理论上预测出通过隧道势垒的超电流的性质,特别是那些通常被称为约瑟夫森效应的现象”1974年马丁·赖尔英国“他们在射电天体物理学的开创性研究:赖尔的发明和观测,特别是合成孔径技术;休伊什在发现脉冲星方面的关键性角色”安东尼·休伊什英国1975年奥格·尼尔斯·玻尔丹麦“发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系发展了有关原子核结构的理论”本·罗伊·莫特森丹麦利奥·詹姆斯·雷恩沃特美国1976年伯顿·里克特美国“他们在发现新的重基本粒子方面的开创性工作”丁肇中美国1977年菲利普·沃伦·安德森美国“对磁性和无序体系电子结构的基础性理论研究”内维尔·莫特英国约翰·凡扶累克美国1978年彼得·列昂尼多维奇·卡皮查苏联“低温物理领域的基本发明和发现”阿尔诺·艾伦·彭齐亚斯美国“发现宇宙微波背景辐射”罗伯特·伍德罗·威尔逊美国1979年谢尔登·李·格拉肖美国“关于基本粒子间弱相互作用和电磁相互作用的统一理论的,包括对弱中性流的预言在内的贡献”阿卜杜勒·萨拉姆巴基斯坦史蒂文·温伯格美国1980年詹姆斯·沃森·克罗宁美国“发现中性K介子衰变时存在对称破坏”瓦尔·洛格斯登·菲奇美国1981年凯·西格巴恩瑞典“对开发高分辨率电子光谱仪的贡献”尼古拉斯·布隆伯根美国“对开发激光光谱仪的贡献”阿瑟·肖洛美国1982年肯尼斯·威尔逊美国“对与相转变有关的临界现象理论的贡献”1983年苏布拉马尼扬·钱德拉塞卡美国“有关恒星结构及其演化的重要物理过程的理论研究”威廉·福勒美国“对宇宙中形成化学元素的核反应的理论和实验研究”1984年卡洛·鲁比亚意大利“对导致发现弱相互作用传递者,场粒子W和Z的大型项目的决定性贡献”西蒙·范德梅尔荷兰1985年克劳斯·冯·克利青德国“发现量子霍尔效应”1986年恩斯特·鲁斯卡德国“电子光学的基础工作和设计了第一台电子显微镜”格尔德·宾宁德国“研制扫描隧道显微镜”海因里希·罗雷尔瑞士1987年约翰内斯·贝德诺尔茨德国“在发现陶瓷材料的超导性方面的突破”卡尔·米勒瑞士1988年利昂·莱德曼美国“中微子束方式,以及通过发现梅尔文·施瓦茨美国子中微子证明了轻子的对偶结构”1989年诺曼·拉姆齐美国“发明分离振荡场方法及其在氢激微波和其他原子钟中的应用”汉斯·德默尔特美国“发展离子陷阱技术”沃尔夫冈·保罗德国1990年杰尔姆·弗里德曼美国“他们有关电子在质子和被绑定的中子上的深度非弹性散射的开创性研究,这些研究对粒子物理学的夸克模型的发展有必不可少的重要性”亨利·肯德尔美国理查·泰勒加拿大1991年皮埃尔-吉勒·德热纳法国“发现研究简单系统中有序现象的方法可以被推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中”1992年乔治·夏帕克法国“发明并发展了粒子探测器,特别是多丝正比室”1993年拉塞尔·赫尔斯美国“发现新一类脉冲星,该发现开发了研究引力的新的可能性”约瑟夫·泰勒美国1994年伯特伦·布罗克豪斯加拿大“对中子频谱学的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”克利福德·沙尔美国“对中子衍射技术的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”1995年马丁·佩尔美国“发现τ轻子”,以及对轻子物理学的开创性实验研究弗雷德里克·莱因斯美国“发现中微子,以及对轻子物理学的开创性实验研”1996年戴维·李美国“发现了在氦-3里的超流动性”道格拉斯·奥谢罗夫美国罗伯特·理查森美国1997年朱棣文美国“发展了用激光冷却和捕获原子的方法”克洛德·科昂-唐努德日法国威廉·菲利普斯美国1998年罗伯特·劳夫林美国“发现一种带有分数带电激发的新的量子流体形式”霍斯特·施特默德国崔琦美国1999年杰拉德·特·胡夫特荷兰“阐明物理学中弱电相互作用的量子结构”马丁纽斯·韦尔特曼荷兰2000年若雷斯·阿尔费罗夫俄罗斯“发展了用于高速电子学和光电子学的半导体异质结构”赫伯特·克勒默德国杰克·基尔比美国“在发明集成电路中所做的贡献”2001年埃里克·康奈尔美国“在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究”卡尔·威曼美国沃尔夫冈·克特勒德国2002年雷蒙德·戴维斯美国“在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子”小柴昌俊日本里卡尔多·贾科尼美国“在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X射线源的发现”2003年阿列克谢·阿布里科索夫俄罗斯“对超导体和超流体理论做出的先驱性贡献”维塔利·金兹堡俄罗斯安东尼·莱格特美国2004年戴维·格娄斯美国“发现强相互作用理论中的渐近自由”休·波利策美国弗朗克·韦尔切克美国2005年罗伊·格劳伯美国“对光学相干的量子理论的贡献”约翰·霍尔美国“对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,”特奥多尔·亨施德国2006年约翰·马瑟美国“发现宇宙微波背景辐射的黑体形式和各向异性”乔治·斯穆特美国2007年艾尔伯·费尔法国“发现巨磁阻效应”彼得·格林贝格德国2008年小林诚日本“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在”益川敏英日本南部阳一郎美国“发现亚原子物理学的自发对称性破缺机制”2009年高锟英国“在光学通信领域光在纤维中传输方面的突破性成就”威拉德·博伊尔美国“发明半导体成像器件电荷耦合器件”乔治·史密斯美国2010年安德烈·海姆俄罗斯“在二维石墨烯材料的开创性实验”康斯坦丁·诺沃肖洛夫俄罗斯2011年布莱恩·施密特澳大利亚“透过观测遥距超新星而发现宇宙加速膨胀”亚当·里斯美国索尔·珀尔马特美国2012年塞尔日·阿罗什法国“能够量度和操控个体量子系统的突破性实验手法”大卫·维因兰德美国2013年彼得·W·希格斯英国对希格斯玻色子的预测[1][4-6] 弗朗索瓦·恩格勒比利时2014年赤崎勇日本“发明一种新型高效节能光源,即蓝色发光二极管(LED)”天野浩日本中村修二美国2015年梶田隆章日本“通过中微子振荡发现中微子有质量。
诺贝尔物理学奖
历届诺贝尔奖获奖名录1901德国科学家伦琴因发觉X射线获诺贝尔物理学奖。
1902荷兰科学家洛伦兹因创建电子理论、荷兰科学家塞曼因发觉磁力对光的塞曼效应而一起取得诺贝尔物理学奖。
1903法国科学家贝克勒尔因发觉天然放射性现象、居里夫妇因发觉放射性元素镭而一起取得诺贝尔物理学奖。
1904英国科学家瑞利因发觉氩取得诺贝尔物理学奖。
英国科学家拉姆赛因发觉六种惰性所体,并确信它们在元素周期表中的位置取得化学奖。
1905德国科学家勒纳因阴极射线的研究取得诺贝尔物理学奖。
1906英国科学家汤姆逊因研究气体的电导率取得诺贝尔物理学奖。
1907美国科学家迈克尔逊因测量光速获诺贝尔物理学奖。
1908法国科学家李普曼因发明彩色照片的复制获诺贝尔物理学奖。
英国科学家卢瑟福因研究元素的蜕变和放射化学获诺贝尔化学奖1909意大利科学家马可尼、德国科学家布劳恩因发明无线电报技术而取得诺贝尔物理学奖。
1910荷兰科学家范德瓦尔斯因研究气体和液体状态工程获诺贝尔物理学奖。
1911德国科学家维恩因发觉热辐射定律获诺贝尔物理学奖。
法国科学家玛丽·居里(居里夫人)因发觉镭和钋,并分离出镭获诺贝尔化学奖。
1912荷兰科学家达伦因发明航标灯自动调剂器获诺贝尔物理学奖。
1913荷兰科学家卡曼林欧尼斯因研究物质在低温下的性质,制出液态氦获诺贝尔物理学奖。
1914德国科学家劳厄因发觉晶体的X射线衍射获诺贝尔物理学奖。
1915 英国科学家威廉·亨利·布拉格和威康·劳伦斯·布拉格父子因用X射线分析晶体结构获诺贝尔物理学奖。
1916年12月10日第十六届诺贝尔奖颁发。
(一次世界大战)1917英国科学家巴克拉因发觉X射线对元素的特点发射获诺贝尔物理学奖。
1918德国科学家普朗克因创建量子论、发觉大体量子获诺贝尔物理学奖。
1919德国科学家斯塔克因发觉正离子射线的多普勒的效应和光线在电场中的割裂获诺贝尔物理学奖。
诺贝尔物理学奖六十年
2011年诺贝尔物理学奖获奖者为美国加州大学伯克利分校教授索尔·佩尔马特,澳大利亚国立大学教授布莱恩·施密特,以及美国约翰斯·霍普金斯大学教授亚当·里斯。
他们的贡献是,通过对超新星的观测证明宇宙在加速膨胀、变冷。
2010年诺贝尔物理学奖获奖者为英国曼彻斯特大学科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。
他们在2004年制成石墨烯材料。
石墨烯是目前已知材料中最薄的一种,被普遍认为会最终替代硅,从而引发电子工业的再次革命。
2009年诺贝尔物理学奖获奖者为英国华裔科学家高锟以及美国科学家威拉德·博伊尔和乔治·史密斯。
高锟获奖是由于在“有关光在纤维中的传输以用于光学通信方面”作出了突破性成就,而两位美国科学家的主要成就是发明半导体成像器件——电荷耦合器件(CCD)图像传感器。
2008年诺贝尔物理学奖获奖者为美国籍科学家南部阳一郎和日本科学家小林诚、益川敏英。
南部阳一郎的贡献是发现了亚原子物理学中的自发对称性破缺机制,而小林诚和益川敏英的贡献是发现了有关对称性破缺的起源。
2007年,法国科学家阿尔贝·费尔和德国科学家彼得·格林贝格尔因发现“巨磁电阻”效应而获诺贝尔物理学奖。
2006年,美国科学家约翰·马瑟和乔治·斯穆特因发现了宇宙微波背景辐射的黑体形式和各向异性而获奖。
2005年,美国科学家罗伊·格劳伯、约翰·霍尔和德国科学家特奥多尔·亨施因为“对光学相干的量子理论的贡献”和对基于激光的精密光谱学发展作出了贡献而获奖。
2004年,诺贝尔物理学奖归属美国科学家戴维·格罗斯、戴维·波利策和弗兰克·维尔切克。
他们发现了粒子物理强相互作用理论中的渐近自由现象。
2003年诺贝尔物理学奖——超导和超流体理论研究领域的卓越贡献2003年度诺贝尔物理奖授予拥有俄罗斯和美国双重国籍的科学家阿列克谢·阿布里科索夫、俄罗斯科学家维塔利·金茨堡以及拥有英国和美国双重国籍的科学家安东尼·莱格特,以表彰他们由于在超导和超流体理论研究领域所作出的开创性贡献。
1997年诺贝尔物理学奖激光冷却和陷俘原子
·1997年诺贝尔物理学奖——激光冷却和陷俘原子朱棣文科恩-塔诺季菲利普斯1997年诺贝尔物理学奖授予美国加州斯坦福大学的朱棣文(Stephen Chu,1948—),法国巴黎的法兰西学院和高等师范学院的科恩-塔诺季(Claude Cohen -Tannoudji,1933—)和美国国家标准技术院的菲利普斯(William D.Phillips,1948—),以表彰他们在发展用激光冷却和陷俘原子的方法方面所作的贡献。
激光冷却和陷俘原子的研究,是当代物理学的热门课题,十几年来成果不断涌现,前景激动人心,形成了分子和原子物理学的一个重要突破口。
操纵和控制单个原子一直是物理学家追求的目标。
固体和液体中的原子处于密集状态之中,分子和原子相互间靠得很近,联系难以隔绝,气体分子或原子则不断地在作无规乱运动,即使在室温下空气中的原子分子的速率也达到几百m/s。
在这种快速运动的状态下,即使有仪器能直接进行观察,它们也会很快地就从视场中消失,因此难以对它们进行研究。
降低其温度,可以使它们的速率减小;但是问题在于:气体一经冷却,它就会先凝聚为液体,再冻结成固体。
如果是在真空中冷冻,其密度就可以保持足够地低,避免凝聚和冻结。
但即使低到-270℃,还会有速率达到几十m/s的分子原子,因为分子原子的速率是按一定的规律分布的。
接近绝对零度(-273℃以下)时,速率才会大为降低。
当温度低到10-6K,即1微开(μK)时,自由氢原子预计将以低于25cm/s的速率运动。
可是怎样才能达到这样低的温度呢?朱棣文、科恩-塔诺季、菲利普斯以及其他许多物理学家开发了用激光把气体冷却到微开温度范围的各种方法,并且把冷却了的原子悬浮或拘捕在不同类型的“原子陷阱”中。
在这里面,个别原子可以以极高的精确度得到研究,从而确定它们的内部结构。
当在同一体积中陷俘越来越多的原子时,就组成了稀薄气体,可以详细研究其特性。
这几位诺贝尔奖获得者所创造的这些新研究方法,为扩大我们对辐射和物质之间相互作用的知识作出了重要贡献。
历年诺贝尔奖名单列表
历年诺贝尔奖名单列表篇一:自1901年开始,瑞典皇家科学院授予诺贝尔奖以表彰在物理学、化学、生理学或医学、文学和和平领域作出突出贡献的个人或团体。
此外,从1969年起,瑞典国家银行也开始颁发诺贝尔经济学奖。
以下是一些历年诺贝尔奖的名单列表:物理学奖:- 1901年:Wilhelm Conrad Rntgen(发现了X射线)- 1915年:William Henry Bragg和William Lawrence Bragg(发现了X射线晶体衍射)- 1921年:Albert Einstein(解释光电效应)- 1938年:Enrico Fermi(发现了核反应引起的人工放射性同位素)- 1956年:William Shockley、John Bardeen、Walter H. Brattain(发明了晶体管)化学奖:- 1903年:Marie Curie(发现了镭和钋)- 1945年:Artturi Virtanen(发展了新的方法来保存食品)- 1962年:Linus Pauling(提出了化学键的量子力学解释)- 2000年:Alan J. Heeger、Alan G. MacDiarmid、Hideki Shirakawa(发现了导电聚合物)生理学或医学奖:- 1904年:Ivan Pavlov(研究了消化系统的神经调节)- 1928年:Alexander Fleming(发现了青霉素)- 1953年:James Watson、Francis Crick、Maurice Wilkins(发现了DNA的结构)- 2006年:Andrew Z. Fire、Craig C. Mello(研究了RNA干扰)文学奖:- 1907年:Rudyard Kipling(对于其出色的叙事才能)- 1949年:William Faulkner(对于其突出的小说创作)- 1997年:Dario Fo(对于其剧作的创新和幽默)和平奖:- 1911年:Tobias Asser、Alfred Hermann Fried(为国际和平运动做出了贡献)- 1964年:Martin Luther King Jr.(为非暴力抗议运动做出贡献)- 2009年:Barack Obama(为国际外交和核裁军做出努力)经济学奖:- 1969年:Ragnar Frisch、Jan Tinbergen(为宏观经济学做出了贡献)- 1994年:John Nash(对于非合作博弈理论的贡献)- 2019年:Abhijit Banerjee、Esther Duflo、Michael Kremer(研究了贫困和发展经济学)这仅仅是一小部分历年诺贝尔奖的名单,每年获奖者都代表着各个领域的杰出成就和创新。
朱棣文演讲:生命太短暂,你必须对某样东西倾注深情@
生命太短暂,你必须对某样东西倾注深情——诺奖得主朱棣文哈佛演讲1997年诺贝尔物理学奖得主朱棣文在哈佛大学毕业典礼上演讲时总结过往人生的几次选择:从研究转向教学,再转向从政,以亲身经历给予年轻学子忠告:“生命太短暂,所以不能空手走过,你必须对某样东西倾注你的深情”。
1、至少我是一个“书呆子”(A Nerd)。
感谢你们,让我有机会同你们一起分享这个美妙的日子。
我不太肯定,自己够得上哈佛大学毕业典礼演讲人这样的殊荣。
去年登上这个讲台的是,英国亿万身家的小说家J.K罗琳女士,她最早是一个古典文学的学生。
前年站在这里的是比尔·盖茨先生,他是一个超级富翁、一个慈善家和“电脑痴”(computer nerd)。
今年很遗憾,你们的演讲人是我,虽然我不是很有钱,但是至少我是一个“书呆子“(nerd)。
2、诺贝尔物理学奖VS母亲的肯定我很感激哈佛大学给我荣誉学位,这对我很重要,也许比你们会想到的还要重要。
要知道,在学术上,我是我们家的异类。
我的哥哥在麻省理工学院得到医学博士,在哈佛大学得到哲学博士;我的弟弟在哈佛大学得到一个法律学位。
我本人得到诺贝尔奖的时候,我想我的妈妈会高兴。
但是,我错了。
消息公布的那天早上,我给她打电话,她听了只说:“这是好消息,不过我想知道,你下次什么时候来看我?”如今在我们兄弟当中,我最终也拿到了哈佛学位,我想这一次,她会感到满意。
3、生命太短暂,你必须对某样东西倾注深情接下来的第二乐章是送上门的忠告。
这样的忠告很少有价值,几乎注定被忘记,永远不会被实践。
但是,就像王尔德说的:“对于忠告,你所能做的,就是把它送给别人,因为它对你没有任何用处。
”所以,下面就是我的忠告。
第一,取得成就的时候,不要忘记前人。
要感谢你的父母和支持你的朋友,要感谢那些启发过你的教授,尤其要感谢那些上不好课的教授,因为他们迫使你自学。
从整体看,自学能力是优秀的文科教育中必不可少的,将成为你成功的关键。
你还要去拥抱你的同学,感谢他们同你进行过的许多次彻夜长谈,这为你的教育带来了无法衡量的价值。
历年诺贝尔物理学奖得主
1901年威廉·伦琴1902年亨得里克·洛仑兹,彼得·塞曼1903年亨利·贝克勒,皮埃尔·居里,玛丽·居里1904年约翰·斯特拉特1905年菲利普·莱纳德1906年约瑟夫·汤姆森1907年阿尔伯特·迈克生1908年加布里埃尔·李普曼1909年古列尔莫·马可尼,卡尔·布劳恩1910年约翰内斯·范德瓦耳斯1911年威廉·维因1912年古斯塔夫·达伦1913年海克·卡末林·昂内斯1914年马克斯·冯·劳厄1915年威廉·亨利·布拉格,威廉·劳伦斯·布拉格1916年没有颁奖1917年查尔斯·巴克拉1918年马克斯·普朗克1919年约翰尼斯·斯塔克1920年夏尔·纪尧姆1921年阿尔伯特·爱因斯坦1922年尼尔斯·波耳1923年罗伯特·密立根1924年曼内·西格巴恩1925年詹姆斯·法兰克,古斯塔夫·赫兹1926年让·佩兰1927年阿瑟·康普顿,查尔斯·威尔森1928年欧文·瑞查森1929年路易·德布罗意公爵1930年钱德拉塞卡拉·拉曼1931年没有颁奖1932年维尔纳·海森堡1933年埃尔文·薛定谔,保罗·狄拉克1934年没有颁奖1935年詹姆斯·查德威克1936年维克托·赫斯,卡尔·安德森1937年克林顿·戴维森,乔治·汤姆森1938年恩里科·费米1939年欧内斯特·劳伦斯1940年没有颁奖1941年没有颁奖1942年没有颁奖1943年奥托·斯特恩1944年伊西多·拉比1945年沃尔夫冈·包立1946年珀西·布里奇曼1947年爱德华·阿普尔顿1948年帕特里克·布莱克特1949年汤川秀树1950年塞西尔·鲍威尔1951年约翰·考克饶夫,欧内斯特·沃吞1952年费利克斯·布洛赫,爱德华·珀塞尔1953年弗里茨·塞尔尼克1954年马克斯·玻恩,瓦尔特·博特1955年威利斯·兰姆,波利卡普·库施1956年威廉·肖克利,约翰·巴丁,沃尔特·布喇顿1957年杨振宁,李政道1958年帕维尔·切连科夫,伊利亚·法兰克,伊戈尔·塔姆1959年埃米利奥·塞格雷,欧文·张伯伦1960年唐纳德·格拉泽1961年罗伯特·霍夫施塔特,鲁道夫·穆斯堡尔1962年列夫·朗道1963年尤金·维格纳,玛丽亚·格佩特-梅耶,约翰内斯·延森1964年查尔斯·汤斯,尼古拉·巴索夫,亚历山大·普罗霍罗夫1965年朝永振一郎,朱利安·施温格,理查德·费曼1966年阿尔弗雷德·卡斯特勒1967年汉斯·贝特1968年路易斯·阿尔瓦雷茨1969年默里·盖尔曼1970年汉尼斯·阿尔文,路易·奈耳1971年伽博·丹尼斯1972年约翰·巴丁,利昂·库珀,约翰·施里弗1973年江崎玲于奈,伊瓦尔·贾埃弗,布赖恩·约瑟夫森1974年马丁·赖尔,安东尼·休伊什1975年奥格·玻尔,本·莫特森,利奥·雷恩沃特1976年伯顿·里克特,丁肇中1977年菲利普·安德森,内维尔·莫特,约翰·凡扶累克1978年彼得·卡皮查,阿诺·彭齐亚斯,罗伯特·威尔逊1979年谢尔登·格拉肖,阿卜杜勒·萨拉姆,史蒂文·温伯格1980年詹姆斯·克罗宁,瓦尔·菲奇1981年凯·西格巴恩,尼古拉斯·布隆伯根,阿瑟·肖洛1982年肯尼斯·威尔逊1983年苏布拉马尼扬·钱德拉塞卡,威廉·福勒1984年卡洛·鲁比亚,西蒙·范德梅尔1985年克劳斯·冯·克利青1986年恩斯特·鲁斯卡,格尔德·宾宁,海因里希·罗雷尔1987年约翰内斯·贝德诺尔茨,卡尔·米勒1988年利昂·莱德曼,梅尔文·施瓦茨,杰克·施泰因贝格尔1989年诺曼·拉姆齐,汉斯·德默尔特,沃尔夫冈·保罗1990年杰尔姆·弗里德曼,亨利·肯德尔,理查·泰勒1991年皮埃尔-吉勒·德热纳1992年乔治·夏帕克1993年拉塞尔·赫尔斯,约瑟夫·泰勒1994年伯特伦·布罗克豪斯,克利福德·沙尔1995年马丁·佩尔,弗雷德里克·莱因斯1996年戴维·李,道格拉斯·奥谢罗夫,罗伯特·理查森1997年朱棣文,克洛德·科昂-唐努德日,威廉·菲利普斯1998年霍斯特·施特默,罗伯特·劳夫林,崔琦1999年杰拉德·特·胡夫特,马丁纽斯·韦尔特曼2000年若雷斯·阿尔费罗夫,赫伯特·克勒默,杰克·基尔比2001年埃里克·康奈尔,卡尔·威曼,沃尔夫冈·克特勒2002年雷蒙德·戴维斯,小柴昌俊,里卡尔多·贾科尼2003年阿列克谢·阿布里科索夫,维塔利·金兹堡,安东尼·莱格特2004年戴维·格娄斯,休·波利策,弗朗克·韦尔切克2005年罗伊·格劳伯,约翰·霍尔,特奥多尔·亨施2006年约翰·马瑟,乔治·斯穆特2007年艾尔伯·费尔,彼得·格林贝格2008年小林诚,益川敏英,南部阳一郎2009年高锟,威拉德·博伊尔,乔治·史密斯2010年安德烈·海姆,康斯坦丁·诺沃肖洛夫2011年索尔·珀尔马特,布莱恩·施密特,亚当·里斯2012年塞尔日·阿罗什,大卫·维因兰德。
资料诺贝尔物理学奖19512002
资料诺贝尔物理学奖1951 2002引用平娃的资料:诺贝尔物理学奖(1951-2002)1951年诺贝尔物理学奖--人工加速带电粒子考可饶夫瓦尔顿1951年诺贝尔物理学奖授予英国哈维尔(Harwell)原子能研究所署的考可饶夫(Sir John Douglas Cockcroft,1897-1967)和爱尔兰都在柏林大学的瓦尔顿(Ernest Thomas Sinton Walton,1903-1995),以表彰他们在发展用人工加速原子性粒子的方法使原子核蜕变的先驱工作。
在从英国剑桥大学卡文迪实验室出身的众多诺贝尔奖获得者中,考可饶夫和瓦尔顿是其中两位得奖比较晚的实验物理学家。
他们在30年代初设计和制造了第一台高压倍加器,并且成功地用之于产生人工核蜕变。
他们先是让锂蜕变为氦,后来又让硼蜕变为氦,特别值得一提的是,他们成功不仅是由于技术上的进步,更重要的是由于有理论的正确指导。
这个理论就是伽莫夫(G.Gamov)的势垒穿透理论。
1952年诺贝尔物理学奖珀塞尔布洛赫--核磁共振布洛赫珀塞尔1951年诺贝尔物理学奖授予美国加利福尼亚斯坦福大学的布洛赫(Felix Bloch,1905-1983)和美国马萨诸塞州坎伯利基哈佛大学的珀塞尔(EdwardPurcell,1912-1997),以表彰他们发现了核磁精密测量的新方法及由此所作的发现。
1945年12月,珀塞尔和他的小组在石蜡样品中观察到质子的核磁共振吸收信号,1946年1月,布洛赫和他的小组在水样品中也观察到质子的核感应信号。
他们两人用的方法稍有不同,几乎同时在凝聚态物质中方法了核磁共振。
他们发现了斯特恩开创的分子束方法和拉比的分子束磁共振方法,精确的测量了核磁矩。
以后许多物理学家进入了这个领域,形成了一门新兴实验技术,几年内便取得了丰硕的成果。
泽尔尼克1953年诺贝尔物理学奖--相称显微法泽尔尼克1953年诺贝尔物理学奖授予荷兰格罗宁根大学的泽尔尼克(FritsZernike,1898-1966),以表彰他提出了相称法,特别发明了相称显微镜。
历年诺贝尔物理学奖
历年诺贝尔物理学奖1901-19101901年诺贝尔物理学奖—— X射线的发现1902年诺贝尔物理学奖——塞曼效应的发现和研究1903年诺贝尔物理学奖——放射形的发现和研究1904年诺贝尔物理学奖——氩的发现1905年诺贝尔物理学奖——阴极射线的研究1906年诺贝尔物理学奖——气体导电1907年诺贝尔物理学奖——光学精密计量和光谱学研究1908年诺贝尔物理学奖——照片彩色重现1909年诺贝尔物理学奖——无线电报1910年诺贝尔物理学奖——气夜状态方程1911-19201911年诺贝尔物理学奖——热辐射定律的发现1912年诺贝尔物理学奖——航标灯自动调节器1913年诺贝尔物理学奖——低温物质的特性1914年诺贝尔物理学奖——晶体的X射线衍射1915年诺贝尔物理学奖—— X射线晶体结构分析1916年诺贝尔物理学奖——未授奖1917年诺贝尔物理学奖——元素的标识X辐射1918年诺贝尔物理学奖——能量级的发现1919年诺贝尔物理学奖——斯塔克效应的发现1920年诺贝尔物理学奖——合金的反常特性1921-19301921年诺贝尔物理学奖——对理论物理学的贡献1922年诺贝尔物理学奖——原子结构和原子光谱1923年诺贝尔物理学奖——基本电荷和光电效应实验1924年诺贝尔物理学奖—— X射线光谱学1925年诺贝尔物理学奖——弗兰克-赫兹实验1926年诺贝尔物理学奖——物质结构的不连续性1927年诺贝尔物理学奖——康普顿效应和威尔逊云室1928年诺贝尔物理学奖——热电子发射定律1929年诺贝尔物理学奖——电子的波动性1930年诺贝尔物理学奖——拉曼效应1931-19401931年诺贝尔物理学奖——未授奖1932年诺贝尔物理学奖——量子力学的创立1933年诺贝尔物理学奖——原子理论的新形式1934年诺贝尔物理学奖——未授奖1935年诺贝尔物理学奖——中子的发现1936年诺贝尔物理学奖——宇宙辐射和正电子的发现1937年诺贝尔物理学奖——电子衍射1938年诺贝尔物理学奖——中子辐照产生新放射性元素1939年诺贝尔物理学奖——回旋加速器的发明1940年诺贝尔物理学奖——未授奖1941-19501942年诺贝尔物理学奖——未授奖1943年诺贝尔物理学奖——分子束方法和质子磁矩1944年诺贝尔物理学奖——原子核的磁特性1945年诺贝尔物理学奖——泡利不相容原理1946年诺贝尔物理学奖——高压物理学1947年诺贝尔物理学奖——电离层的研究v1948年诺贝尔物理学奖——云室方法的改进1949年诺贝尔物理学奖——预言介子的存在1950年诺贝尔物理学奖——核乳胶的发明1951-19601951年诺贝尔物理学奖——人工加速带电粒1952年诺贝尔物理学奖——核磁共振1953年诺贝尔物理学奖——相称显微法1954年诺贝尔物理学奖——波函数的统计解释和用符合法作出的发现1955年诺贝尔物理学奖——兰姆位移与电子磁矩1956年诺贝尔物理学奖——晶体管的发明1957年诺贝尔物理学奖——宇称守恒定律的破坏1958年诺贝尔物理学奖——切连科夫效应的发现和解释1959年诺贝尔物理学奖——反质子的发现1960年诺贝尔物理学奖——泡室的发明1961-19701961年诺贝尔物理学奖——核子结构和穆斯堡尔效应1962年诺贝尔物理学奖——凝聚态理论1963年诺贝尔物理学奖——原子核理论和对称性原理1964年诺贝尔物理学奖——微波激射器和激光器的发明1965年诺贝尔物理学奖——量子电动力学的发展1966年诺贝尔物理学奖——光磁共振方法1967年诺贝尔物理学奖——恒星能量的生成1968年诺贝尔物理学奖——共振态的发现1969年诺贝尔物理学奖——基本粒子及其相互作用的分类1970年诺贝尔物理学奖——磁流体动力学和新的磁性理论1971-19801971年诺贝尔物理学奖——全息术的发明1972年诺贝尔物理学奖——超导电性理论1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现1974年诺贝尔物理学奖——射电天文学的先驱性工作1975年诺贝尔物理学奖——原子核理论1976年诺贝尔物理学奖—— J/?粒子的发展1977年诺贝尔物理学奖——电子结构理论1978年诺贝尔物理学奖——低温研究和宇宙背景辐射1979年诺贝尔物理学奖——弱电统一理论1980年诺贝尔物理学奖—— C_P破坏的发现1981-19901981年诺贝尔物理学奖——激光光谱学与电子能谱学1983年诺贝尔物理学奖——天体物理学的成就1984年诺贝尔物理学奖—— W±和Z?粒子的发现1985年诺贝尔物理学奖——量子霍尔效应1986年诺贝尔物理学奖——电子显微镜与扫描隧道显微镜1987年诺贝尔物理学奖——高温超导电性1988年诺贝尔物理学奖——中微子的研究1989年诺贝尔物理学奖——原子钟和离子捕集技术1990年诺贝尔物理学奖——核子的深度非弹性散射1991-20011991年诺贝尔物理学奖——液晶和聚合物1992年诺贝尔物理学奖——多斯正比室的发明1993年诺贝尔物理学奖——新型脉冲星1994年诺贝尔物理学奖——中子谱学和中子衍射技术1995年诺贝尔物理学奖——中微子和重轻子的发现1996年诺贝尔物理学奖——发现氦-3中的超流动性1997年诺贝尔物理学奖——激光冷却和陷俘原子1998年诺贝尔物理学奖——分数量子霍耳效应的发现1999年诺贝尔物理学奖——亚原子粒子之间电弱相互作用的量子结构2000年诺贝尔物理学奖——半导体研究的突破性进展2001年诺贝尔物理学奖——玻色爱因斯坦冷凝态的研究2002年诺贝尔物理学奖——天体物理学领域的卓越贡献(资料来源:山东大学物理系张承踞老师)。
诺贝尔奖得主
诺贝尔奖自设立以来,,一共有11位华人获得过诺贝尔奖,其中有6位获得诺贝尔物理学奖,2位获得诺贝尔化学奖,2位获得诺贝尔文学奖,1位获得诺贝尔生理或医学奖:1.杨振宁和李政道,1957年获得诺贝尔物理学奖2.丁肇中,1976年获得诺贝尔物理学奖3.李远哲,1986年获得诺贝尔化学奖4.朱棣文,1997年获得诺贝尔物理学奖5.崔琦,1998年获得诺贝尔物理学奖6.高行健,2000年获得诺贝尔文学奖7.钱永健,2008年获得诺贝尔化学奖8.高琨,2009年获得诺贝尔物理学奖9.莫言,2012年获得诺贝尔文学奖10. 屠呦呦,2015年获得诺贝尔生理或医学奖诺贝尔奖是指根据诺贝尔1895年的遗嘱而设立的五个奖项,包括:物理学奖、化学奖、和平奖、生理学或医学奖和文学奖,旨在表彰在物理学、化学、和平、生理学或医学以及文学上“对人类作出最大贡献”的人士;以及瑞典中央银行1968年设立的诺贝尔经济学奖,用于表彰在经济学领域做出杰出贡献的人。
1901年诺贝尔奖首次颁发,包括:诺贝尔物理学奖、诺贝尔化学奖、诺贝尔和平奖、诺贝尔生理学或医学奖和诺贝尔文学奖。
1968年瑞典中央银行增设“瑞典中央银行纪念诺贝尔经济科学奖”,该奖于1969年首次颁发,人们习惯上称这个额外的奖项为诺贝尔经济学奖。
诺贝尔奖的甄选委员会通常在每年10月公布得主。
颁奖典礼于每年12月10日,即诺贝尔逝世周年纪念日,分别在瑞典首都斯德哥尔摩和挪威首都奥斯陆由国王举行授奖仪式。
2020年9月24日诺贝尔基金会主席拉尔斯·海肯斯滕表示2020年诺贝尔奖奖金将增加至1000万瑞典克朗(约110万美元)。
根据诺贝尔奖官网显示,诺贝尔奖每年评选和颁发一次,诺贝尔奖包括一枚金牌、一份证书以及一笔奖金。
截至2019年,共授予919位个人和24个团体,其中4位个人以及1个团体两次获奖、1个团体三次获奖。
诺贝尔和诺贝尔物理学奖
诺贝尔和诺贝尔物理学奖诺贝尔(Alfred Bemhard Nobel,1833—1896)是一位瑞典发明家的儿子,他从小健康欠佳,因此主要靠家庭教师教育。
他曾在彼得堡学习工程,也曾到美国,在伊里克逊(John Ericsson)指导下学习了大约一年。
诺贝尔在他父亲的工厂里做实验时,发现当把甘油炸药分散在漂白土或木浆之类的惰性物质中时,可以更安全地处理。
他还发明了其它炸药和雷管,并取得了这些发明的专利权。
诺贝尔因炸药的制造和巴库油田的开发而得到了一笔巨额财产。
他终生未婚,被认为是一个有自卑感和孤独感的人。
他对同伴常抱一种嘲笑态度,但他为人心肠慈善,对人类的未来满怀希望。
诺贝尔留下9百万美元的基金,他在遗嘱中写道:“这些基金的利息每年以奖金的形式分发给那些在前一年中对人类做出最大贡献的人,上述利息分为相等的五部分:一部分奖给在物理学领域有最重要发现和发明的人;一部分奖给在化学上有最重要发现和改革的人;一部分奖给在生理学或医学上有最重要发现的人;一部分奖给文学领域内著有带理想主义倾向的最杰出作品的人;一部分奖给在促进国家之间友好、取缔或裁减常备军以及举行和促进和平会议方面做出显著贡献的人。
“物理学奖和化学奖由瑞典科学院颁发,生理学或医学奖由斯德哥尔摩的加罗琳斯卡研究院颁发,文学奖由斯德哥尔摩研究院颁发,和平奖由挪威议会推选出的一个五人委员会颁发。
”诺贝尔的遗产留给了一个当时并不存在的基金会。
1897年元月,当他的遗嘱宣读后,他的某些亲属曾对此提出了争议。
一些被委派负责颁发奖金的机构(因事先都未曾商量)开始时也对承担这一困难任务感到犹豫,三年后问题才得到解决,l900年6月作为遗产合法继承者的诺贝尔基金会成立,1900年12月颁发了第一届诺贝尔奖。
诺贝尔提出奖金只授予“前一年间”所做的工作这一规定,从一开始就未实行。
这是因为推选委员会考虑到要确认一项成果对物理学的贡献的价值,往往需要许多年。
诺贝尔奖不授予毕生的工作,而授予那些有特殊成果的工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1997年诺贝尔物理学奖1997年物理学奖,由三位物理学家分享,他们是美国的朱棣文(Stephen Chu)、科恩-塔诺季(Claude Cohen-Tannoudji)和法国的威廉·菲利普斯(William D. Phillips),表彰他们发现了使用激光冷却和捕获原子的方法。
朱棣文(Stephen Chu,1948—),是华裔科学家,出生于美国密苏里州的圣路易斯,父亲朱汝瑾博士是台湾中央研究院院士。
朱棣文小时候曾醉心于制作各种模型,后来又迷上了化学游戏,对体育运动也十分热衷,可以说是一个全面发展的孩子。
上高中时,对物理和微积分两门课程比较感兴趣,因为这两门课程与其他课程不同,没有太多的公式需要记忆,只根据少量的基本规则,通过逻辑推理就可以演绎出最终的结论。
1976年,朱棣文毕业于美国伯克利加州大学,获得物理学博士学位,并留校做了两年博士后研究。
后来加入贝尔实验室,1983年任贝尔实验室量子电子学研究部主任。
1987年应聘任斯坦福大学物理学教授,1990年任斯坦福大学物理系主任。
他因开发了激光冷却和陷俘原子的技术获1993年费萨尔国王国际科学奖。
同年被选为美国科学院院士。
2009年—2013年担任第12任美国能源部长。
2016年,担任全球能源互联网发展合作组织副主席。
朱棣文是在中西方文化共同浸染下成长起来的,继承了中西方文化的精髓,他的内心深处既有西方人的率真、幽默,也有东方人的谦虚、含蓄。
他不是那种木讷型的科学家,而是一个性格活泼开朗、充满风趣的人。
1科恩-塔诺季(Claude Cohen-Tannoudji,1933—),出生于阿尔及利亚的康斯坦丁,由于当时阿尔及利亚没有独立,受法国管辖,他自然成为法国公民。
科恩-塔诺季上大学期间,由于受到物理学教授阿尔弗雷德·卡斯特罗的影响,而把志向从研究机械转向研究物理学。
1962年在巴黎高等师范学院获博士学位。
1973年在法兰西学院任教授。
由于在激光冷却和陷俘原子的开创性实验中的成就,他获得多项奖励,其中有1996年欧洲物理学会颁发的量子电子学奖。
威廉·丹尼尔·菲利普斯(William Daniel Phillips,1948—),出生于美国宾夕法尼亚的维尔克斯-巴勒。
1976年在麻省理工学院获物理学博士学位。
由于他在激光冷却和陷俘原子方面的实验研究,曾经获得多项奖励,其中有富兰克林学院颁发的1996年度的迈克尔逊奖。
激光冷却和陷俘原子的研究,是当代物理学的热门课题,几十年来成果不断涌现,前景激动人心,形成了分子和原子物理学的一个重要突破口。
操纵和控制单个原子一直是物理学家追求的目标。
固体和液体中的原子处于密集状态之中,分子和原子相互间靠得很近,联系难以隔绝。
气体分子或原子则不断地在作无规乱运动,即使在室温下空气中的原子分子的速率也达到几百m/s。
在这种快速运动的状态下,即使有仪器能直接进行观察,它们也会很快从视场中消失,因此难以对它们进行研究。
降低其温度,可以使它们的速率减小,但是问题在于,气体一经冷却,它就会先凝聚为液体,再冻结成固体。
如果是在真空中冷冻,其密度就可以保持足够地低,避免凝聚和冻结。
但2即使低到-270℃,还会有速率达到几十m/s的分子原子,因为分子原子的速率是按一定的规律分布的。
接近绝对零度(—273℃以下)时,速率才会大为降低。
当温度低到10-6K,即1微开(μK)时,自由氢原子预计将以低于25cm/s的速率运动。
可是怎样才能达到这样低的温度呢?朱棣文、科恩-塔诺季、菲利普斯以及其他许多物理学家开发了用激光把气体冷却到微开温度范围的各种方法,并且把冷却了的原子悬浮或拘捕在不同类型的“原子陷阱”中。
在这里面,个别原子可以以极高的精确度得到研究,从而确定它们的内部结构。
当在同一体积中陷俘越来越多的原子时,就组成了稀薄气体,可以详细研究其特性。
这几位诺贝尔奖获得者所创造的这些新的研究方法,为扩大我们对辐射和物质之间相互作用的知识作出了重要贡献。
特别是,他们打开了通向更深入地了解气体在低温下的量子物理行为的道路。
这些方法有可能用于设计新型的原子钟,其精确度比现在最精确的原子钟(精确度达到了百万亿分之一秒)还要高百倍,以应用于太空航行和精确定位。
人们还开始了原子干涉仪和原子激光的研究。
原子干涉仪可以用于极其精确地测量引力,而原子激光将来可能用于生产非常小的电子器件。
用聚焦激光束使原子束弯折和聚焦,导致了“光学镊子”的发展,光子镊子可用于操纵活细胞和其它的微小物体。
1988年—1995年在稀薄原子气体中先后观察到了一维、二维甚至三维的玻色-爱因斯坦凝聚。
这一切都是从人们能够用激光控制原子开始的。
早在1619年,当开普勒试图解释为什么彗星进入太阳系3中心区域时彗尾总是背着太阳时,他曾经提出,光可能有机械效应。
麦克斯韦在1873年、爱因斯坦在1917年都对所谓的“光压”理论作过重要贡献。
特别是,爱因斯坦证明了,原子吸收和发射光子后,其动量会发生改变。
有光子动量参与的过程首推康普顿效应,即X射线受电子的散射。
最早观察到反冲电子的是1923年C.T.R.威尔逊用云室作出的。
第一次在实验中观察到反冲原子的是弗利胥(1933年)。
1966年,索洛金(P.Sorokin)等人发明的可调染料激光器,为进一步探讨“光的机械特性”提供了优越的手段。
20世纪70年代,托霍夫(V.S.Letokhov)以及其他前苏联物理学家和美国荷尔德尔(Holmdel)贝尔实验室阿斯金(A.Ashkin)小组的物理学家,在理论上和实验上对光子与中性原子的相互作用进行了重要的早期工作。
其中有一项是他们建议用聚焦激光束使原子束弯折和聚集,从而达到陷俘原子的目的。
他们的工作导致了“光学镊子”的发展,光学镊子可用于操纵活细胞和其它微小物体。
1975年,汉胥(T.W.Hānsch)和肖洛(A.L.Schawlow)首先建议用相向传播的激光束使中性原子冷却。
与此同时,外兰德(D.J.Wineland)和德默尔特(H.G.Dehmelt)对于离子陷阱中的离子也提出过类似的建议。
汉斯和肖洛的方法是:把激光束调谐到略低于原子的谐振跃迁频率,利用多普勒原理就可使中性原子冷却。
激光为什么能使原子冷却?光可以看成是一束粒子流,这种粒子就叫光子。
光子一般来说是没有质量的。
但是具有一定的动量。
光子撞到原子上可以把它的动量转移给那个原4子。
这种情况要发生,必须是光子有恰好的能量,或者可以这样说,光必须有恰好的频率或颜色。
这是因为光子的能量正比于光的频率,而光的频率又决定光的颜色。
因此组成红光的光子比起组成蓝光的光子能量要低些。
是什么决定光子应有多大能量才能对原子起作用呢?是原子的内部结构(能级)。
原子处于一定的能级状态,能级的跃迁就是原子吸收和发射光子的过程。
原子的能级是一定的,它吸收和发射光子的频率也是一定的。
如果正在行进中的原子被迎面而来的激光照射,只要激光的频率和原子的固有频率一致,就会引起原子的跃迁,原子会吸收迎面而来的光子而减小动量。
与此同时,原子又会因跃迁而发射同样的光子,不过它发射的光子是朝着四面八方的。
因此,实际效果是原子的动量每碰撞一次就减小一点,直至最低值。
动量和速度成正比,动量越小,速度也越小。
因此所谓激光冷却,实际上就是在激光的作用下使原子减速。
然而,实际上原子束是以一定的速度前进的。
迎面而来的激光在原子“看来”,频率好象有所增大,这就是所谓多普勒效应。
因此,只有适当调低激光的频率,使之正好适合运动中的原子的固有频率,就会使原子产生跃迁,从而吸收和发射光子,达到使原子减速的目的。
因此这种冷却的方法称为多普勒冷却。
理论预计,对于钠原子,多普勒冷却的极限值为240μK。
用激光可以把各种原子冷却,使之降到毫开量级的极低温度,这就是20世纪七八十年代物理学家所做的事情。
1985年,朱棣文和他的同事在美国新泽西州荷尔德尔5(Holmdel)的贝尔实验室进一步用两两相对,沿三个正交方向的六束激光使原子减速。
他们让真空中的一束钠原子先是被迎面而来的激光束阻止了下来,然后把钠原子引进六束激光的交汇处。
这六束激光都比静止钠原子吸收的特征颜色稍微有些红移。
其效果就是不管钠原子企图向何方运动,都会遇上具有恰当能量的光子,并被推回到六束激光交汇的区域。
在这个小区域里,聚集了大量的冷却下来的原子,组成了肉眼看上去像是豌豆大小的发光的气团。
由六束激光组成的阻尼机制就像某种粘稠的液体,原子陷入其中会不断降低速度。
大家给这种机制起了一个绰号,叫“光学粘胶”。
上述实验中原子只是被冷却,并没有被陷俘。
重力会使它们在1秒钟内从光学粘胶中落下来。
为了真正陷俘原子,就需要有一个陷阱。
1987年做成了一种很有效的陷阱,叫作磁光陷阱。
它用六束激光,如上述排列,再加上两个磁性线圈,以便给出略微可变化的磁场,其最小值处于激光束相交的区域。
由于磁场会对原子的特征能级起作用(这种作用叫作塞曼效应),就会产生一个比重力大的力,从而把原子拉回到陷阱中心。
这时原子虽然没有真正被捉住,但却是被激光和磁场约束在一个很小的范围里,从而可以在实验中加以研究或利用。
朱棣文和他的小组在激光冷却和陷俘原子的技术中取得了突破性的进展,引起了物理学界的广泛关注。
继他们之后有很多科学小组很快超过了他们,但是他们开创的激光减速方法和光学粘胶的工作一直是其它成果的基础。
他们自己也没有止步,继续作出了新的努力。
6原子喷泉示意图例如,原子喷泉(如图所示)就是一项有重大意义的实验。
朱棣文小组根据扎查利亚斯(J.R.Zacharias)和汉斯的建议,把几种新的方法结合在一起,创造了一种可以用极高的精确度测量原子的光谱特性的装置。
他们把高度冷却并被陷俘了的原子非常平缓地向上喷出,在重力场中作抛射体运动,当到达顶点时原子正好处在微波腔内,然后在重力场的作用下开始下落。
这时,用相隔一定时间的两束微波辐射脉冲对这些原子进行探测。
如果微波脉冲的频率经过正确的调谐,这两个相继的微波脉冲将使原子从一种量子态转变成另一种量子态。
用这种方法朱棣文小组曾经测量过原子两个量子态之间的能量差,第一次实验的分辨率就高达一千亿分之二。
借助原子喷泉可以对原子的能级进行极为精确的测量,因此有可能在这一基础上建立最精确的原子钟。
目前不止有10个科研小组正在研制这种原子钟。
与此同时,菲利普斯和他在美国国家标准技术院的小组研究了在光学粘胶中缓慢运动的中性钠原子的冷云团。
他们7被理论与实验之间微小的不符所激励,创造了精确测量处于不同冷却条件下的云团温度的各种方法。
他们采用一种技术测量原子从光学粘胶区域下落到探测激光束处的飞行时间。
1988年初,他们发现,原子的温度约为40μK,比预计的多普勒极限240μK低得多。