电磁场与电磁波散度旋度
电磁场与电磁波第4讲梯度散度散度定理yPPT课件
P
6
3) 在广义坐标系中V的梯度为:
dV ( V)dl
dV
V l1
dl1
V l2
dl2
V l3
dl3
dl aˆu1dl1 aˆu2dl2 aˆu3dl3 aˆu1 (h1du1)aˆu2 (h2du2)aˆu3 (h3du3)
dV
V (
l1
aˆu1
V
l2
aˆu2
V
l3
aˆu3
)(aˆu1dl1
5
即:
dV GradV dn an
于是
沿着 dl 的方向导数为:
dV dV dn dV cos
dl dn dl dn
V n
aˆn aˆl
V
aˆl
该式表示V沿着al方向的空间增长 率等于V的梯度在该方向上的投影 (分量),也可写成:
dV ( V)dl
V
dV dn
an
l
nˆ
dn cos dl
直角坐标系
divAA=Ax Ay Az x y z
15
柱坐标系
divA
A=1 r
(rrAr
)
A
(rAz z
)
1 (rAr) 1 A Az
r r r z
球坐标系
divAA=R2s1in(ARR R 2sin)(A Rsin)(RA) =R 12(R 2 RAR)Rs1in(Asin)Rs1inA
aˆu2dl2
aˆu3dl3)
(V l1
aˆu1
V l2
aˆu2
V l3
aˆu3
)dl
V
V l1
aˆu1
V l2
aˆu2
《电磁场与电磁波》课后习题解答(全)
(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。
2014电磁场与电磁波1(散度旋度亥姆霍兹定理)
( A B) A B
(uA) u A A u
试求原点以外的空间点上电位移矢量D的散度。
q q a r 例:原点处点电荷q产生的电位移矢量 D 2 r 3 4 r 4 r
r xa x ya y za z
q x y z 解: D 3 ax 3 a y 3 az 4 r r r qx qy qz , Dy , Dz Dx 3 3 4 r 4 r 4 r 3 Dx q r 2 3z 2 q r 2 3 x 2 Dy q r 2 3 y 2 Dz , , 5 5 r r r5 x 4 y z 4 4 Dx Dy Dz divD D x y z q 3r 2 3( x 2 y 2 z 2 ) 0 5 r 4
矢量上任一点的切向矢量线元与矢量场之间的关系? 方向平行
F dl 0
dl axdx aydy azdz
ax ay az A B Ax Ay Az Bx By Bz
F ax Fx ay Fy az Fz
矢量A Ax a x Ay a y Az a z 矢量B Bx a x By a y Bz a z
散度代表场中任一点处,通量对体积的变化率,因此 又可称为通量源密度。
矢量的散度是一个标量。
在场中任意一点M处 若 div A 0 ,表明该点有发出通量线的正源。 若 div A 0 ,表明该点有吸收通量线的负源。 若 div A 0 ,表明该点无源。
div A 0
柱坐标系
divA A 1 ar a az ar Ar a A az Az z r r 1 1 A Az rAr r r r z
电磁场与电磁波--矢量场的散度及旋度
evz Fz
v F
1.4 矢量场的通量和散度
散度的表达式:
直角坐标系
v F
Fx
Fy
Fz
x y z
圆柱坐标系
v F
1 h h hz
h hz F
h hz F
z
h h Fz
1( F ) 1FFz z球坐标系
v F
1 hr h h
r
(h h Fr )
(hr h F
)
F
(hr
h
F
)
1 r2
方向相反大小 相等结果抵消
n
S
C
图 1.曲5.5 面曲面的的剖划分分
1.5 矢量场的环流与旋度
4. 散度和旋度的区别
v
v
F 0; F 0
v
v
F 0; F 0
v
v
F 0; F 0
v
v
F 0; F 0
1.5 矢量场的环流与旋度
例1 .5 点电荷q在离其 rv处产生的电场强度为
1.4.4 散度定理
从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等 于该闭合曲面所包含体积中矢量场的散度的体积分,即
vv
v
ÑS F dS V FdV
高斯(散度)定理
散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁 理论中有着广泛的应用。
1.4 矢量场的通量和散度
vv
v div F
r div F 0
1.4 矢量场的通量和散度
直角坐标系下散度表达式的推导
不失一般性,令包围P点的 微体积V 为一直平行六面 体,如图所示。则
蜒S Fv
v dS
S
电磁场与电磁波中七个矢量的散度、旋度和边界条件分析.
对于各向同性的磁介质来说,。因为,所以有: 。 的旋度:
由于,根据上边磁感应强度矢量的旋度表达式得:。表明磁介质中 某点的磁场强度的旋度等于该点的传导电流。
存在时变的电磁场时,,表明表明磁场的旋度源是传导电流和时变 的位移电流之和。 的边界条件:
由磁通连续性原理得到恒定磁场的散度:,结果表明磁感应强度的 散度恒为零,自然界中无孤立磁荷存在。 的旋度:
由安培环路定理可得到真空中磁感应强度的旋度为:,结果表明恒 定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源。
当有磁介质存在时,上式变为,为传导电流密度,为磁化电流密 度,既考虑磁化电流也是产生磁场的漩涡源。 的边界条件:
电磁场与电磁波中七个矢量的散度、旋度和边界
条件分析
《电磁场与电磁波》中共涉及到了七个矢量,它们是电场强度矢 量,电位移矢量,磁感应强度矢量,磁场强度矢量,极化强度,磁化强 度和电流密度矢量。亥姆霍兹定理指出,任一矢量场由它的散度、旋度 和边界条件唯一地确定,分析总结它们的散度、旋度和边界条件将有助 于我们加深对电磁场与电磁波的基本矢量的认识。
磁介质表面上的磁化电流面密度表达式为:,为磁介质表面法向 的单位矢量。则通过上面的表达式可推导出的边界条件是:。这表明磁 化强度在分界面切线方向不连续。 7. 电流密度矢量 的散度:
根据电荷守恒定律,单位时间内从闭合面内流出的电荷量应等于 闭合面所限定的体积内的电荷减少量,即,设定闭合面所限定的体积不 随时间变化,将全导数写成偏导数,变为:,应用散度定理。得到,从 而得到:。 的旋度:
对于各向同性介质,有,因此电位移矢量的旋度为 的边界条件:
电磁学讲义04-散度、环路、旋度定理
思考:如果已经知道电场分布,如何求电荷分布?•如图以P(x,y,z)点为中心,∆x ,∆y 和∆z 为边长,取小立方体。
先考虑与x 轴垂直的两个面贡献的通量,则只考虑A的x 分量即可:同理有:zy z y xx A z y z y x x A x x x ΔΔ•Δ−−ΔΔ•Δ+=),,2(),,2(φz y x yA yy ΔΔΔ∂∂=φz y x z A zz ΔΔΔ∂∂=φ则有散度:A A A A zy x z y x ∂+∂+∂=++=•∇φφφK )2(),,(),,2(x x A z y x A z y x x A x x x Δ±⋅∂∂+≈Δ±zy x x A z y x x A x x A x x x x ΔΔΔ∂∂=ΔΔ•⎥⎦⎤⎢⎣⎡Δ−∂∂−Δ∂∂≈)2(2φ利用全微分概念,有:则:电场的散度-讨论•电场某处的单位体积内的电通量正比于此处单位体积内的电荷量。
•电场的散度定理说明,在电荷体密度不是无穷大的点,场强矢量在该点连续,在各方向可求导。
•只适用于电荷体密度–而不能用于点电荷、线电荷、面电荷所在的位置,那些位置没法定义电荷的体密度。
同时这些位置的电场强度值无意义。
•可用于计算电荷分布。
•计算场强一般采用高斯定理积分形式,不必采用微分形式,即散度定理。
–教材P54例题4用散度定理求电场的方法少见。
§2.4静电场的高斯定理和环路定理--静电场的矢量场理论(二)•静电场环路定理•静电场旋度定理# 旋度的定义•如前所述,在矢量场空间任意点,取任意一个方向,则存在一个围绕此方向的环量面密度。
在这一点,有无数个方向可以选择,也因此相应的存在无数个环路面密度。
这些环量面密度之间存在确定的关系。
•旋度:是一个矢量,取矢量场某一点的环量面密度的最大值为模,并取相应的曲面法线方向。
称为矢量场在该点的旋度,记为:–旋度是矢量!•绕任一方向的环量面密度等于旋度在这一方向的投影(证明略)A K ×∇n ˆn ˆA KA K静电场矢量场原理的总结•静电场:有源、无旋场。
电磁场与电磁波复习资料
一、名词解释1.通量、散度、高斯散度定理通量:矢量穿过曲面的矢量线总数。
(矢量线也叫通量线,穿出的为正,穿入的为负)散度:矢量场中任意一点处通量对体积的变化率。
高斯散度定理:任意矢量函数A的散度在场中任意一个体积内的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。
2.环量、旋度、斯托克斯定理环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。
其物理意义随A 所代表的场而定,当 A 为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。
旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。
斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。
3.亥姆霍兹定理在有限区域 V 内的任一矢量场,由他的散度,旋度和边界条件(即限定区域 V 的闭合面S 上矢量场的分布)唯一的确定。
说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.电场力、磁场力、洛仑兹力电场力:电场力:电场对电荷的作用称为电力。
磁场力:运动的电荷,即电流之间的作用力,称为磁场力。
洛伦兹力:电场力与磁场力的合力称为洛伦兹力。
5.电偶极子、磁偶极子电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。
磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。
6.传导电流、位移电流传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。
位移电流:电场的变化引起电介质内部的电量变化而产生的电流。
7.全电流定律、电流连续性方程全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面内穿过的全部电流的代数和。
电流连续性方程:8.电介质的极化、极化矢量电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子内的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。
电磁场与电磁波复习重点
梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。
2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。
:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。
散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。
斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。
A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。
3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。
关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。
电磁场与电磁波
14
环量: 环量:矢量场 A 沿一条有向曲线 l 的线积分称为矢 量场 A 沿该曲线的环量,以 Γ (gamma) 表示,即 沿该曲线的环量, 表示,
Γ = ∫ A ⋅ dl
l
可见, 可见,若在闭合有向曲线 l 上,矢量场 A 的方向处 的方向保持一致, ; 处与线元 dl 的方向保持一致,则环量 Γ > 0;若处 处相反, 可见, 处相反,则 Γ < 0 。可见,环量可以用来描述矢量 场的旋涡特性。 旋涡特性 场的旋涡特性。 但是环量代表的是闭合曲线包围的总的源强度, 但是环量代表的是闭合曲线包围的总的源强度,它 不能显示源的分布特性。为此,需要研究矢量场的 不能显示源的分布特性。为此, 分布特性 旋度。 旋度。
ey Ay By
ez Az Bz ez A B sin θ
2
4. 标量场的梯度
10
5
0
-5
-10 4 2 0 -2 -4 -4
3
4 2 0 -2
方向导数:标量场在某点的方向导数表示标量场 方向导数 标量场在某点的方向导数表示标量场 自该点沿某一方向上的变化率。 自该点沿某一方向上的变化率。 例如标量场 Φ 在 P 点沿 l 方向上的方向 ∂Φ 导数 ∂l 定义为 ∂Φ = lim Φ( P′) − Φ( P) P
8
由物理得知, 由物理得知,真空中的电场强度 E 通过任一闭合曲 面的通量等于该闭合面包围的自由电荷的电量 q 与 之比, 真空介电常数 ε 0 之比,即,
∫
S
E ⋅ dS =
q
ε0
可见,当闭合面中存在正电荷时,通量为正。 可见,当闭合面中存在正电荷时,通量为正。当闭合 面中存在负电荷时,通量为负。 面中存在负电荷时,通量为负。在电荷不存在的无源 区中,穿过任一闭合面的通量为零。 区中,穿过任一闭合面的通量为零。这一电学实例充 分地显示出闭合面中正源、负源及无源的通量特性。 分地显示出闭合面中正源、负源及无源的通量特性。 但是,通量仅能表示闭合面中源的总量, 但是,通量仅能表示闭合面中源的总量,它不能显示 分布特性 散度。 源的分布特性。为此需要研究矢量场的散度 源的分布特性。为此需要研究矢量场的散度。
浅谈电磁场理论中梯度、散度和旋度的教学
`/&- &"%"'. %'
-'.
4右`/- &"%"'. 0T-右
`[ &b/&- &"%"'. ]%b/%- &"%"'. ]'b/'- &"%"'. ] 0- &b%'.
`/&- &"%"'. %'
-$%.
在本模型中"穿过左右两个有向面元的流体方向与各
自的有向面元- 的法向方向0b`c&b大体一致$ 因此"根据
布函数!-&"%"'."沿三个坐标轴方向各自的空间变化率$ 三梯度模型 在电磁场理论中"标量场的梯度和矢量场的散度及旋
度的物理意义一直是教学的重点和难点$ 基于上一小节
点处电场的极化方向$ 每个电场分量的下角标)&#)%和 )'也表示相应的极化方向$ 每个电场分量中括号内的自 变量表示该电场分量所在的空间位置$ 比如)&- 表 &"%"'. 示在空间6-&"%"'.点处的电场沿&方向极化的分量$
科教论坛
!"#!$%&$'(') *+&,-./&$01$21(3$&)%)()1%%3
科技风 年 月
浅谈电磁场理论中梯度散度和旋度的教学
吴微微4徐延林4何 艳
国防科技大学电子科学学院湖南长沙
电磁场与电磁波期末复习知识点归纳
B(r ) 0
B ( r ) d l I 0 L B ( r ) d S 0
S
安培环路定理
了解电介质的极化和磁介质的磁化: 2.4.1 、电介质的极化 电位移矢量
D 0E p
▲
极化面电荷
极化体电荷
▲
ˆ sp ( r ) P ( r ) n p (r) P(r)
dD 量与电场的关系式为: ,而传导电流是电荷 Jd dt
di dq 的定向运动形成的, J 或 E 。 ds ds dt 2、所以传导电流只能存在于导体中,而位移电流可以
存在于真空、导体、电介质中。
3、传导电流通过导体会产生焦耳热,而位移电流不会。
★ 麦克斯韦方程组数学表示
★ 电磁场的边界 条件总结
2、磁感应强度的法向分量连续; 3、电位移矢量的法向分量的突变量
等于边界上的电荷面密度,
4、磁场强度的切向分量的突变量 等于边界电流面密度。
1、E1t E2t
2、B1n B2n
ˆ ( E1 E2 ) 0 n
ˆ B1 B 2 0 n
3、D1n D2n s
B 3、 E 变化的磁场是涡旋电场的旋涡源。与电荷产生的
无旋电场不同,涡旋电场是有旋场,其电力线是无头无尾的闭 合曲线,并与磁力线相交链。
D 4、 H J 传导电流和变化的电场都是磁场的旋涡源。磁场是 t
t
有旋场,磁力线是闭合曲线,并与全电流线相交链。
一般情况下 1、电场强度的切向分量连续,
积分形式
微分形式
全电流定律 电磁感应定律 磁通连续性原理
电磁场与电磁波梯度散度散度定理PPT课件
例 已知 F aˆRkR
判断散度定理是否适用于图中所示 的壳层区域。壳层的封闭面是以原 点 为 中 心 而 半 径 分 别 为 R=R1 和 R=R2(R2>R1)的两个球面。
解 在外表面上:
R2 R1
在内表面上:
R R2, d S aˆRR22 sin d d
R R1, d S aˆRR12 sin d d
y
aˆz
z
2xyaˆx (x2 2 yz)aˆy y2aˆz
那么在(2,1,3)处的梯度为
Grad 4aˆx 10aˆy aˆz
其模为
117
因此,在(2,1,3)处方向导数的最大值为(117)1/2
11
第11页/共28页
12
例2
f
aˆ
f
aˆ
f
aˆz
f z
第12页/共28页
l
nˆ
n cos
l
P
7
第7页/共28页
某点的梯度的性质: (1)垂直于给定函数的等值面。 (2)指向给定函数在某位置变化最快的方向。 (3)它的大小等于给定函数每单位距离的最大变化率。 (4)一个函数在某点任意方向的方向导数等于此函数的梯度与 该方向单位矢量的点积(标积)。
可以看出:掌握了某一点的梯度,可以知道标量场沿什么方向 标量场变化最大,及其最大值(梯度的方向及大小);而且可
标量场在某点的梯度的大小等于该点的最大方向导数, 梯度的方向为该点具有最大方向导数的方向(与等值面 垂直,且指向标量场增大的方向)。
V GradV n an 沿任意方向的方向导数(变化率)?
V V n V cos
l n l n
V n
《电磁场与电磁波》习题参考答案
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
电磁场与电磁波基础知识总结
电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
电磁学中几个基本矢量的性质
电磁学中几个基本矢量的性质杨东杰2900103013摘要本文在学习完电磁学的基本矢量知识的基础上,统一地推导研究电磁学中各个矢量的性质,即散度、旋度及其边界条件。
关键字散度旋度边界条件引言在学习了第二章关于电磁场的一些基本规律之后,我们知道了很多电磁场的基本理论知识,但是书本上都是分别逐一地对各个矢量的性质,如散度、旋度及边界条件进行推论,所以本文意在对各个矢量的性质作一个统一的推导总结,从而加深对知识的理解。
正文一,电场强度的散度、旋度及边界条件。
1,散度。
用电荷按体密度分布库伦定律:利用可将写为对上式两边取散度,得利用关系式,上式变为在利用函数的挑选性,有则由式(2)得因已假设电荷分布在区域V内,故可由上式得的E散度2,旋度。
在静电场中,由式1,微分算符是对场点坐标求导,与源点坐标无关,故可将算符从积分中移出,即对上式两边取旋度,即上式右边括号内是一个连续标量函数,而任何一个标量函数的梯度再求旋度时恒等于0,则得在时变电磁场中,变化的磁场会产生电场。
在一回路中,由法拉第电磁感应定律,得利用斯托克斯定理,上式可表示为上式对任意回路所谓面积S都成立,故必有3,边界条件。
在参数分别为的两种媒质的分界面上,设分界面法向单位矢量为,是沿分界面的切向单位矢量。
则在垂直于分界面的矩形闭合路径abcda上,由麦克斯韦第二方程,当时有故得或也可写为表明电场强度的切向分量是连续的。
二,电位移矢量的散度、旋度及边界条件。
1,散度。
在电介质中,在外场作用下电介质发生极化,产生极化电荷。
电介质中的电场可视为自由电荷和极化电荷在真空中产生电场的叠加,即。
将真空中成立的式3推广至电介质中,得即极化电荷也是产生电场的通量源。
由式(后面会推导)代入上式得而由于,我们得到2,旋度。
由于本构关系,我们可以由的旋度直接得到:在静电场中,而在时变电磁场中,3,边界条件。
如同以上边界条件的界定下,在分界面上取一个扁圆柱形闭合面,当其高度时,圆柱侧面对积分的贡献可忽略,且此时分界面上存在的自由电荷面密度为,则得即故或当两种媒质都不是理想导体的边界条件时,有,则三,磁感应强度的散度、旋度及边界条件。
电磁场与电磁波名词解释
场:某种物理量在空间的分布。
力线:力线是一簇空间有向曲线,矢量场较强处力线稠密,矢量场较弱处力线稀疏,力线上的切线方向代表该处矢量场的方向.通量:在场区域的某点选取面元,穿过该面元矢量线的总数称为矢量场对于面积元的通量,矢量场对于曲面S的通量为曲面S上所有面积元通量的叠加。
散度:表示在场中任一点处通量对体积的变化率,即该点处在一个单位体积内所穿出的通量,可称为“通量源密度”。
环量:在矢量场A中,矢量A沿某一闭合路径的线积分。
旋度:单位面积内平均环流的极限,可称为“环流密度”高斯散度定理:任意矢量场A的散度在场中任意一个体积内的体积分,等于矢量场A在该体积组成的闭合曲面上的面积分。
斯托克斯定理:任意矢量场A的旋度在场中任意一个面积内的面积分,等于矢量场A在该面积组成的回路C上的线积分。
亥姆霍兹定理:任意矢量场由它的散度、旋度、和边界条件唯一的确定。
电流元:把很短一段通电导线中的电流I与导线长度L的乘积IL称为电流元,是产生磁场的最小单位。
电偶极子:是两个相距很近的等量异号点电荷组成的系统。
电偶极子的特征用电偶极距P=lq描述,其中l是两点电荷之间的距离,l和P的方向规定由-q指向+q。
电位移矢量:单位面积上位移穿过的束缚电荷量。
磁偶极子:磁偶极子是指一个面积dS很小的任意形状的平面载流回路。
电位函数:静电场是一个无旋的矢量场,它可以用一个标量函数的梯度表示,此标量函数极电位函数。
电解质的极化:在外电场的作用下,电解质的非极性分子的正负电荷中心发生相对位移,极性分子的极矩发生转向,使他们的等效偶极子电矩的矢量和不再为0。
极化强度:电介质极化后形成的每单位体积内的电偶极矩。
静电力:可由能量的空间变化率计算得出。
自感:穿过回路的磁链是由回路本身的电流产生的,则磁链与电流的比值为自感。
互感:在线性媒质中,由回路1的电流I1所产生而与回路2交链的磁链和I1成正比,即;同理,由回路2的电流I2所产生而与回路1交链的磁链和I2成正比,即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章矢量分析
矢量场和标量场
三种常用的坐标系
矢量的基本运算
标量场的梯度
矢量场的散度
矢量场的旋度
亥姆霍兹定理
* 标量场的梯度是一个矢量场;
* 当a l的方向与梯度方向一致时,方向导数取得最大值。
* 标量场在某点梯度的大小等于该点的最大方向导数,梯度的方向为该点具有最大方向导数的方向。
矢量场的散度
✧闭合面的通量
✧散度的定义
✧散度的性质
✧高斯散度定理
矢量场的矢量线
为描绘矢量场在空间的分布状况,引入矢量线的概念。
矢量线上每一点的切线方向都代表该点的矢量场的方向。
线的疏密代表场的大小。
一般说来,矢量场的每一点均有唯一的一条矢量线通过,所以矢量线充满了整个矢量场所在的空间。
电场中的电力线和磁场中的磁力线等,都是矢量线的例子。
x y z d F F F dx dy dz
F l 求出该微分方程的通解可绘出矢量线
z
y x F F F
式中,C
1和C
2
为任意常数,可以看出,
电力线是一簇从点电荷所在点向空间发散的径向辐射线,这一簇矢量线形象地描绘出点电荷的电场分布状况。
矢量场的通量
面元通量 反映矢量通过面元的量(如:水量) 对于开表面, n 与表面的闭合曲线构成右手螺旋关系。
对于闭合表面, n 为外法向单位矢。
矢量与n 成锐角,通量为正
cos d d Ads
A s 将曲面的一个面元用矢量d S 来表示,其方向取为面元的法线方向,其大小为d S ,即d S =n dS ,n
是面元法线方向的单位矢量。
矢量场的通量
矢量的通量Φ
S S d dS
A S A n 通量的意义:通过曲面S 的量(对于流速场:水流量) 通量是个标量。
矢量场的通量
闭合面通量Φ的物理意义
对于封闭曲面S ,如果 >0,表示净通量线从曲面S 的内部穿出曲面,因为通量线一定是通量正源发出的,所以根据能量守恒原理,可以判断曲面S 内必然包含发出通量线的正源。
反之,如果 <0,则曲面内必然包含吸收通量线的负源。
如果 =0,则曲面内不包含净源。
因此,通量可以是封闭曲面内通量源的判据。
•矢量的散度是一个标量,是空间坐标点的函数;•散度代表场中任一点处,通量对体积的变化率,因此又可称为通量源密度。
在场中任意一点M 处
若,表明该点有发出通量线的正源。
若,表明该点有吸收通量线的负源。
若,表明该点无源。
div 0 A div 0 A div 0 A div 0
A div 0
A div 0 A 散度运算能起到验源的作用。
x x x x A x y z A y z
x A x y z x
前后
x
y
o x
x A A x
x
S
y x z d A A A V x
y z
左右前后
上下
A S
x y z x x y y z z A A A x y z a a a a a a A
0r r r
a a 0r z z a a
散度基本运算公式C
A A
C C
()
A B A B
()
A A A
u u u
()
2222
533()04y x z
D D D div x y z
q r x y z r
D D 含义:散度为0→通量源的密度为0→??
V S
V
S
dV d
A A S
1
1
lim i
i k k
i
S V i i V d
A A S
公共面上
则
V
S
dV d
A A S Guass 定理把通量源的体积分变换为S 面上场的面积分。
得证。
in jn
n n i j
d d A S A S 1
i
k
S S
i d d
A S A S
33
43343
S V V d dV dV R R r S r
矢量场的旋度
✧矢量场在闭合路径的环量✧矢量场的旋度
✧旋度的基本运算公式
✧斯托克斯定理
矢量的环量
环量:矢量A 沿闭合路径的线积分。
cos c
c
d A d
A l l
•环量表达的是旋涡特性,环量越大,旋转的趋势越强
•与矢量及路径有关
•描述的是旋涡特性的总量
如果某矢量的环量不为零,则认为场中必然有产生这种场的旋涡源。
如果环量为零,则这个场中不可能有旋涡源。
lim
S rot S
A n 对比方向导数和梯度的概念!!
旋度为0,该点无漩涡 旋度不为0,该点有漩涡
如果矢量场处处旋度为0,则该矢量场为无旋场
以点M (x ,y ,z )为顶点在平行于yoz 平面上,取矩形面元 设点M 处的面元矢量为
旋度在三个坐标系中的计算公式
直角坐标系
x x y z
S a x x y y z z
A A A A a a a
z y z
y
z
lim
z
y
c
x z S z
d A A rot S x y
A l A
x
y
z
x y z A A A
A
r z
A rA A
sin R
R A RA R A
22
x y z x y x dx y dy
000
02
2
2
2
c
d x dx y dy x dx y dy
A l
旋度基本运算公式
C
A A
C C
()
A B A B
()
A A A
u u u
()
A B B A A B
()
【斯托克斯Stokes 定理】
c
S
d d
A C A S
其中S 是回路c 界定的面积。
意义:环量面密度的面
积分是曲面的环量,矢量在曲面边上的线积分也是曲面的环量,两种算法的结果一样。
S dS A n A n c d A l
得
i i
c A
d d
l A S
将所有面元叠加,在△S i →0条件下,有
1
1
i
k
k
i
c i i
d d
A l A S c
S
d d
A l A S
得证。
相邻边界对消
●矢量函数的线积分与面积分的互换。
●
该公式表明了区域S中场A 与边界L 上的场A 之间的关系●
Gauss公式和Stockes公式是两个非常重要的公式。
线积分---面积分-----体积分
由于在O A路径上有y=0,d y=0,及在B O路径上有x=0,d x=0,即F d l在这两部分积分中均为0,所以
C
(2)9(1)
2
B B
A A
d d xydx-xdy
F l F l
2
()S
C
d d
F l F S
由上可得:
()()()
()()()x y z
rot x
y
z
x z y y x z z y x z y x z y x
A A a a a
26317
27777
M
A
n
333303340
x y z q z y x z y r z r z r x r y x x r y r a a a
旋度的两个重要性质
性质1:旋度的散度恒等于0。
推论:对于一个散度恒为0的矢量B ,可以将其表示为矢量A 的旋度。
div rot A A 0 B B A
()()()0
y y x x
z z A A A A A A x y z y z x z x y
A
性质2:标量的梯度的旋度恒等于0。
rot gradu u 推论:一个旋度为0的矢量A 可以表示为某个标量函数u 的梯度
A u
0A
0u x y z x y z u u u x
y
z x
y
z
作业 1.13,1.16
1、采用直角坐标系下 算子的公式证明:
2、根据 算子的运算规则,证明:
()() u u u u 为常数矢量
C C
C C C ()()u u u u u u A A A A A A。