电磁场与电磁波散度旋度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章矢量分析
矢量场和标量场
三种常用的坐标系
矢量的基本运算
标量场的梯度
矢量场的散度
矢量场的旋度
亥姆霍兹定理
* 标量场的梯度是一个矢量场;
* 当a l的方向与梯度方向一致时,方向导数取得最大值。* 标量场在某点梯度的大小等于该点的最大方向导数,梯度的方向为该点具有最大方向导数的方向。
矢量场的散度
✧闭合面的通量
✧散度的定义
✧散度的性质
✧高斯散度定理
矢量场的矢量线
为描绘矢量场在空间的分布状况,引入矢量线的概念。矢量线上每一点的切线方向都代表该点的矢量场的方向。线的疏密代表场的大小。
一般说来,矢量场的每一点均有唯一的一条矢量线通过,所以矢量线充满了整个矢量场所在的空间。电场中的电力线和磁场中的磁力线等,都是矢量线的例子。
x y z d F F F dx dy dz
F l 求出该微分方程的通解可绘出矢量线
z
y x F F F
式中,C
1和C
2
为任意常数,可以看出,
电力线是一簇从点电荷所在点向空间发散的径向辐射线,这一簇矢量线形象地描绘出点电荷的电场分布状况。
矢量场的通量
面元通量 反映矢量通过面元的量(如:水量) 对于开表面, n 与表面的闭合曲线构成右手螺旋关系。
对于闭合表面, n 为外法向单位矢。 矢量与n 成锐角,通量为正
cos d d Ads
A s 将曲面的一个面元用矢量d S 来表示,其方向取为面元的法线方向,其大小为d S ,即d S =n dS ,n
是面元法线方向的单位矢量。
矢量场的通量
矢量的通量Φ
S S d dS
A S A n 通量的意义:通过曲面S 的量(对于流速场:水流量) 通量是个标量。矢量场的通量
闭合面通量Φ的物理意义
对于封闭曲面S ,如果 >0,表示净通量线从曲面S 的内部穿出曲面,因为通量线一定是通量正源发出的,所以根据能量守恒原理,可以判断曲面S 内必然包含发出通量线的正源。 反之,如果 <0,则曲面内必然包含吸收通量线的负源。 如果 =0,则曲面内不包含净源。 因此,通量可以是封闭曲面内通量源的判据。
•矢量的散度是一个标量,是空间坐标点的函数;•散度代表场中任一点处,通量对体积的变化率,因此又可称为通量源密度。
在场中任意一点M 处
若,表明该点有发出通量线的正源。 若,表明该点有吸收通量线的负源。 若,表明该点无源。
div 0 A div 0 A div 0 A div 0
A div 0
A div 0 A 散度运算能起到验源的作用。
x x x x A x y z A y z
x A x y z x
前后
x
y
o x
x A A x
x
S
y x z d A A A V x
y z
左右前后
上下
A S
x y z x x y y z z A A A x y z a a a a a a A
0r r r
a a 0r z z a a
散度基本运算公式C
A A
C C
()
A B A B
()
A A A
u u u
()
2222
533()04y x z
D D D div x y z
q r x y z r
D D 含义:散度为0→通量源的密度为0→??
V S
V
S
dV d
A A S
1
1
lim i
i k k
i
S V i i V d
A A S
公共面上
则
V
S
dV d
A A S Guass 定理把通量源的体积分变换为S 面上场的面积分。
得证。
in jn
n n i j
d d A S A S 1
i
k
S S
i d d
A S A S
33
43343
S V V d dV dV R R r S r
矢量场的旋度
✧矢量场在闭合路径的环量✧矢量场的旋度
✧旋度的基本运算公式
✧斯托克斯定理
矢量的环量
环量:矢量A 沿闭合路径的线积分。
cos c
c
d A d
A l l
•环量表达的是旋涡特性,环量越大,旋转的趋势越强
•与矢量及路径有关
•描述的是旋涡特性的总量
如果某矢量的环量不为零,则认为场中必然有产生这种场的旋涡源。
如果环量为零,则这个场中不可能有旋涡源。
lim
S rot S
A n 对比方向导数和梯度的概念!!
旋度为0,该点无漩涡 旋度不为0,该点有漩涡
如果矢量场处处旋度为0,则该矢量场为无旋场
以点M (x ,y ,z )为顶点在平行于yoz 平面上,取矩形面元 设点M 处的面元矢量为
旋度在三个坐标系中的计算公式
直角坐标系
x x y z
S a x x y y z z
A A A A a a a