半导体基础知识

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.什么是导体、绝缘体、半导体?

容易导电的物质叫导体,如:金属、石墨、人体、大地以及各种酸、碱、盐的水溶液等都是导体。

不容易导电的物质叫做绝缘体,如:橡胶、塑料、玻璃、云母、陶瓷、纯水、油、空气等都是绝缘体。

所谓半导体是指导电能力介于导体和绝缘体之间的物质。如:硅、锗、砷化镓、磷化铟、氮化镓、碳化硅等。半导体大体上可以分为两类,即本征半导体和杂质半导体。本征半导体是指纯净的半导体,这里的纯净包括两个意思,一是指半导体材料中只含有一种元素的原子;二是指原子与原子之间的排列是有一定规律的。本征半导体的特点是导电能力极弱,且随温度变化导电能力有显著变化。杂质半导体是指人为地在本征半导体中掺入微量其他元素(称杂质)所形成的半导体。杂质半导体有两类:N型半导体和P型半导体。

2.半导体材料的特征有哪些?

(1)导电能力介于导体和绝缘体之间。

(2)当其纯度较高时,电导率的温度系数为正值,随温度升高电导率增大;金属导体则相反,电导率的温度系数为负值。

(3)有两种载流子参加导电,具有两种导电类型:一种是电子,另一种是空穴。同一种半导体材料,既可形成以电子为主的导电,也可以形成以空穴为主的导电。

(4)晶体的各向异性。

3.简述N型半导体。

常温下半导体的导电性能主要由杂质来决定。当半导体中掺有施主杂质时,主要靠施主提供电子导电,这种依靠电子导电的半导体叫做N型半导体。

例如:硅中掺有Ⅴ族元素杂质磷(P)、砷(As)、锑(Sb)、铋(Bi)时,称为N型半导体。

4.简述P型半导体。

当半导体中掺有受主杂质时,主要靠受主提供空穴导电,这种依靠空穴导电的半导体叫做P型半导体。

例如:硅中掺有Ⅲ族元素杂质硼(B)、铝(Al)、镓(Ga)、铟(In)时,称为P型半导体。

5.什么是半绝缘半导体材料?

定义电阻率大于107Ω*cm的半导体材料称为半绝缘半导体材料。

如:掺Cr的砷化镓,非掺杂的砷化镓为半绝缘砷化镓材料。

掺Fe的磷化铟,非掺杂的磷化铟经退火为半绝缘磷化铟材料。

6.什么是单晶、多晶?

单晶是原子或离子沿着三个不同的方向按一定的周期有规则地排列,并沿一致的晶体学取向所堆垛起来的远程有序的晶体。

多晶则是有多个单晶晶粒组成的晶体,在其晶界处的颗粒间的晶体学取向彼此不同,其周期性与规则性也在此处受到破坏。

7.常用半导体材料的晶体生长方向有几种?

我们实际使用单晶材料都是按一定的方向生长的,因此单晶表现出各向异性。单晶生长的这种方向直接来自晶格结构,常用半导体材料的晶体生长方向是<111>和<100>。

规定用<111>和<100>表示晶向,用(111)和(100)表示晶面。

8.什么是电导率和电阻率?

所有材料的电导率(σ)可用下式表达:

σ=neμ

其中n为载流子浓度,单位为cm-3;e为电子的电荷,单位为C(库仑);μ为载流子的迁移率,单位为cm2/V*s;电导率单位为S/cm(S为西门子)。

电阻率ρ=1/σ,单位为Ω*cm

9.PN结是如何形成的?它具有什么特性?

如果用工艺的方法,把一边是N型半导体另一边是P型半导体结合在一起,这时N型半导体中的多数载流子电子就要向P型半导体一边渗透扩散。结果是N型区域中邻近P型区一边的薄层A中有一部分电子扩散到P型区域中去了,如图2-6所示(图略)。薄层A中因失去了这一部分电子而带有正电。同样,P型区域中邻近N型区域一边的薄层B中有一部分空穴扩散到N型区域一边去了,如图2-7所示(图略)。结果使薄层B带有负电。这样就在N型和P型两种不同类型半导体的交界面两侧形成了带电薄层A和B(其中A带正电,B带负电)。A、B间便产生了一个电场,这个带电的薄层A和B,叫做PN结,又叫做阻挡层。

当P型区域接到电池的正极,N型区域接到电池的负极时,漂移和扩散的动态平衡被破坏,在PN 结中流过的电流很大(这种接法称为正向连接)。这时,电池在PN结中所产生的电场的方向恰好与PN 结原来存在的电场方向相反,而且外加电场比PN结电场强,这两个电场叠加后电场是由P型区域指向N型区域的。因此,PN结中原先存在的电场被削弱了,阻挡层的厚度减小了,所以正向电流将随着外加正向电压的增加而迅速地上升。

当P型区域接到电池的负极,N型区域接到电池的正极时,在PN结中流过的电流很小(这种接法称为反向连接)。这是由于外加电压在PN结中所产生的电场方向是由N型区指向P型区,也即与原先在PN结中存在的电场方向是一致的。这两个电场叠加的结果,加强了电场阻止多数载流子的扩散运动,此时,阻挡层的厚度比原来增大,原来漂移和扩散的动态平衡也被破坏了,漂移电流大于扩散电流,正是这个电流造成反向漏电流。PN结的这种性质叫做单向导电性。

10.何谓PN结的击穿特性?

对PN结施加的反向偏压增大到某一数值时,反向电流突然开始迅速增大,这种现象称为PN结击穿。发生击穿时的反向偏压称为击穿电压,以V B表示。击穿现象中,电流增大基本原因不是由于迁移率的增大,而是由于载流子数目的增加。到目前为止,基本上有三种击穿机构:热电击穿、雪崩击穿和隧道击穿。从击穿的后果来看,可以分为物理上可恢复的和不可恢复的击穿两类。热电击穿属于后一类情况,它将造成PN结的永久性损坏,在器件应用时应尽量避免发生此类击穿。雪崩击穿和隧道击穿属于可恢复性的,即撤掉电压后,在PN结内没有物理损伤。

11.试述什么是光电二极管。

当光照到PN结上时,光能被吸收进入晶格,使电子的能级提高,这就导致某些电子脱离它们的原子,因此产生了自由电子与空穴。在光电导光电二极管中,在PN结上加一反向电压,由光能在结构附近产生了电子与空穴,它们被电场吸引从相反的方向穿过结形成电流,电流从负载电阻流出产生了输出信号。光的强度越高,产生的空穴与自由电子就越多,电流也就越大。没有光时,电流只有PN结的小的反向漏电流,这种电流称为暗电流。

12.何谓欧姆接触?

金属与半导体间没有整流作用的接触称为欧姆接触。实际上的欧姆接触几乎都是采用金属-N+N半导体或金属-P+P半导体的形式制成的。在这种接触中,金属与重掺杂的半导体区接触,接触界面附近存在大量的复合中心,而且电流通过接触时的压降也往往小到可以不计。

制造欧姆接触的方法有两种。如果金属本身是半导体的施主或受主元素,而且在半导体中有高的固溶度,就用合金法直接在半导体中形成金属-N+或金属-P+区。如果金属本身不是施主或受主元素,可在

相关文档
最新文档