国家开放大学电大本科《工程数学》2022-2023期末试题及答案(试卷号:1080)
《工程数学》电大历年期末试题及答案 (2)

工程数学电大历年期末试题及答案第一章:复数及其运算1.1 复数的定义和性质试题:1.请简要叙述复数的定义和性质。
2.复数的共轭运算是指什么?给出其定义和性质。
3.试证明虚数单位i满足i2=−1。
答案:1.复数是由实数和虚数部分构成的数,通常表示为a+bi的形式,其中a是实数部分,b是虚数部分,i是虚数单位。
复数的性质有:–复数可以相加:(a+bi) + (c+di) = (a+c) + (b+d)i–复数可以相乘:(a+bi) * (c+di) = (ac-bd) + (ad+bc)i–复数的加法和乘法满足交换律和结合律。
2.复数的共轭运算是指改变虚数部分的符号,即将a+bi变为a-bi。
共轭运算的定义和性质如下:–定义:对于任意复数z=a+bi,其共轭复数为z* = a-bi。
–性质:(a+bi) * (a-bi) = a^2 + b^2,即一个复数与其共轭的乘积等于实数部分的平方加虚数部分的平方。
3.可以通过计算i2来证明虚数单位i满足i2=−1:–i2=(0+1i)∗(0+1i)=−1。
1.2 复数的指数表示和三角函数形式试题:1.请简要叙述复数的指数表示形式和三角函数形式。
2.试证明对于任意复数z,有$e^{i\\theta} =\\cos\\theta + i\\sin\\theta$。
答案:1.复数的指数表示形式是通过欧拉公式来表达,即$z= r \\cdot e^{i\\theta}$,其中r是复数的模,$\\theta$是复数的辐角。
复数的三角函数形式是通过复数的实部和虚部来表示,即$z = a + bi = r\\cos\\theta + r\\sin\\theta i$,其中r是复数的模,$\\theta$是复数的辐角。
2.可以通过欧拉公式来证明对于任意复数z,有$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$:–欧拉公式表示为$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$。
1080电大工程数学期末复习

《工程数学》期末综合练习题工程数学(本)课程考核说明(修改稿)I. 相关说明与实施要求本课程的考核对象是国家开放大学(中央广播电视大学)理工类开放教育专升本土木工程专业及水利水电工程专业的学生。
本课程的考核形式为形成性考核和期末考试相结合的方式。
考核成绩由形成性考核成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格。
其中形成性考核成绩占考核成绩的30%,期末考试成绩占考核成绩的70%。
形成性考核的内容及成绩的评定按《国家开放大学(中央广播电视大学)人才培养模式改革与开放教育试点工程数学形成性考核册》的规定执行。
工程数学(本)课程考核说明是根据《国家开放大学(中央广播电视大学)专升本“工程数学(本)”课程教学大纲》制定的,参考教材是《大学数学——线性代数》和《大学数学——概率论与数理统计》(李林曙主编,中央广播电视大学出版社出版)。
考核说明中的考核知识点与考核要求不得超出或超过课程教学大纲与参考教材的范围与要求。
本考核说明是工程数学(本)课程期末考试命题的依据。
工程数学(本)是国家开放大学(中央广播电视大学)专升本土木工程专业学生的一门重要的必修基础课,其全国统一的结业考试(期末考试)是一种目标参照性考试,考试合格者应达到普通高等学校理工类专业的本科水平。
因此,考试应具有较高的信度、效度和一定的区分度。
试题应符合课程教学大纲的要求,体现广播电视大学培养应用型人才的特点。
考试旨在测试有关线性代数、概率论与数理统计的基础知识,必要的基础理论、基本的运算能力,以及运用所学基础知识和方法,分析和解决问题的能力。
期末考试的命题原则是在考核说明所规定的范围内命题,注意考核知识点的覆盖面,在此基础上突出重点。
考核要求分为三个不同层次:有关定义、定理、性质和特征等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算、解法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次。
三个不同层次由低到高在期末试卷中的比例为:2:3:5。
电大《工程数学》期末复习题

《工程数学》期末复习题库工程数学(本)模拟试题一、单项选择题(每小题3分,共15分)1.设B A ,为n 阶矩阵,则下列等式成立的是( ). A .BA AB = B .B A B A +=+ C .111)(---+=+B A B A D .111)(---=B A AB2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a3.下列命题中不正确的是( ). A .A 与A '有相同的特征多项式B .若λ是A 的特征值,则O X A I =-)(λ的非零解向量必是A 对应于λ的特征向量 C .若λ=0是A 的一个特征值,则O AX =必有非零解 D .A 的特征向量的线性组合仍为A 的特征向量4.若事件与互斥,则下列等式中正确的是( ). A . B . C . D .5.设n x x x ,,,21 是来自正态总体)1,5(N 的样本,则检验假设5:0=μH 采用统计量U =( ).A .55-xB .5/15-xC .nx /15- D .15-x二、填空题(每小题3分,共15分)1.设22112112214A x x =-+,则0A =的根是 . 2.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量. 3.设互不相容,且,则 . 4.设随机变量X ~ B (n ,p ),则E (X )= .5.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x .三、计算题(每小题16分,共64分)1.设矩阵100111101A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,求1()AA -'. 2.求下列线性方程组的通解.123412341234245353652548151115x x x x x x x x x x x x -++=⎧⎪-++=⎨⎪-++=⎩ 3.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (已知8413.0)0.1(=Φ,9.0)28.1(=Φ,9773.0)0.2(=Φ).4.从正态总体N (μ,4)中抽取容量为625的样本,计算样本均值得x = 2.5,求μ的置信度为99%的置信区间.(已知 576.2995.0=u )四、证明题(本题6分)4.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.工程数学(本)11春模拟试卷参考解答一、单项选择题(每小题3分,共15分) 1.A 2.B 3.D 4.A 5.C 二、填空题(每小题3分,共15分)1.1,-1,2,-2 2.3 3.0 4.np 5.)1,0(nN三、(每小题16分,共64分) 1.解:由矩阵乘法和转置运算得10011111111010132101011122AA --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥'=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ ………6分 利用初等行变换得10020001112011101⎡⎤⎢⎥→⎢⎥⎢⎥-⎣⎦1002001110101112⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦即 1201()011112AA -⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦………16分 7-2.解 利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即 245353652548151115-⎛⎫ ⎪- ⎪ ⎪-⎝⎭→245351201000555-⎛⎫ ⎪-- ⎪ ⎪⎝⎭→120100055500555--⎛⎫ ⎪ ⎪ ⎪⎝⎭→120100011100000--⎛⎫ ⎪ ⎪ ⎪⎝⎭ 方程组的一般解为:1243421x x x x x =+⎧⎨=-+⎩,其中2x ,4x 是自由未知量. ……8分令042==x x ,得方程组的一个特解0(0010)X '=,,,.方程组的导出组的一般解为: 124342x x x x x =+⎧⎨=-⎩,其中2x ,4x 是自由未知量. 令12=x ,04=x ,得导出组的解向量1(2100)X '=,,,;令02=x ,14=x ,得导出组的解向量2(1011)X '=-,,,. ……13分所以方程组的通解为:22110X k X k X X ++=12(0010)(2100)(1011)k k '''=++-,,,,,,,,,,其中1k ,2k 是任意实数. ……16分3.解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ= 0.9773 + 0.8413 – 1 = 0.8186 ……8分(2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9 所以 28.123=-a ,a = 3 + 28.12⨯ = 5.56 ……16分 4.解:已知2=σ,n = 625,且nx u σμ-= ~ )1,0(N ……5分因为 x = 2.5,01.0=α,995.021=-α,576.221=-αu206.06252576.221=⨯=-nuσα……10分所以置信度为99%的μ的置信区间为:]706.2,294.2[],[2121=+---nux nux σσαα. ……16分四、(本题6分)证明: 因为 0))((2=-=+-I A I A I A ,即I A =2.所以,A 为可逆矩阵. ……6分《工程数学》综合练习一、单项选择题1.设B A ,都是n 阶方阵,则下列命题正确的是( ). A .AB A B = B .222()2A B A AB B -=-+ C .AB BA = D .若AB O =,则A O =或B O = 正确答案:A2.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( ). A . 1 B . 3 C . 2 D . 4正确答案: B3.n 元线性方程组有解的充分必要条件是( ).A . )()(b A r A r =B . 不是行满秩矩阵C .D . 正确答案:A4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是( ).A . 256B . 103 C . 203 D . 259正确答案:D 5.设是来自正态总体的样本,则( )是μ无偏估计.A . 321515151x x x ++ B . 321x x x ++C . 321535151x x x ++D . 321525252x x x ++正确答案: C6.若是对称矩阵,则等式( )成立. A . I AA =-1 B . A A =' C . 1-='A A D . A A =-1正确答案:B7.=⎥⎦⎤⎢⎣⎡-15473( ). A . ⎥⎦⎤⎢⎣⎡--3547 B . 7453-⎡⎤⎢⎥-⎣⎦ C . 7543-⎡⎤⎢⎥-⎣⎦ D . 7543-⎡⎤⎢⎥-⎣⎦ 正确答案:D8.若( )成立,则元线性方程组AX O =有唯一解.A .B . A O ≠C .D . A 的行向量线性相关 正确答案:A9. 若条件( )成立,则随机事件,互为对立事件.A . ∅=AB 或A B U += B . 0)(=AB P 或()1P A B +=C . ∅=AB 且A B U +=D . 0)(=AB P 且1)(=+B A P正确答案:C10.对来自正态总体(未知)的一个样本,记∑==3131i i X X ,则下列各式中( )不是统计量.A . XB .∑=31i iXC . ∑=-312)(31i i X μ D . ∑=-312)(31i i X X正确答案: C二、填空题1.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-= .应该填写:-182.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称λ为A 的特征值.应该填写:AX X λ=3.设随机变量012~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = .应该填写:0.34.设为随机变量,已知3)(=X D ,此时.应该填写:275.设θˆ是未知参数θ的一个无偏估计量,则有 .应该填写:ˆ()E θθ=6.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-= . 应该填写:87.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称X 为A 相应于特征值λ的特征向量. 应该填写:AX X λ=8.若5.0)(,8.0)(==B A P A P ,则=)(AB P . 应该填写:0.39.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D .应该填写:2010.不含未知参数的样本函数称为 . 应该填写:统计量三、计算题1.设矩阵,且有,求X .解:利用初等行变换得即由矩阵乘法和转置运算得2.求线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=++--=+-+-=-+-2284212342272134321432143214321x x x x x x x x x x x x x x x x的全部解.解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131 方程组的一般解为: (其中为自由未知量)令=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为: ⎪⎩⎪⎨⎧-===4342415xx x x x x (其中为自由未知量)令=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为:10kX X X +=(其中k 为任意常数)3.设)4,3(~N X ,试求: (1))95(<<X P ;(2))7(>X P . (已知,8413.0)1(=Φ9987.0)3(,9772.0)2(=Φ=Φ)解:(1))3231()23923235()95(<-<=-<-<-=<<X P X P X P 1574.08413.09987.0)1()3(=-=Φ-Φ=(2))23723()7(->-=>X P X P )223(1)223(≤--=>-=X P X P 0228.09772.01)2(1=-=Φ-=4.据资料分析,某厂生产的一批砖,其抗断强度)21.1,5.32(~N X ,今从这批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.12,问这批砖的抗断强度是否合格().解: 零假设.由于已知,故选取样本函数已知,经计算得,由已知条件,故拒绝零假设,即这批砖的抗断强度不合格。
电大国开大学期末复习资料:《工程数学》期末考试练习题(2024秋版本)(简化版)

工程数学期末考试练习题(共224题)目录【知识点1】【行列式的递归定义】单选6题 (2)【知识点2】【余子式与代数余子式】单选6题 (2)【知识点3】【行列式的性质】单选8题 (3)【知识点4】【矩阵的运算】单选8题 (3)【知识点5】【方阵乘积行列式定理】单选8题 (4)【知识点6】【可逆矩阵(逆矩阵)】单选7题/判断1题 (4)【知识点7】【高斯消元法解线性方程组】单选8题 (5)【知识点8】【极大线性无关组,向量组的秩】单选6题 (5)【知识点9】【(非)齐次线性方程组解的性质及解的结构】单选8题 (6)【知识点10】【特征值与特征向量的求法】单选6题 (7)【知识点11】【随机事件的概率和性质】单选8题 (7)【知识点12】【古典概型】单选8题 (7)【知识点13】【概率的加法公式,条件概率与乘法公式】单选8题 (8)【知识点14】【离散型随机变量的概率分布】单选8题 (8)【知识点15】【连续型随机变量的概率密度,分布函数】单选8题 (9)【知识点16】【方差与方差的性质】单选8题 (9)【知识点17】【正态分布和它的数字特征】单选8题 (10)【知识点18】【统计量】单选4题 (10)【知识点19】【置信区间】单选4题 (10)【知识点20】【假设检验】单选4题 (11)【判断题1】【特殊矩阵】判断8题 (11)【判断题2】【矩阵的秩】判断7题/选择1题 (11)【判断题3】【线性方程组的相容性定理】判断10题 (12)【判断题4】【向量组的线性相关性】判断10题 (13)【判断题5】【矩阵特征值、特征向量的定义】判断8题 (13)【判断题6】【随机事件的关系与运算】判断8题 (13)【判断题7】【事件的独立性,全概公式】判断8题 (14)【判断题8】【数学期望与期望的性质】判断8题 (14)【判断题9】【二项分布和它的数字特征】判断8题 (14)【判断题10】【无偏性与有效性】判断8题 (15)工程数学期末考试练习题说明:题型为单项选择题和判断题,涵盖 1-7 章的内容,其中单项选择题涉及20 个知识点,判断题涉及 10 个知识点,每个知识点下有 6-8 道题目可供练习,预祝大家取得好成绩!【知识点 1】【行列式的递归定义】单选6题1.110240001−−= ( -2 )2.若行列式210140700a−−=,则a =( -1 )3.若行列式000100020200100a a=,则a =( 1 )4.10011111x −−−是关于x 的一个一次多项式,则该多项式一次项的系数是(1). 5.求解二元线性方程组1212321221x x x x −=⎧⎨+=⎩,则x 1=( 2 ),x 2=( -3 )6.计算三阶行列式124221342D −=−=−−( -14 )【知识点 2】【余子式与代数余子式】单选6题1.n 阶行列式n D 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系是( ()1i jij ij A M +=− )2.三阶行列式120438012−−的余子式23M =(1201− ) 3.三阶行列式12438012−−的代数余子式32A =( 1048−)4.三阶行列式11111111x −−−中元素x 的代数余子式23A =( 1111−− )5.行列式512107的元素21a的代数余子式21A的值为(-56)6.设111213212223313233a a aD a a aa a a=,21233133a aMa a=,23213331a aNa a=,则12a的余子式(是M)【知识点3】【行列式的性质】单选8题1.设1231231232a a ab b bc c c=,则123112233123333a a aa b a b a bc c c−−−=(-2)2.设1231231232a a ab b bc c c=,则123112233123222a a aa b a b a bc c c+++=(2)3.设1231231232a a ab b bc c c=,则123112233123333a a aa b a b a bc c c+++=−−−(-2)4.若1101200153x−−=−,则x=(3)5.若1101200151x−−=+,则x=(-1)6.行列式114228153−−−=(0)7.下列等式成立的是(111111a b a bc d c d+=++),其中a,b,c,d为常数8.行列式111111111D=−=−−(4)【知识点4】【矩阵的运算】单选8题1.若A为3×4矩阵,B为2×5矩阵,且乘积AC B''有意义,则C为(5×4)矩阵.2. 若A为3×4矩阵,B为2×5矩阵,且乘积AC B'有意义,则C为(2×4)矩阵.3.若A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是(AB)4.设4034A ⎢⎥=⎢⎥⎢⎥−⎣⎦,120314B −⎡⎤=⎢⎥−⎣⎦,则()A B ''+=( 063518−⎡⎤⎢⎥−⎣⎦ ) 5.已知10102A a ⎡⎤=⎢⎥−⎣⎦,10210112B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若1131AB ⎡⎤=⎢⎥⎣⎦,则a =( -1 ) 6.设147426310A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则2A =( 28148412620⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ )7.设147440310A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,101426115B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A B +=( 248866425⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ )8.已知50302A a ⎡⎤=⎢⎥−⎣⎦,500832B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若A B '=,则a =( -8 ) 【知识点5】【方阵乘积行列式定理】单选8题1.A ,B 都是n 阶矩阵(n >1),则下列命题正确的是( AB A B = )2.设A ,B 均为n 阶方阵,则下列等式成立的是( AB BA = )3.设A ,B 均为n 阶方阵,0k >且1k ≠,则下列等式正确的是( ()nkA k A −=− )4.设A ,B 均为3阶方阵,且1A =−,3B =−,则A B '=( 3 )5.设A ,B 均为n 阶方阵,则下列命题中正确的是( AB A B = )6.设A ,B 均为3阶方阵,且1A =−,1B =,则1AB −=( -1 ) 7. A ,B 是3阶方阵,其中3A =,2B =,则12A B −'⋅=( 12 )8. A ,B 都是n 阶方阵(n >1),则下列命题正确的是( AB A B = ) (题干或为“设A ,B 均为n 阶方阵,n >1,则下列等式正确的是”) 【知识点 6】【可逆矩阵(逆矩阵)】单选7题/判断1题1.设方阵A 可逆,且A 是对称矩阵,则等式( ()11A A −−'= )成立2.设方阵A 可逆,则下列命题中不正确的是( 线性方程组AX O =必有非零解 )3.设方阵A 可逆,则下列命题中正确的是( A O ≠ )4.设A ,B 均为n 阶可逆矩阵,则下列运算关系正确的是( ()11AB BA −−= )5.方阵A 可逆的充分必要条件是( 0A ≠ )6.设A ,B 均为n 阶可逆矩阵,则下列运算关系正确的是( ()111AB B A −−−= )7.设矩阵011112210A ⎡⎤⎢⎥=⎢⎥⎢⎥−⎣⎦,判断A 是否可逆?( 是 )8.设A ,B 为三阶可逆矩阵,且0k >,则下式( AB A B '= )成立【知识点 7】【高斯消元法解线性方程组】单选8题1. 用消元法得123233241 0 2x x x x x x +−=⎧⎪+=⎨⎪−=⎩的解123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦为( []11,2,2'−− )2.方程组12122125x x x x +=⎧⎨+=⎩的解12x x ⎡⎤⎢⎥⎣⎦为( []3,1'− )3.方程组1212233x x x x −=⎧⎨+=⎩的解12x x ⎡⎤⎢⎥⎣⎦为( []2,1' )4.线性方程组122310x x x x +=⎧⎨+=⎩( 一般解为13231x x x x =+⎧⎨=−⎩(3x 是自由未知量) )5.齐次线性方程组AX O =的系数矩阵经初等行变换化为102101020000A ⎡⎤⎢⎥→→−⎢⎥⎢⎥⎣⎦则方程组的一般解为( 1342422x x x x x =−−⎧⎨=⎩(34,x x 是自由未知量) )6.非齐次线性方程组AX B =的增广矩阵经初等行变换化为[]102501020000A B ⎡⎤⎢⎥→→⎢⎥⎢⎥⎣⎦则方程组的一般解为( 132252x x x =−+⎧⎨=⎩(3x 是自由未知量) )7.线性方程组12341234134332462 3x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+−=⎩一般解的自由未知量的个数为( 2 )8.设4元线性方程组AX B =有解且()1r A =,那么AX B =的相应齐次方程组的一般解中含有( 3 )个自由未知量【知识点 8】【极大线性无关组,向量组的秩】单选6题1.向量组100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,121⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,304⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的秩为( 3 ) 2.向量组[]1,2,3,[]1,2,0,[]1,0,0,[]0,0,0的秩为( 3 )3.设向量组为11100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20011α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,31010α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,则(123,,ααα)是极大无关组4.向量组[]10,0,0α=,[]21,0,0α=,[]30,1,0α=,[]40,0,1α=的极大线性无关组是( 234,,ααα )5.向量组11001α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,31111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41110α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,51101α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的极大线性无关组是( 1234,,,αααα )6.求向量组11001α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦31111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41110α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,51101α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的秩是( 4 )【知识点 9】【(非)齐次线性方程组解的性质及解的结构】单选8题 1.设线性方程组AX B =的两个解为12,X X ,(12X X ≠),则下列向量中(212X X −)一定是AX B =的解2.若0X 是线性方程组AX O =的解,1X 是线性方程组AX B =的解,则有 ( 10X X +是AX B =的解 )3.非齐次线性方程组AX B =的增广矩阵经初等行变换化为[]100001020011/2A B ⎡⎤⎢⎥→→−⎢⎥⎢⎥⎣⎦,则(方程组AX B =的通解为1230212x x x ⎧⎪=⎪=−⎨⎪⎪=⎩ )4.设齐次线性方程组AX O =的方程组的一般解为1342344576x x x x x x =−⎧⎨=−⎩(其中34,x x 是自由未知量)则它的一个基础解系为( [][]124710,5601X X ''==−− ) 5.设齐次线性方程组AX O =的方程组的一般解为 13232x x x x =−⎧⎨=⎩(其中3x 是自由未知量),则它的一个基础解系为([]1121X '=−) 6.设齐次线性方程组AX O =的方程组的一般解为13233x x x x =−⎧⎨=⎩(其中3x 是自由未知量),则它的一个基础解系为([]1311X '=−)7.设线性方程组AX B =的系数矩阵A 的秩为r ,增广矩阵[]|A B 的秩为r+1,那么方程组:( 无解 )8.如果线性方程组AX B =的系数矩阵A 的列向量线性无关,那么方程组: ( 解的情况取决于向量B )【知识点 10】【特征值与特征向量的求法】单选6题1.矩阵4001A ⎡⎤=⎢⎥−⎣⎦的特征值为( -1,4 ) 2.已知矩阵A 的特征值为-1,4,则2A 的特征值为( -2,8 )3.已知矩阵A 的特征值为2,0,则12A 的特征值为( 1,0 )4.已知矩阵A 的特征值为-1,4,则1A −的特征值为( -1,14)5.设矩阵A 有一个特征值λ,对应的特征向量为ν,那么矩阵T A 的特征值和特征向量是( ,T λν )6.已知矩阵A 的特征多项式为()256f λλλ=−+,那么矩阵A 的特征值为( 2,3)【知识点 11】【随机事件的概率和性质】单选8题1.甲、乙二人射击,A , B 分别表示甲、乙射中目标,则()P AB 表示( 至少有一人没射中目标的概率 )2.甲、乙二人射击,A , B 分别表示甲、乙射中目标,则()P AB 表示( 两人都射中目标的概率 )3.下列所列的概率性质中不正确是(对于任意两个事件A ,B ,有()()()P A B P A P B +=+ )4. 下列所列的概率性质中正确是( 对任一事件A ,有()01P A ≤≤ )5.某购物抽奖活动中,每人中奖的概率为0.3.则{}31A =个抽奖者中恰有人中奖的概率()P A =( 1230.70.3C ⨯⨯ )6.某购物抽奖活动中,每人中奖的概率为0.4.则{}41A =个抽奖者中恰有人中奖的概率()P A =( 1340.60.4C ⨯⨯ )7.关于概率的公式错误的是( ()()()P A B P A P B +=+ ) 8.设()0p AB =,则正确的是( ()()p A B p A −= ) 【知识点 12】【古典概型】单选8题1.掷两颗均匀的骰子,事件“点数之和为5”的概率是( 19 )2.掷两颗均匀的骰子,事件“点数之和为3”的概率是( 118 )3.同时掷3枚均匀硬币,恰好有1枚正面向上的概率为( 38 )4.同时掷3枚均匀硬币,恰好有2枚正面向上的概率为( 38)5.设袋中有3个红球,2个白球,现从中随机抽取2个球,则2个球恰好不同色的概率是( 35)6.袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为( 485C )7.设袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两次都取到白球的概率是( 425)8.袋中有5个球,3个新2个旧,每次取1个,无放回地取两次,则第二次取到新球的概率是( 35)【知识点 13】【概率的加法公式,条件概率与乘法公式】单选8题 1.已知()0P B >,12A A =Φ,则( ()()()1212|||P A A B P A B P A B +=+⎡⎤⎣⎦ )成立 2.设A ,B 是两事件,则下列等式中(()()()P AB P A P B =,其中A ,B 互不相容 )是不正确的3.已知()0.3P A =,()0.5P B =,则当事件A ,B 互不相容时,()P A B +=( 0.8 )4.设A ,B 为两个事件,且B A ⊂,则()P A B +=( ()P A )5.若事件A 与B 互斥,则下列等式中正确的是( ()()()P A B P A P B +=+ )6.设A ,B 为两个事件,且B A ⊂,则()P A B −=( ()()P A P B − )7.假设生男孩和生女孩是等可能的,现考虑有两个小孩的家庭。
电大《工程数学》期末复习题

1
)成立. B. A A D. A 1 A
).
7 4 B. 5 3 7 5 D. 4 3
《工程数学》综合练习
一、单项选择题 1.设 A, B 都是 n 阶方阵,则下列命题正确的是( A. AB A B ). B. ( A B) 2 A2 2 AB B 2
C. AB BA D.若 AB O ,则 A O 或 B O 正确答案:A 1 1 0 2 2.向量组 ). 0, 1,2, 3 的秩是( 0 0 3 7 A. 1 B. 3 C. 2 D. 4 正确答案: B 3. n 元线性方程组 AX b 有解的充分必要条件是( ). A. r ( A) r ( Ab) B. A 不是行满秩矩阵 C. r ( A) n D. r ( A) n 正确答案:A 4. 袋中有 3 个红球,2 个白球,第一次取出一球后放回,第二次再取一球,则两球 都是红球的概率是( ). 6 3 3 9 A. B. C. D. 25 10 20 25 正确答案:D 5.设 x1 , x 2 , , x n 是来自正态总体 N ( , 2 ) 的样本,则( )是 无偏估计. 1 1 1 A. x1 x 2 x3 B. x1 x 2 x3 5 5 5 1 1 3 2 2 2 C. x1 x 2 x3 D. x1 x 2 x3 5 5 5 5 5 5 正确答案: C 6.若 A 是对称矩阵,则等式( A. AA 1 I C . A A 1 正确答案:B
1
8.若( )成立,则 n 元线性方程组 AX O 有唯一解. A. r ( A) n B. A O C. r ( A) n D. A 的行向量线性相关 正确答案:A 9. 若条件( )成立,则随机事件 A , B 互为对立事件. A. AB 或 A B U B. P ( AB ) 0 或 P ( A B ) 1 C. AB 且 A B U D. P ( AB ) 0 且 P ( A B ) 1 正确答案:C 10. 对来自正态总体 X ~ N ( , 2 ) ( 未知) 的一个样本 X 1 , X 2 , X 3 , 记X 则下列各式中( )不是统计量. A. X
电大《工程数学》期末真题(含31套历年真题:2002年至2017年)

) 。
D. D. 秩(A)<n 或秩(B)<n
三、计算题(每小题 10 分,共 30 分)
2
一、单项选择题(每小题 3 分,本题共 21 分) 1. 1. B 2. 2. D 3. 3. B 4. 4. D 5. 5. C 6. 6. A 7. 7. C 二、填空题(每小题 3 分,共 15 分) 1. 1. 相等 2. 2. t,s(答对一个给 2 分) 3. 3. P(A)P(B) 4. 4. p(1-p)
1
中央广播电视大学 2001—2002 学年度第一 学期“开放本科”期末考试土木专业工程数 学(本)试题
2002 年 1 月
一、单项选择题(每小题 3 分,本题共 21 分)
4.设 A,B 均为 n 阶方阵,若 AB=0,是一定有( A. A. A=0 或 B=0 B. B. 秩(A)=0 或秩(B)=0 C. C. 秩(A)=n 或秩(B)=n
0 00
, 则{ A} 今(
0 0
A . 2 4
1 3 . 一 2 4
C.0
U . 1 2
’,口“ z + " + a . } , 若有 O a , 十O a z - } - . . . 0 a . = 0 , 则向量组 a } , a z ・, 对 于向量组 a ' ,a
(含 31 套历年真题)2002 年 1 月至 2017 年 7 月 国家开放大学(中央电大)“开放本科”期末考 试《工程数学》(本)试题及参考答案(含 15 年 31 套真题)
试卷代号:1080
《工程数学》真题目录(31 套)
1、2002 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 2、2003 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 3、2003 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 4、2004 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 5、2004 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 6、2005 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 7、2005 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 8、2006 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 9、2006 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 10、2007 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 11、2007 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 12、2008 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 13、2008 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 14、2009 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 15、2009 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 16、2010 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 17、2010 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 18、2011 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 19、2011 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 20、2012 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 21、2012 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 22、2013 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 23、2013 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 24、2014 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 25、2014 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 26、2015 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 27、2015 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 28、2016 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 29、2016 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 30、2017 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 31、2017 年 6 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案
《工程数学》广播电视大学历年期末试题及答案

试卷代号:1080中央广播电视大学2011~2012学年度第一学期“开放本科”期末考试(半开卷)工程数学(本) 试题2012年1月一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立.A . AB A B +=+ B .AB A B '=C . 1AB A B -=D .kA k A =2. 设A 是n 阶方阵,当条件( )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。
A .0,2 B .0,6C .0,0D .2,64.若随机变量(0,1)X N :,则随机变量32Y X =-: ( ).5. 对正态总体方差的检验用( ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111O A B O ---⎡⎤=⎢⎥⎣⎦ . 8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B .9.若随机变量[0,2]X U :,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。
三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗若可逆,求逆矩阵1()A B --. 12.在线性方程组中λ取何值时,此方程组有解。
在有解的情况下,求出通解。
13. 设随机变量(8,4)X N :,求(81)P X -<和(12)P X ≤。
(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4, 10.6, 10.1, 10.4问:该机工作是否正常(0.9750.05, 1.96u α==)四、证明题(本题6分)15. 设n 阶矩阵A 满足2,A I AA I '==,试证A 为对称矩阵。
电大本科 工程数学-期末复习试卷含答案

工程数学综合练习(一)一、单项选择题A. 1B. -1C. 0D. 24. A.B 都是〃阶矩阵(〃:>1),则下列命题正确的是(). A.AB=BAB,若AB = O ,则 A = 0或8 = 0C. (A-B)2 =A 2-2AB + B 2D.仇耳=凤同 5. 若A 是对称矩阵,则等式()成立. A. A -1 = A f B. A = —A C. A = A'D. A ,= -A1 2 6. 若 A = 3 5,则A. 0 9. 向量组a, =[1 2 3]',%=[2 2 4]',%=[1 极大无关组可取为().B. a,,a 2C.D. %,。
2,%,。
410. 向量组 %=[1,0,-2],%=[2,3,5],%=[1,2,1],则 2a,+a 2-3a 3 =b a 2 b 2a 3 a 2 3角-如C 2a 33%-打 C3B 是矩阵,则下列运算中有意义的是(). A'B D AB' 3. 己知A7.若人=2 2 2 23 3 3 3 44 4 4C. 2A. 4 2]',%= [2 3 5]'的一个 C 2 C 3C|设A 是〃xs 矩阵, AB B. BA C.2. A. 0 0 -a,若 AB = ,则。
=(8.向量组A. 1,-3,2B. 1,-3,-2]C. 1,3,-2]D. 1,3,2]11. 线性方程组」X,+X2=+X2=解的情况是(). x 2 + x 3 = 0A.无解 D.只有零解 C.有唯一非零解 D.有无穷多解12, 若线性方程组AX=O 只有零解,则线性方程组AX=b (). A.有唯一解 B.有无穷多解C.可能无解 D.无解 13. 若〃元线性方程组AX=O 有非零解,则()成立. A. r(A) < n B. r(A) = n C. |A| = 0D. A 不是行满秩矩阵14. 下列事件运算关系正确的是(). C. D. B = BA+BA15. 对于随机事件A,B.下列运算公式()成立. A. P(A + B) = P(A) + P(B) - P(AB) B. P(AB) = P(A)P(B) C. P(AB) = P(8)P(B|A) D. P(A + B) = P(A) + P(B)16. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都 是红球的概率是(). A. AB. Ac. AD .210 20 252517.若随机事件满足AB = 0,则结论()成立 A. A 与8是对立事件 B. A 与B 互不相容C. A 与B 相互独立D. 1与京互不相容 18.若A, B 满足() ,则A 与8是相互独立. A. P(A + B) = P(A) + P(B) B. P(A-B) = P(A)-P(B)Dpg端 中的数组可以作为离散型随机变量的概率分布.A. B = BA + BAB. A = BA + BAC. P(AB) = P(A)P(B) 19.下列数组中,(1 1 1 3 1 1 3 12 4 16 162 4 8 820. 设X123则 P(X <2)=0.1 0.3 0.4 0.2A. 0.1B. 0.4C. 0.3D. 0.221. 随机变量X 〜8(3,:), 则 P(X <2)=()A. 0B.C.1D782822.已知X 〜N(2,22),若aX+b~ N(O,1),那么(). A. a = 2,b = -2 B.。
(含15套历年真题+7套复习资料)国家开放大学(电大)“开放本科”《工程数学》期末考试历年真题+复习资料

(含15套历年真题+7套复习资料)国家开放大学(电大)“开放本科”《工程数学》期末考试历年真题+复习资料温馨提示:已编辑好,可直接打印,省力省时,祝贺您考试成功。
目录1、2002年1月中央电大“开放本科”期末考试《工程数学》(本)试题2、2003年7月中央电大“开放本科”期末考试《工程数学》(本)试题3、2009年7月中央电大“开放本科”期末考试《工程数学》(本)试题4、2010年1月中央电大“开放本科”期末考试《工程数学》(本)试题5、2010年7月中央电大“开放本科”期末考试《工程数学》(本)试题6、2011年1月中央电大“开放本科”期末考试《工程数学》(本)试题7、2011年7月中央电大“开放本科”期末考试《工程数学》(本)试题8、2012年1月中央电大“开放本科”期末考试《工程数学》(本)试题9、2012年7月中央电大“开放本科”期末考试《工程数学》(本)试题10、2013年1月中央电大“开放本科”期末考试《工程数学》(本)试题11、2013年7月中央电大“开放本科”期末考试《工程数学》(本)试题12、2014年1月中央电大“开放本科”期末考试《工程数学》(本)试题13、2014年7月中央电大“开放本科”期末考试《工程数学》(本)试题14、2015年1月中央电大“开放本科”期末考试《工程数学》(本)试题15、2015年7月中央电大“开放本科”期末考试《工程数学》(本)试题16、2018电大工程数学(本)期末复习辅导17、2018电大工程数学试题及答案18、2018中央电大工程数学形成性考核册答案19、工程数学(本)11春模拟试题20、中央电大开放本科2014《工程数学(本)》复习题21、《工程数学》综合练习22、【工程数学】形成性考核册试题及答案中央广播电视大学2001—2002学年度第一学期“开放本科”期末考试土木专业工程数学(本)试题2002年1月一、单项选择题(每小题3分,本题共21分)4.设A,B均为n阶方阵,若AB=0,是一定有()。
工程数学(本)-国家开放大学电大学习网形考作业题目答案

工程数学(本)一、单选题1.下列各函数对中,()中的两个函数相等.正确答案: B2.函数y=2sinx的值域是().A.(-2, 2)B.[-2, 2]C.(0, 2)D.[0, 2]正确答案: B3.函数y=x2+2x-7在区间(-4,4)内满足().A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升正确答案: A4.下列函数中为幂函数的是().正确答案: B5.下列函数在区间上单调递增的是().A.x3B.1/xC.-e xD.-sinx正确答案: A6.A.坐标原点B.x轴C.y轴D.y=x7.下列函数中为奇函数是().正确答案: B8.下列极限计算不正确的是().正确答案: D9.在下列指定的变化过程中,()是无穷小量.正确答案: A10.正确答案: A11.12.正确答案: B 13.正确答案: A 14.正确答案: B 15.正确答案: B 16.正确答案: D17.下列结论中()不正确.正确答案: D18.正确答案: D19.A.单调减少且是凸的B.单调减少且是凹的C.单调增加且是凸的D.单调增加且是凹的正确答案: B20.正确答案: B21.正确答案: B22.下列等式成立的是().正确答案: A23.正确答案: D24.正确答案: A25.正确答案: B26.正确答案: D27.正确答案: B28.在斜率为的2x积分曲线族中,通过点(1,4)的曲线方程为().正确答案: A29.正确答案: D30.正确答案: D二、判断题1.A.对B.错正确答案: B2.A.对B.错正确答案: A3.A.对B.错正确答案: A4.A.对B.错正确答案: B5.A.对B.错正确答案: B6.A.对B.错正确答案: B7.A.对B.错正确答案: B8.A.对B.错正确答案: A9.A.对B.错正确答案: B10.A.对B.错正确答案: A11.A.对B.错正确答案: B12.A.对B.错正确答案: A13.A.对B.错正确答案: A 14.A.对B.错正确答案: B15.A.对B.错正确答案: A16.A.对B.错正确答案: B17.A.对B.错正确答案: B18.A.对B.错正确答案: A19.A.对B.错正确答案: B20.A.对B.错正确答案: B21A.对B.错正确答案: B22.A.对B.错正确答案: A23.A.对B.错正确答案: B24.A.对B.错正确答案: A25.A.对B.错正确答案: B26.A.对B.错正确答案: A27.A.对B.错正确答案: A28.A.对B.错正确答案: B29.A.对B.错正确答案: B30.A.对B.错正确答案: B 三、填空题1.设行列式,则= ______ .正确答案:-62.是关于x的一个一次多项式,则该多项式一次项的系数是.正确答案:23.乘积矩阵中元素 C21= ______.正确答案:-164.设A,B均为3阶矩阵,且,则=.正确答案:-725.矩阵的秩为.正确答案:16.若线性方程组有非零解,则.正确答案:-17.一个向量组中如有零向量,则此向量组一定线性.正确答案:相关8.向量组的秩与矩阵的秩.正确答案:相等9.设线性方程组AX=0中有5个未知量,且秩(A)=3,则其基础解系中线性无关的解向量有个.正确答案:210.设A为n阶方阵,若存在数和非零n维向量X,使得,则称数为A的______ .正确答案:特征值11.如果两事件A,B中任一事件的发生不影响另一事件的概率,则称事件A与事件B是.正确答案:独立的12.已知,则当A,B事件互不相容时,=.正确答案:0.313.若,则=.正确答案: 0.997314.称为二维随机变量(X,Y)的.正确答案:协方差15.若都是的无偏估计,而且,则称更 .正确答案:有效四、解答题1. 设矩阵1213A ⎡⎤=⎢⎥⎣⎦,123110B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,已知XA B =,求X . 答案:2. 设矩阵012213114,356211A B ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦,解矩阵方程AX B '=答案:3. 解矩阵方程AX X B -=,其中4559A ⎡⎤=⎢⎥⎣⎦,1234B ⎡⎤=⎢⎥⎣⎦.答案:4.求齐次线性方程组1234123413430240450x x x xx x x xx x x-+-=⎧⎪--+=⎨⎪-+=⎩的通解.答案:5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的通解.答案:6. 当λ取何值时,齐次线性方程组123123123204503720x x x x x x x x x λ++=⎧⎪++=⎨⎪++=⎩有非零解?在有非零解的情况下求方程组的通解. 答案:7. 当λ取何值时,非齐次线性方程组123123123 124225x x x x x x x x x λ++=⎧⎪-+-=⎨⎪+-=⎩答案:有解?在有解的情况下求方程组的通解.8. 求线性方程组12312312312324523438213496x x x x x x x x x x x x -+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩的通解.答案:9. 设()3,4XN ,试求:(1)()59P X <<;(2)()7P X >.(已知()10.8413Φ=, ()20.9772Φ=,()30.9987Φ=)10. 设2~(1,2)X N ,试求:(1)(3)P X <;(2)求常数a ,使得(1)0.9974P X a -<=(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).11. 设2~(20,2)X N ,试求:(1)(2226)P X <<;(2)(24)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=)12. 设2~(3,2)X N ,试求:(1)(5)P X <;(2)(9)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).13. 设某一批零件重量X 服从正态分布2(,0.6)N μ,随机抽取9个测得平均重量为5(单位:千克),试求此零件重量总体均值的置信度为0.95的置信区间(已知0.9751.96u=).14.为了对完成某项工作所需时间建立一个标准,工厂随机抽查了16名工人分别去完成这项工作,结果发现他们所需的平均时间为15分钟,样本标准差为3分钟. 假设完成这项工作所需的时间服从正态分布,在标准差不变的情况下,试确定完成此项工作所需平均时间的置信度为0.95的置信区间(已知0.9751.96u=). 答案:15. 某校全年级的英语成绩服从正态分布2(85,10)N ,现随机抽取某班16名学生的英语考试成绩,得平均分为80x =. 假设标准差没有改变,在显著水平0.05α=下,问能否认为该班的英语平均成绩为85分(已知0.975 1.96u =). 答案:16. 据资料分析,某厂生产的砖的抗断强度X 服从正态分布(32.5,1.21)N . 今从该厂最近生产的一批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.18. 假设标准差没有改变,在0.05的显著性水平下,问这批砖的抗断强度是否合格.(0.975 1.96u =) 答案:五、证明题+'是对称矩阵.1.对任意方阵A,试证A A答案:+-=,试证矩阵A可逆.2.设n阶方阵A满足2A A I O答案:3.设随机事件A与B相互独立,试证A与B也相互独立.答案:4.设A B,为两个事件,且B A⊂,试证()()P A B P A+=.答案:。
国开电大《工程数学(本)》形考任务一答案国家开放大学形考任务试题

国家开放大学《工程数学(本)》形成性考核作业一测验答案一、单项选择题(答案在最后)试题1:n阶行列式中D n元素的代数余子式与余子式之间的关系是().三阶行列式的余子式M23=().试题2:若A为3×4矩阵,B为2×5矩阵,且乘积AC'B'有意义,则C为()矩阵.设A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是().试题3:试题4:设A,B均为n阶可逆矩阵,则下列运算关系正确的是().设A,B均为n阶方阵,k>0且,则下列等式正确的是().试题5:下列结论正确的是().a.若A,B均为n阶非零矩阵,则AB也是非零矩阵b.若A,B均为n阶对称矩阵,则AB也是对称矩阵c.若A,B均为n阶非零矩阵,则d.对任意方阵A,A+A'是对称矩阵设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是().试题6:方阵A可逆的充分必要条件是().设矩阵A可逆,则下列不成立的是().试题7:二阶矩阵().二阶矩阵().试题8:向量组的秩为().a.2b.5c.4d.3向量组的秩是().a.2b.1c.4d.3试题9:设向量组为,则()是极大无关组.向量组的极大线性无关组是().试题10:用消元法得的解为().方程组的解为().二、判断题(答案在最后)试题11:行列式的两行对换,其值不变.()两个不同阶的行列式可以相加.()试题12:设A是对角矩阵,则A=A'.()同阶对角矩阵的乘积仍然是对角矩阵.()试题13:若为对称矩阵,则a=-3.()若为对称矩阵,则x=0.()试题14:设,则.()设,则.()试题15:零矩阵是可逆矩阵.()设A是n阶方阵,则A可逆的充要条件是r(A)=n.()二、填空题(答案在最后)试题16:设行列式,则试题17:若行列式,则a=是关于x的一个一次多项式,则该多项式一次项的系数是________.试题18:乘积矩阵中元素C23= .乘积矩阵中元素C21= .试题19:设A,B均为3阶矩阵,且,则.设A,B均为3阶矩阵,且,则.试题20:矩阵的秩为.矩阵的秩为.上面题目答案在最后一页,购买后才能查看参考答案试题中有两个答案的选择一个和试题中相对应的答案试题1答案:试题2答案:5×4AB试题3答案:试题4答案:试题5答案:对任意方阵A,A+A'是对称矩阵试题6答案:试题7答案:试题8答案:3试题9答案:试题10答案:试题11答案:错试题12答案:对试题13答案:若为对称矩阵,则a=-3.(错)若为对称矩阵,则x=0.(对)试题14答案:设,则.(错)设,则.(对)试题15答案:零矩阵是可逆矩阵.(错)设A是n阶方阵,则A可逆的充要条件是r(A)=n.(对)试题16答案:7设行列式,则-6试题17答案:若行列式,则a=1是关于x的一个一次多项式,则该多项式一次项的系数是_____2___.试题18答案:乘积矩阵中元素C23= 10.乘积矩阵中元素C21=-16 .试题19答案:设A,B均为3阶矩阵,且,则-72 .设A,B均为3阶矩阵,且,则= 9 .试题20答案:矩阵的秩为 1 .矩阵的秩为 2 .。
国家开放大学工程数学(本)形成性考核作业一、二、三

工程数学(本)网上形考作业1—3参考答案每个题序号里是两个题型, 做题时对应抽题序号核对题和答案形成性考核作业11.n阶行列式中/元素/的代数余子式/与余子式/之间的关系是(/ ).1.三阶行列式/的余子式M23=(/).2.若A为3×4矩阵, B为2×5矩阵, 且乘积AC'B'有意义, 则C为( 5×4 )矩阵.2.设A为3×4矩阵, B为4×3矩阵, 则下列运算可以进行的是(AB).3.设/, 则/(/ ).3.设/, 则BA-1(/).4.设A,B均为n阶可逆矩阵, 则下列运算关系正确的是(/).4.设A,B均为n阶方阵, k>0且/, 则下列等式正确的是(/).5、下列结论正确的是(对任意方阵A, A+A'是对称矩阵).5.设A,B均为n阶方阵, 满足AB=BA, 则下列等式不成立的是(/).6.方阵A可逆的充分必要条件是(/).6.设矩阵A可逆, 则下列不成立的是(/).7、二阶矩阵/(/).7、二阶矩阵/(/).8、向量组/的秩为(3).8、向量组/的秩是(3).9、设向量组为/, 则(/)是极大无关组.9、向量组/的极大线性无关组是(/).10、用消元法得/ 的解/ 为(/).10、方程组/的解/为(/).11.行列式的两行对换, 其值不变.(错)11.两个不同阶的矩阵可以相加. (错)12.设A是对角矩阵, 则A=A'.(对)12.同阶对角矩阵的乘积仍然是对角矩阵. (对)13.若/为对称矩阵, 则a=-3. (错)13.若/为对称矩阵, 则x=0. (对)14、设/, 则/. (错)14.设/, 则/.(对)15.零矩阵是可逆矩阵. (错)15.设A是n阶方阵, 则A可逆的充要条件是r(A)=n.(对)16./ 7 .16.设行列式/, 则/ -6 .17、若行列式/, 则a= 1 .17、/是关于x的一个一次多项式, 则该多项式一次项的系数是 2 .18、乘积矩阵/中元素C23= 10 .18、乘积矩阵/中元素C21= -16 .19、设A,B均为3阶矩阵, 且/, 则/ -72 .19、设A,B均为3阶矩阵, 且/, 则/ 9 .20、矩阵/的秩为 1 .20、矩阵/的秩为 2 .形成性考核作业21.设线性方程组/的两个解//, 则下列向量中(/)一定是/的解.1.设线性方程组/的两个解/, 则下列向量中(/)一定是/的解.2.设/与/分别代表非齐次线性方程组/的系数矩阵和增广矩阵, 若这个方程组有解, 则(/).2、设/与/分别代表非齐次线性方程组/的系数矩阵和增广矩阵, 若这个方程组无解, 则(/).3.若某个非齐次线性方程组相应的齐次线性方程组只有零解, 则该线性方程组(可能无解).3.以下结论正确的是(齐次线性方程组一定有解).4、若向量组/线性相关, 则向量组内(至少有一个向量)可被该向量组内其余向量线性表出.4.若/向量组线性无关, 则齐次线性方程组/(只有零解).5.矩阵/的特征值为(-1,4).5.矩阵A的特征多项式/, 则A的特征值为(/).6.设矩阵/的特征值为0, 2, 则3A的特征值为(0,6 ).6.已知可逆矩阵A的特征值为-3,5, 则A-1的特征值为(/ ).7、设A, B为n阶矩阵, /既是A又是B的特征值, x既是A又是B的特征向量, 则结论(x是A+B的特征向量)成立.7、设/是矩阵A的属于不同特征值的特征向量, 则向量组/的秩是(3).8、设A,B为两个随机事件, 则(/)成立.8、设A,B为两个随机事件, 下列事件运算关系正确的是(/).9、如果(/且/)成立, 则事件A与B互为对立事件.9、若事件A, B满足/, 则A与B一定(不互斥).10、袋中有5个黑球, 3个白球, 一次随机地摸出4个球, 其中恰有3个白球的概率为(/).10、某购物抽奖活动中, 每人中奖的概率为0.3. 则3个抽奖者中恰有1人中奖的概率为(/).11.线性方程组/可能无解. (错)11.非齐次线性方程组/相容的充分必要条件是/. (对)12.当/1时, 线性方程组/只有零解. (对)12.当/1时, 线性方程组/有无穷多解. (错)13.设A是三阶矩阵, 且r(A)=3, 则线性方程组AX=B有唯一解. (对)13.设A是三阶矩阵, 且/, 则线性方程组AX=B有无穷多解. (错)14、若向量组/线性相关, 则/也线性相关. (错)14.若向量组/线性无关, 则/也线性无关.(对)15.特征向量必为非零向量. (对)15.若A矩阵可逆, 则零是A的特征值. (错)16、当/ 1 时, 齐次线性方程组/有非零解.16.若线性方程组/有非零解, 则/ -1 .17、向量组/线性相关 .17、一个向量组中如有零向量, 则此向量组一定线性相关 .18、设齐次线性方程组/的系数行列式/, 则这个方程组有非零解。