最新《时间序列分析》试卷a答案汇总
时间序列分析考试卷及答案
时间序列分析考试卷及答案考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子;使得1-=t t Y BY ;∇为差分算子;1--=∇t t t Y Y Y 。
一、单项选择题(每小题3 分;共24 分。
)1. 若零均值平稳序列{}t X ;其样本ACF 和样本PACF 都呈现拖尾性;则对{}t X 可能建立( B )模型。
A. MA(2)B.ARMA(1,1)C.AR(2)D.MA(1)2.下图是某时间序列的样本偏自相关函数图;则恰当的模型是( B )。
A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ;则其MA 特征方程的根是( C )。
(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ;其中11<φ;则该模型属于( B )。
A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1)5. AR(2)模型t t t t e Y Y Y +-=--215.04.0;其中64.0)(=t e Var ;则=)(t t e Y E ( B )。
A.0 B.64.0 C. 16.0 D. 2.06.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ;则其一阶自相关函数为( C )。
A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X ∇;其样本ACF 呈现二阶截尾性;其样本PACF 呈现拖尾性;则可初步认为对{}t X 应该建立( B )模型。
A. MA(2)B.)2,1(IMAC.)1,2(ARID.ARIMA(2,1,2)8. 记∇为差分算子;则下列不正确的是( C )。
8章 时间序列分析练习题参考答案
35.采用几何平均法计算平均发展速度的理由是( )。
A.各年环比发展速度之和等于总速度B.各年环比发展速度之积等于总速度
C.各年环比增长速度之积等于总速度D.各年环比增长速度之和等于总速度
B
36.计算平均发展速度应用几何平均法的目的在于考察( )。
A.最初时期发展水平B.全期发展水平
C.最末时期发展水平D.期中发展水平
B
3.发展速度属于( )
A比例相对数B比较相对数C动态相对数D强度相对数
C
4.计算发展速度的分母是( )
A报告期水平B基期水平C实际水平D计划水平
B
5.某车间月初工人人数资料如下:
月份
1
2
3
4
5
6
7
月初人数(人)
280
284
280
300
302
304
320
则该车间上半年的平均人数约为( )
A 296人B 292人C 295人D 300人
A.0.33倍B.0.50倍C.0.75倍D.2倍
D
16.已知一个数列的环比增长速度分别为3%、5%、8%,则该数列的定基增长速度为()
A.3%×5%×8%B.103%×105%×108%
C.(3%×5%×8%)+1D.(103%×105%×108%)-1
D
17.企业生产的某种产品2002年比2001年增长了8%,2003年比2001年增长了12%,则2003年比2002年增长了()。
时间第一年第二年第三年第四年第五年销售额万元10001100130013501400根据上述资料计算的下列数据正确的有a第二年的环比增长速度二定基增长速度10b第三年的累计增长量二逐期增长量200万元c第四年的定基发展速度为135d第五年增长1绝对值为14万元e第五年增长1绝对值为135万元ace7
8章时间序列分析练习题参考答案
8章时间序列分析练习题参考答案第⼋章时间数列分析⼀、单项选择题1.时间序列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值⼤⼩排列的C 前者是根据时间顺序排列的,后者是根据变量值⼤⼩排列的D 前者是根据变量值⼤⼩排列的,后者是根据时间顺序排列的 C2.时间序列中,数值⼤⼩与时间长短有直接关系的是( )A 平均数时间序列B 时期序列C 时点序列D 相对数时间序列 B3.发展速度属于( )A ⽐例相对数B ⽐较相对数C 动态相对数D 强度相对数 C4.计算发展速度的分母是( )A 报告期⽔平B 基期⽔平C 实际⽔平D 计划⽔平 B5.某车间⽉初⼯⼈⼈数资料如下:则该车间上半年的平均⼈数约为( )A 296⼈B 292⼈C 295 ⼈D 300⼈ C6.某地区某年9⽉末的⼈⼝数为150万⼈,10⽉末的⼈⼝数为150.2万⼈,该地区10⽉的⼈⼝平均数为( )A 150万⼈B 150.2万⼈C 150.1万⼈D ⽆法确定 C7.由⼀个9项的时间序列可以计算的环⽐发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 A8.采⽤⼏何平均法计算平均发展速度的依据是( )A 各年环⽐发展速度之积等于总速度B 各年环⽐发展速度之和等于总速度C 各年环⽐增长速度之积等于总速度D 各年环⽐增长速度之和等于总速度 A9.某企业的科技投⼊,2010年⽐2005年增长了58.6%,则该企业2006—2010年间科技投⼊的平均发展速度为( ) A5%6.58 B 5%6.158 C6%6.58 D 6%6.158B10.根据牧区每个⽉初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采⽤的公式是( ) A 简单平均法 B ⼏何平均法 C 加权序时平均法 D ⾸末折半法 D11.在测定长期趋势的⽅法中,可以形成数学模型的是( )A 时距扩⼤法B 移动平均法C 最⼩平⽅法D 季节指数法12.动态数列中,每个指标数值相加有意义的是()。
2010《时间序列分析》试卷A答案精选全文完整版
可编辑修改精选全文完整版2010—2011学年第一学期2007应用数学《时间序列分析》试卷A 答案一 (18分,每空1分)1 112211t t t t t X X X a a ϕϕθ-----=-2 偏自相关函数;自相关函数3 矩估计法、最小二乘估计法、极大似然估计法4 B51ϕ;0 6 1,1,2,i i n λ<=7 m8利用序列图进行判断;利用样本自相关函数ˆk ρ进行平稳性检验;利用单位根检验进行判断9 12222011ˆ 1.96()t l a l X G G G σ+-±+++ 10 存在 11 使得预测误差的均方値达到最小10 (1)S DB -二 (8分,每小题1分)1 错;2错;3对;4对;5 错;6 错;7 错;8对三 (12分,每小题2分)1 (1)2(10.80.5)t t X B B a =-+;(2) 21(10.5)(1 1.20.4)t t B X B B a --=-+2 (1) 稳定;(2)稳定3 (1)120.5,0.25G G ==; (2) 120.5,0G G =-=四 (4分)AR{1}(1)34321324321ˆ(1)(,,)([100.60.3],,)100.697.20.39696.12X E X X X X E X X a X X X ==+++=+⨯+⨯=;(2分)35321435321ˆ(2)(,,)([100.60.3],,)100.697.120.397.297.432X E X X X X E X X a X X X ==+++=+⨯+⨯=;(2分)36321546321ˆ(3)(,,)([100.60.3],,)100.697.4320.397.1297.5952X E X X X X E X X a X X X ==+++=+⨯+⨯= (2分)(2)010110.6G G G ϕ===221/21/2011.96() 1.966 1.3613.7144G G σ+=⨯⨯=五月份销售额的 95%的置信区间为(83.7176,111.1464) (2分)六 (50分)1 (1)AR(1)模型:10.667831t t t X X a -=+ (5分)疏系数的ARMA(1,6)模型:160.5578970.47526t t t t X X a a --=++ (5分)(2)上边AR(1)模型的AIC 值为-0.804969,第二个模型的AIC 值为-0.876542,根据AIC 准则可知,第二个模型拟合效果更好。
时间序列考试A卷——答案 2
一、单项选择题1. t X 的k 阶差分是 【 C 】(A )k t t t k X X X -∇=- (B )11k k k t t t k X X X ---∇=∇-∇ (C )111k k k t t t X X X ---∇=∇-∇ (D )1112k k k t t t X X X ----∇=∇-∇ 2. MA(2)模型121.10.24t t t t X εεε--=-+,则移动平均部分的特征根是 【 A 】 (A )10.8λ=,20.3λ= (B )10.8λ=-,20.3λ= (C )10.8λ=-,20.3λ=- (D )10.8λ=-,20.2λ= 3.关于差分121.30.40t t t X X X ---+=,其通解是 【 D 】 (A )1(0.80.3)t t C + (B ) 1(0.80.5)t t C + (C ) 120.80.3t t C C + (D )120.80.5t t C C +4. AR(2)模型121.10.24t t t t X X X ε--=-+,其中0.04t D ε=,则t t EX ε=【 B 】 (A )0 (B ) 0.04 (C ) 0.14 (D )0.25. ARMA(2,1)模型1210.240.8t t t t t X X X εε-----=-,其延迟表达式为【 A 】(A )2(10.24)(10.8)t t B B X B ε--=- (B ) 2(0.24)(0.8)t t B B X B ε--=- (C )2(0.24)0.8t t B B X ε--=∇ (D )2(10.24)t t B B X ε--=∇三、(15分)已知MA(2)模型为120.60.5t t t t X εεε--=-+,其中0.04t D ε=, (1)计算前3个逆函数,,1,2,3j I j =;----------------(8分) (2)计算()t Var X ;-----------------------------------(7分)解答:(1)t X 的逆转形式为:1t jt j t j X IX ε+∞-==+∑,或0()t j t j j I X ε+∞-==-∑------------(1分)将其代入原模型得:2212(10.60.5)(1)t t X B B I B I B X =-+----------(1分)比较B 的同次幂系数得:11:0.600.6B I I --=⇒=-———(2分)2212:0.60.500.14B I I I -++=⇒=———(2分) 33213:0.60.500.384B I I I I -++=⇒=———(2分)(2)12(0.60.5)0t t t t EX E εεε--=-+=———(1分)21212[(0.60.5)(0.60.5)]t t t t t t t EX E εεεεεε----=-+-+,———(2分)因为20,0.04,t s t s E t sεεεσ≠⎧=⎨==⎩———(2分) 所以:222()(10.60.5)0.040.0644t t Var X EX ==++⨯=———(2分) 四、(15分)已知AR(2)模型为(10.5)(10.3)t tB B X ε--=,20.5t D εεσ==。
时间序列分析-模拟试卷2套及答案
《时间序列分析》 期中考试模拟试卷(A )1.问答题(1) 常见的数据有哪些种类? (2) 什么是时间序列数据?(3) 常见的时间序列数据有哪些典型特征? (4)如何度量序列相依性?2.名词解释 (1) 平稳性 (2) 遍历性 (3) ACF(4) 长期协方差 (5) 白噪声3.下列自回归过程是否平稳? 若平稳,计算其均值和方差、以及自相关函数。
(1)r t =3+0.95r t−1+a t . (2)r t =1+1.05r t−1+a t .4.下列滑动平均过程是否可逆? (a )若可逆,求出其可逆表示;(b )计算其均值和方差、以及自相关函数。
(1)r t =3+0.95a t−1+a t . (2)r t =1+1.05a t−1+a t .5.证明:若y t =y t−1+u t ,u t 为i.i.d.N(0,σ2),则有T−2∑y t−12d →Tt=1σ2⋅∫[W (r )]2dr 1,T −1∑y t−1u t Tt=1d→σ22{[W (1)]2 −1}.参考答案1. (1)横截面数据、时间序列数据和面板数据;(2)时间序列数据是指同一个个体的一个或者多个特征在一系列时间观测点上的数据;(3) 序列平稳、非平稳、差分平稳、结构变化、季节性、协整、波动率聚集等;(4) 可以使用Pearson 相关系数度量变量之间的线性相关性,以及非线性相关系数,例如Spearman 秩相关系数和Kendall τ相关系数,来度量变量之间的非线性相关关系。
以上度量的共同点在于均为数据之间相依性的度量,并对样本数据得到相应的统计量,进行假设检验;但当时间序列数据之间存在非线性关系时,线性相关度量可能无法反应变量之间的相依性。
2. (1)平稳性分为严平稳和弱平稳,参考定义1.1和定义1.2;(2)遍历性刻画的是时间序列数据之间的相依程度随着数据之间时间间隔的增加而逐渐减弱的特征; (3)序列自相关系数关于阶数的变化的函数即为自相关函数,记为ACF ; (4)长期协方差为平稳时间序列的样本均值乘以√T (即√Ty ̅=√Ty t T t=1)的方差的极限; (5)白噪声是指均值为0、方差有限、且不存在时间维度上的相关性的平稳时间序列;。
时间序列分析考试和答案
时间序列分析考试和答案一、单项选择题(每题2分,共20分)1. 时间序列分析中,数据点是按时间顺序排列的。
A. 正确B. 错误答案:A2. 以下哪项不是时间序列分析的目的?A. 描述性分析B. 预测C. 因果分析D. 数据压缩答案:C3. 以下哪个模型属于时间序列分析中的确定性模型?A. AR模型B. MA模型C. ARMA模型D. 指数平滑模型答案:D4. 在时间序列分析中,季节性调整的目的是:A. 消除趋势B. 消除季节性C. 消除周期性D. 消除随机波动答案:B5. 以下哪个不是时间序列分析中常用的平稳性检验方法?A. 单位根检验B. 协整检验C. 自相关函数检验D. 偏自相关函数检验答案:B6. 时间序列分析中的差分操作主要用于:A. 消除季节性B. 消除趋势C. 消除周期性D. 消除随机波动答案:B7. 在时间序列分析中,以下哪个模型是用于描述非平稳序列的?A. AR模型B. MA模型C. ARMA模型D. ARCH模型答案:D8. 时间序列分析中,以下哪个模型是用于描述具有季节性的数据?B. SARMA模型C. ARIMA模型D. ARCH模型答案:C9. 在时间序列分析中,以下哪个模型是用于描述具有单位根的非平稳序列?A. AR模型B. MA模型C. ARMA模型D. ARIMA模型答案:D10. 时间序列分析中,以下哪个模型是用于描述具有随机波动的数据?A. AR模型B. MA模型D. ARCH模型答案:D二、多项选择题(每题3分,共15分)11. 时间序列分析中,以下哪些因素可能导致数据的非平稳性?A. 趋势B. 季节性C. 周期性D. 随机波动答案:A, B, C12. 时间序列分析中,以下哪些模型属于自回归模型?A. AR模型B. MA模型C. ARMA模型D. ARCH模型答案:A, C13. 时间序列分析中,以下哪些方法可以用于季节性调整?A. 移动平均法B. X-12-ARIMA法C. 季节性差分D. 指数平滑法答案:B, C14. 时间序列分析中,以下哪些检验可以用来检验序列的平稳性?A. 单位根检验B. 协整检验C. 自相关函数检验D. 偏自相关函数检验答案:A, C, D15. 时间序列分析中,以下哪些模型可以用于描述具有单位根的非平稳序列?A. AR模型B. MA模型C. ARMA模型D. ARIMA模型答案:D三、判断题(每题2分,共20分)16. 时间序列分析中的差分操作可以消除季节性。
(完整word版)时间序列分析考试卷及答案
考核课程 时间序列分析(B 卷)考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,1--=∇t t t Y Y Y 。
一、单项选择题(每小题3 分,共24 分。
)1。
若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。
A. MA(2)B.ARMA(1,1) C 。
AR (2) D 。
MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。
A. )1(MAB.)1(AR C 。
)1,1(ARMA D.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。
(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C)5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B ).A.ARMA(2,1)B.ARIMA(1,1,1)C.ARIMA(0,1,1)D.ARIMA(1,2,1)5. AR (2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。
A 。
0 B.64.0 C. 16.0 D 。
2.06.对于一阶滑动平均模型MA (1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。
A.5.0- B 。
25.0 C. 4.0- D. 8.07。
若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。
A. MA (2)B.)2,1(IMAC.)1,2(ARI D 。
(完整word版)《时间序列》试卷
《时间序列分析》试卷注意:请将答案直接写在试卷上一、填空题(1分*20空=20分)1. 德国药剂师、业余天文学家施瓦尔发现太阳黑子的活动具有11年周期依靠的是 时序分析方法。
2. 时间序列预处理包括 和 。
3. 平稳时间序列有两种定义,根据限制条件的严格程度,分为和 。
使用序列的特征统计量来定义的平稳性属于 。
4. 统计时序分析方法分为 和 。
5. 为了判断一个平稳的序列中是否含有信息,即是否可以继续分析,需对该序列进行 检验,该检验用到的统计量服从 分布;原假设和备择假设分别是 和 。
6. 图1为2000年1月——2007年12月中国社会消费品零售总额时间序列图,据此判断,该序列{}t X 是否平稳(填“是”或者“否”) ;要使其平稳化,应该对原序列进行 和 差分处理。
用Eviews 软件对该序列做差分运算的表达式是 。
7. ARIMA 模型的实质 是和的结合。
8. 差分运算的实质是使用的方式提取确定性信息。
9. 用延迟算子表示中心化的AR(P)模型是 。
二、不定项选择题(下列每小题至少有一个答案是正确的,请将正确答班级 姓名 学号50010001500200025003000350040009394959697989900图1案代码填入相应括号内,2分*5题=10分)1.下列属于白噪声序列{}t ε所满足的条件的是( )A. 任取T t ∈,有με=)(t E (μ为常数)B. 任取T t ∈,有0)(=t E εC.)(0),(s t Cov s t ≠∀=εεD. 2)(εσε=t Var (2εσ为常数) 2.使用n 期中心移动平均法对序列{}t x 进行平滑时,下列表达式正确的是( )A.n x x x x x n x n t n t t n t n t t ),(1~2112112121-+--++----++++++=ΛΛ为奇数;B. n x x x x x n x n t n t t n t n t t ),(1~212122+-++--++++++=ΛΛ为偶数;C. )(1~11+--+++=n t t t t x x x n x Λ; D. n x x x x x n x n t n t t n t n t t ),2121(1~212122+-++--++++++=ΛΛ为偶数。
(整理)《时间序列分析》试卷a答案.
2010—2011学年第一学期2007应用数学《时间序列分析》试卷A 答案一 (18分,每空1分)1 112211t t t t t X X X a a ϕϕθ-----=-2 偏自相关函数;自相关函数3 矩估计法、最小二乘估计法、极大似然估计法4 B5 1ϕ;06 1,1,2,i i n λ<=7 m8利用序列图进行判断;利用样本自相关函数ˆk ρ进行平稳性检验;利用单位根检验进行判断9 12222011ˆ 1.96()t l a l X G G G σ+-±+++ 10 存在11 使得预测误差的均方値达到最小10 (1)S DB -二 (8分,每小题1分)1 错;2错;3对;4对;5 错;6 错;7 错;8对三 (12分,每小题2分)1 (1)2(10.80.5)t t X B B a =-+;(2) 21(10.5)(1 1.20.4)t t B X B B a --=-+2 (1) 稳定;(2)稳定3 (1)120.5,0.25G G ==; (2) 120.5,0G G =-=四 (4分)AR{1}五 (12分)(1)34321324321ˆ(1)(,,)([100.60.3],,)100.697.20.39696.12X E X X X X E X X a X X X ==+++=+⨯+⨯=;(2分)35321435321ˆ(2)(,,)([100.60.3],,)100.697.120.397.297.432X E X X X X E X X a X X X ==+++=+⨯+⨯=;(2分) 36321546321ˆ(3)(,,)([100.60.3],,)100.697.4320.397.1297.5952X E X X X X E X X a X X X ==+++=+⨯+⨯= (2分)(2)010110.6G G G ϕ===221/21/2011.96() 1.966 1.3613.7144G G σ+=⨯⨯=五月份销售额的 95%的置信区间为(83.7176,111.1464) (2分)六 (50分)1 (1)AR(1)模型:10.667831t t t X X a -=+ (5分)疏系数的ARMA(1,6)模型:160.5578970.47526t t t t X X a a --=++ (5分)(2)上边AR(1)模型的AIC 值为-0.804969,第二个模型的AIC 值为-0.876542,根据AIC 准则可知,第二个模型拟合效果更好。
(精校版)时间序列分析试卷及答案
(完整word版)时间序列分析试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)时间序列分析试卷及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)时间序列分析试卷及答案的全部内容。
时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA (p , q)模型_________________________________,其中模型参数为____________________.2. 设时间序列{}t X ,则其一阶差分为_________________________。
3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________.4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________.5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳.6. 对于一阶自回归模型MA (1): 10.3t t t X εε-=-,其自相关函数为______________________.7. 对于二阶自回归模型AR (2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。
8. 设时间序列{}t X 为来自ARMA (p,q )模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++则预测方差为___________________.9. 对于时间序列{}t X ,如果___________________,则()~t X I d .10. 设时间序列{}t X 为来自GARCH (p ,q )模型,则其模型结构可写为_____________。
(整理)时间序列分析试题
B.大于100%表示各月(季)水平比全期平均水平高,现象处于旺季
C.小于100%表示各月(季)水平比全期水平低,现象处于淡季
D.小于100%表示各月(季)水平比全期平均水平低,现象处于淡季
E.等于100%表示无季节变化
答案:BD.E
12、循环变动指数C%()。
3月
4月
5月
6月
7月
月初应收账款余额
(万元)
690
850
930
915
890
968
1020
则该企业2005年上半年平均每个月的应收账款余额为()。
A.
B.
C.
D.
答案:A
10、采用几何平均法计算平均发展速度时,侧重于考察()。
A.现象的全期水平,它要求实际各期水平等于各期计算水平
B.现象全期水平的总和,它要求实际各期水平之和等于各期计算水平之和
答案:A
14、元宵的销售一般在“元宵节”前后达到旺季,1月份、2月份的季节指数将()。
A.小于100% B.大于100%
C.等于100% D.大于1200%
答案:B
15、空调的销售量一般在夏季前后最多,其主要原因是空调的供求(),可以通过计算()来测定夏季期间空调的销售量高出平时的幅度。
A.受气候变化的影响;循环指数
答案:D.
17、当时间序列的二级增长量大体相同时,适宜拟合()。
A.抛物线B.指数曲线
C.直线D.对数曲线
答案:A
18、国家统计局2005年2月28日公告,经初步核算,2004年我国的国内生产总值按可比价格计算比上年增长9.5%。这个指标是一个()。
时间序列分析试题-时间序列分析试卷及答案
第九章 时间序列分析一、单项选择题1、乘法模型是分析时间序列最常用的理论模型。
这种模型将时间序列按构成分解为 ( ) 等四种成分,各种成分之间 ( ) ,要测定某种成分的变动,只须从原时间序列中 ( )。
A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他 影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其 他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他 影响成分的变动D. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其 他影响成分的变动答案: C2、加法模型是分析时间序列的一种理论模型。
这种模型将时间序列按构成分解为 ( ) 等四种成分,各种成分之间 ( ),要测定某种成分的变动,只须从原时间序列中( )。
A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其 他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去 其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其 他影响成分的变动D. . 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去 其他影响成分的变动答案: B3、利用最小二乘法求解趋势方程最基本的数学要求是( )。
A.(Y Y ?t )2 任意值 B. (Y Y ?t ) 2 min C. (Y Y ?t )2 max D. (Y Y ?t )2 0答案: B4、从下列趋势方程 Y ?t 125 0.86t 可以得出( )。
Y 增加 0.86 个单位Y 减少 0.86 个单位Y 平均增加 0.86 个单位Y 平均减少 0.86 个单位 答案: D. )。
B. 只能是相对数 D. 上述三种指标均可以 答案: D.6、下列时间序列中,属于时点序列的有( )。
时间序列分析试卷及答案
时间序列分析试卷及答案时间序列分析试卷1一、填空题(每小题2分, 共计20分)1.ARMA(p,q)模型是一种常用的时间序列模型, 其中模型参数为p和q。
2.设时间序列{Xt}, 则其一阶差分为Xt-Xt-1.3.设ARMA (2.1): Xt=0.5Xt-1+0.4Xt-2+εt-0.3εt-1, 则所对应的特征方程为1-0.5B-0.4B^2+0.3B。
4.对于一阶自回归模型AR(1):Xt=10+φXt-1+εt, 其特征根为φ, 平稳域是|φ|<1.5.设ARMA(2.1):Xt=0.5Xt-1+aXt-2+εt-0.1εt-1, 当a满足|a|<1时, 模型平稳。
6.对于一阶自回归模型Xt=φXt-1+εt, 其平稳条件是|φ|<1.7.对于二阶自回归模型AR(2):MA(1):Xt=εt-0.3εt-1, 其自相关函数为Xt=0.5Xt-1+0.2Xt-2+εt, 则模型所满足的XXX-Walker方程是ρ1-0.5ρ2=0.2, ρ2-0.5ρ1=1.8.设时间序列{Xt}为来自ARMA(p,q)模型: Xt=φ1Xt-1+。
+φpXt-p+εt+θ1εt-1+。
+θqεt-q, 则预测方差为σ^2(1+θ1^2+。
+θq^2)。
9.对于时间序列{Xt}, 如果它的差分序列{ΔXt}是平稳的, 则Xt~I(d)。
10.设时间序列{Xt}为来自GARCH(p,q)模型, 则其模型结构可写为σt^2=α0+α1εt-1^2+。
+αpεt-p^2+β1σt-1^2+。
+βqσt-q^2.二、(10分)设时间序列{Xt}来自ARMA(2,1)过程, 满足(1-B+0.5B^2)Xt=(1+0.4B)εt, 其中{εt}是白噪声序列, 并且E(εt)=0, Var(εt)=σ^2.1)判断ARMA(2,1)模型的平稳性。
根据特征方程1-φ1B-φ2B^2, 求得其根为0.5±0.5i, 因此模型的平稳条件是|φ1-0.5i|<1和|φ1+0.5i|<1, 即-1<φ1<1.因为0.5i不在实轴上, 所以模型不是严平稳的, 但是是宽平稳的。
统计学:时间序列分析习题与答案
一、单选题1、根据季度数据测定季节比率时,各季节比率之和为()。
A.100%B.0C.400%D.1200%正确答案:C2、增长1%水平值的表达式是()。
A.报告期增长量/增长速度B.报告期发展水平/100C.基期发展水平/100D.基期发展水平/1%正确答案:C3、若报告期水平是基期水平的8倍,则我们称之为()。
A.翻了 3番B.翻了 8番C.发展速度为700%D.增长速度为800%正确答案:A4、若时间数列呈现出长时间围绕水平线的周期变化,这种现象属于()。
A.无长期趋势、有循环变动B.有长期趋势、有循环变动C.无长期趋势、无循环变动D.有长期趋势、无循环变动正确答案:B5、银行年末存款余额时间数列属于()。
A.平均指标数列B.时点数列C.时期数列D.相对指标数列正确答案:B6、某一时间数列,当时间变量t=1,2,3,...,n时,得到趋势方程为y=38+72t,那么,取t=0,2,4,6,8,...时,方程中的b将为()。
A.36B.34C.110D.144正确答案:A7、某企业2018年的产值比2014年增长了 200%,则年平均增长速度为()。
A.50%B.13.89%C.29.73%D.31.61%正确答案:D8、2010年某市年末人口为120万人,2020年年末达到153万人,则年平均增长量为()万人。
A. 3B.33C. 3.3D.30正确答案:C9、在测定长期趋势时,如果时间数列逐期增长量大体相等,则宜拟合()。
A.抛物线模型B.直线模型C.曲线模型D.指数曲线模型正确答案:B10、在测定长期趋势时,当时间数列的逐期增长速度基本不变时,宜拟合()。
A.逻辑曲线模型B.二次曲线模型C.直线模型D.指数曲线模型正确答案:D二、多选题1、编制时间数列的原则有()。
A.经济内容的一致性B.计算方法的一致性C.时间的一致性D.总体范围的一致性正确答案:A、B、C、D2、以下表述正确的有()。
8章-时间序列分析练习题参考答案
8章-时间序列分析练习题参考答案第⼋章时间数列分析⼀、单项选择题1.时间序列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值⼤⼩排列的C 前者是根据时间顺序排列的,后者是根据变量值⼤⼩排列的D 前者是根据变量值⼤⼩排列的,后者是根据时间顺序排列的 C2.时间序列中,数值⼤⼩与时间长短有直接关系的是( )A 平均数时间序列B 时期序列C 时点序列D 相对数时间序列 B3.发展速度属于( )A ⽐例相对数B ⽐较相对数C 动态相对数D 强度相对数 C4.计算发展速度的分母是( )A 报告期⽔平B 基期⽔平C 实际⽔平D 计划⽔平 B5.某车间⽉初⼯⼈⼈数资料如下:则该车间上半年的平均⼈数约为( )A 296⼈B 292⼈C 295 ⼈D 300⼈ C6.某地区某年9⽉末的⼈⼝数为150万⼈,10⽉末的⼈⼝数为150.2万⼈,该地区10⽉的⼈⼝平均数为( )A 150万⼈B 150.2万⼈C 150.1万⼈D ⽆法确定 C7.由⼀个9项的时间序列可以计算的环⽐发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 A8.采⽤⼏何平均法计算平均发展速度的依据是( )A 各年环⽐发展速度之积等于总速度B 各年环⽐发展速度之和等于总速度C 各年环⽐增长速度之积等于总速度D 各年环⽐增长速度之和等于总速度 A9.某企业的科技投⼊,2010年⽐2005年增长了58.6%,则该企业2006—2010年间科技投⼊的平均发展速度为( ) A5%6.58 B 5%6.158 C6%6.58 D 6%6.158B10.根据牧区每个⽉初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采⽤的公式是( ) A 简单平均法 B ⼏何平均法 C 加权序时平均法 D ⾸末折半法 D11.在测定长期趋势的⽅法中,可以形成数学模型的是( )A 时距扩⼤法B 移动平均法C 最⼩平⽅法D 季节指数法12.动态数列中,每个指标数值相加有意义的是()。
时间序列分析期末题库试题及答案
时间序列分析期末题库试题及答案(以下是一个范例,您可以根据需要进行修改和调整)时间序列分析期末题库试题及答案时间序列分析是一门研究随时间变化的数据模式和规律的统计学方法,广泛应用于物理学、经济学、环境科学等领域。
在进行时间序列分析时,掌握相关的试题及其答案是提高分析能力和应对考试的重要途径。
本文将为您提供一份时间序列分析期末题库试题及答案,希望能帮助您更好地掌握这门学科。
一、简答题1. 请解释什么是时间序列分析。
答:时间序列分析是一种统计学方法,用于研究随时间变化的数据。
它可以揭示出数据内在的趋势、季节性和周期性等模式,帮助我们进行预测和决策。
2. 时间序列分析的主要步骤有哪些?答:时间序列分析的主要步骤包括:数据收集和整理、数据可视化、确定模型、模型识别和拟合、模型检验和评估、模型预测和应用。
3. 请解释平稳时间序列的概念。
答:平稳时间序列是指其数学期望、方差和自协方差不随时间的变化而发生显著变化的时间序列。
平稳时间序列的均值和方差不依赖于时间,具有稳定的趋势和季节性。
4. 如何进行时间序列的平稳性检验?答:常见的平稳性检验方法包括ADF检验、KPSS检验和单位根检验。
这些方法可以通过检验时间序列数据的单位根是否存在来判断其是否平稳。
5. 时间序列分析中的自相关和偏自相关函数有什么作用?答:自相关函数(ACF)和偏自相关函数(PACF)用于分析时间序列数据的相关性。
ACF可以帮助确定数据的季节性和周期性,而PACF可以帮助确定数据的自回归阶数。
二、计算题请根据以下时间序列数据,回答下面的问题:年份 | 销售额(万元)-----------------------2015 | 2002016 | 2302017 | 2502018 | 2802019 | 3002020 | 3201. 请绘制销售额的时间序列图。
答:(在此插入相应的时间序列图)2. 根据观察的时间序列图,总结该时间序列的趋势和季节性。
时间序列期末考试A卷答案
第(-)学期考试试卷课程代码6024000课程名称时间序列分析B(A卷)考试时间____________(注:匕}为均值为零的白噪声序列)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【1 内。
答案错选或未选者,该题不得分。
每小题4分,共20分。
)1.X,的k阶差分是【C】(A) Px严Xt—X.k(B) 丁X严P-'X厂p-'Xj(c) =v A-,x/-v A-'x/_1(D)v*x r=V A-,X,_1-V A-,X/_22.MA⑵模型X f=^-1.1£-Z_I+0.24^_2,则移动平均部分的特征根是【A】(A)人=0.8, /U=0.3 (B) =-0.8, /U=0.3(C)人=-0.8, = -0.3 (D) & =一0.8,入=0.23•关于差分X,—1.3Xi+0.4X一2=0,其通解是【D】(A) q(08+0.3‘)(B) q(o.&+o.5『)(C) qO.S+C/O.M (D) Cfi.S1+C20S4.AR(2)模型X, =£—l.lXj+0.24X_2,其中£>£=0.04,则EX 禺=[B 】(A) 0 (B) 0.04(C) 0.14 (D) 0.25.ARMA(2,l)tMgy X, -X,., -0.24X z_2 =^; -0.8^,.,,其延迟表达式为【A 】(A) (l-B-0.24B2)X, =(l-0.8BX (B) (B2-B-0.24)%, =(B-0.8X(C) (B2-B-0.24)X f =0.8V^ (D) (1 -B-0.24/?2)X f = Vf r二、简答题(10分)对于均值为零的平稳序列,其自相关系数存在两个估计量,请写出两个估计量,并说出它们各自优缺点。
三、(15 分)已知 MA (2)模型为 X r =^-0.6^_,+0.5^_2,其中 Ds, = 0.04 ,(1)计算前3个逆函数,/…; = 1,2,3; -------------------------- (8分) (2)计算Var{X t );------------------------------------ (7 分)解答:(1) X 」勺逆转形式为:或J 壬 --------------------------------------------------------- (1分) /■]J-0将其代入原模型得:X, = (1 -0.6B + 0.5B 2)(1 -I.B- I 2B 2 • • •)%, -------- (1 分) 比较B 的同次幕系数得:B:-Z 1-0.6 = 0=>/l =-0.6 ---------------- (2 分) B 2:-Z 2 + 0.6/, + 0.5 = 0 Z 2 = 0.14 ---------------- (2 分)肝:一人+0・6厶+0・5人=0=>厶=0.384 ------ (2分)(2) EX t = E (s j -0.6^ + 0.5^_2) = 0 ---------- (1 分)EX ; = E[(£ _0・6吕-]+0・5名-2)(吕 _0・6吕-]+0・5爲_2)](2分)所以:Var (X z ) = EX ; = (1 + 0.62 + 0.52)x0.04 = 0.0644 -- (2 分) 四、(15 分)已知 AR (2)模型为(1—0・53)(1-0・33)/=爲 Ds. =a ;= 0.5(1)计算偏相关系数%伙=123); -------------------------------- (8分)(2) W/r (XJ ; ----------------------------------------- (7 分) 解答(1) (l-0・5B )(l-0・3B )X 『 =X 『—O ・8X"i+O ・15X_=£,所以:% =0.=-0」5对于A&2)模型其系数满足2阶Yule-Walker 方程:姑金“69565 和/金+ *“40652,产生偏相关系数的相关序列为,相应Yule-Wolker 方程为:‘1 p\/ 、 '1 P\ V 0.8、(PC<P1 16l.Pi 1315丿4所以:(2分)当£ = 2时, P\ P\Po >2ij =rpi~他」一1因为0, m b ; = 0.04, t= s将其代入原模型得:(1-加-02肝)丘手一广吕一(1分)7-0比较B 的同次幕系数得:G° = lB :G\- %G ()= 0 => G] = (p 、= £ -------- ( 2 分)3’ : G, — %G] +(P 、G Q = 0 => G? = --------- ( 2 分) 225 553G 3 —(pfi 2 一(p 2G } =0=>G 3= 〜0」6385 -------- (2 分)^7P\=(P\\P Q 即 ®I =ZV 所以(Pw= P\ 0.69565% =[。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010《时间序列分析》试卷A答案
2010—2011学年第一学期2007应用数学
《时间序列分析》试卷A 答案
一 (18分,每空1分)
1 1122
11t t t t t X X X a a ϕϕθ-----=- 2 偏自相关函数;自相关函数
3 矩估计法、最小二乘估计法、极大似然估计法
4 B
5 1ϕ;0
6 1,1,2,
i i n λ<=
7 m
8利用序列图进行判断;利用样本自相关函数ˆk ρ进行平稳性检验;利用单位根检验进行判断 9 12222011
ˆ 1.96()t l a l X G G G σ+-±+++ 10 存在
11 使得预测误差的均方値达到最小
10 (1)S D B -
二 (8分,每小题1分)
1 错;2错;3对;4对;5 错;6 错;7 错;8对
三 (12分,每小题2分)
1 (1)2(10.80.5)t t X B B a =-+;(2) 21(10.5)(1 1.20.4)t t B X B B a --=-+
2 (1) 稳定;(2)稳定
3 (1)120.5,0.25G G ==; (2) 120.5,0G G =-=
四 (4分)
AR{1}
五 (12分)
(1)
34321
324321ˆ(1)(,,)([100.60.3],,)100.697.20.39696.12
X E X X X X E X X a X X X ==+++=+⨯+⨯=;(2分)
35321
435321ˆ(2)(,,)([100.60.3],,)100.697.120.397.297.432
X E X X X X E X X a X X X ==+++=+⨯+⨯=;(2分)
36321
546321ˆ(3)(,,)([100.60.3],,)100.697.4320.397.1297.5952
X E X X X X E X X a X X X ==+++=+⨯+⨯= (2分)
(2)01011
0.6G G G ϕ===
221/21/2011.96() 1.966 1.3613.7144G G σ+=⨯⨯=
五月份销售额的 95%的置信区间为(83.7176,111.1464) (2分)
六 (50分)
1 (1)AR(1)模型:10.667831t t t X X a -=+ (5分)
疏系数的ARMA(1,6)模型:160.5578970.47526t t t t X X a a --=++ (5分)
(2)上边AR(1)模型的AIC 值为-0.804969,第二个模型的AIC 值为-
0.876542,根据AIC 准则可知,第二个模型拟合效果更好。
(4分)
2 (18分)
(1)根据原始序列的相关图衰减得很慢,而一阶差分后的序列的相关图呈指数衰减,可推断中国人口序列t y 是非平稳序列,而t dy 是一个1阶或2阶自回归过程。
(6分)
(2)模型:
110.1415(10.6247)0.62470.05310.6247t t t t t Dy Dy a Dy a --=-++=++
因为残差检验的Correlogram-Q-statistics 检验结果中右侧一列的概率值都大于0.05,说明所有Q 值都小于检验水平为0.05的卡方分布临界值,所以模型的随机误差项是个白噪声序列。
(6分)
(3) 2002年人口的动态预测结果为12.81577亿。
(6分) 2 (18分)
(1)季节调整序列前5项的数据为:29087,28616,28939,28595,29086 季节因子前5项的数据为:0.967910,0.919653,1.049022,1.025577,1.053898(6分)
(2)从MA12折线图可以看出,趋势分量应该是半对数形式,利用最小二乘法估计得趋势模型为:1226012.651034.76ln t Trend MA t ==+ (6分)
(3)预测模型及预测结果是:
1331ˆ(26012.651034.76ln )3007y
t S =+= (6分)。