2008南京中考数学试题参考答案
历年江苏省南京市中考数学试卷(含答案)
2017 年江苏省南京市中考数学试卷一、选择题(本大题共 6 小题,每小题2 分,共12 分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2分)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是()A.7 B.8 C.21 D.362.( 2 分)计算106×(102)3÷104的结果是()A.103 B.107 C.108 D.1093.( 2 分)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有 4 个面是三角形;乙同学:它有8 条棱,该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.( 2 分)若< a< ,则下列结论中正确的是()A.1< a< 3 B.1< a< 4C.2< a< 3D.2< a< 45.( 2 分)若方程(x﹣5)2=19的两根为a和b,且a> b,则下列结论中正确的是()A. a 是19 的算术平方根B. b 是19 的平方根C.a﹣ 5 是19 的算术平方根D.b+5 是19 的平方根6.( 2 分)过三点A(2,2),B (6,2),C(4,5)的圆的圆心坐标为()A.(4,)B.(4,3)C.(5,)D.(5,3)二、填空题(本大题共10 小题,每小题2分,共20 分)7.( 2 分)计算:| ﹣3| = ;= .8.( 2 分)2016年南京实现GDP约10500亿元,成为全国第11 个经济总量超过万亿的城市,用科学记数法表示10500 是.9.( 2 分)分式在实数范围内有意义,则x的取值范围是.10.( 2 分)计算+ × 的结果是.11.( 2 分)方程﹣=0的解是.12.( 2 分)已知关于 x 的方程x 2+px+q=0 的两根为﹣3 和﹣ 1,则 p= ,q= .13.( 2分)如图是某市 2013﹣ 2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大14. ( 2 分)如图,∠1 是五边形 ABCDE 的一个外角,若∠ 1=65°,则∠ A+∠ B+∠15.( 2 分)如图,四边形 ABCD 是菱形,⊙ O 经过点 A 、 C 、 D ,与BC 相交于点E ,连接AC 、 AE .若∠ D=78°,则∠ EAC=°.16.( 2 分)函数y 1=x 与 y 2= 的图象如图所示,下列关于函数y=y 1+y 2的结C+∠D=论:①函数的图象关于原点中心对称;②当x<2 时,y随x的增大而减小;③当x> 0 时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共11 小题,共88 分)17.(7 分)计算(a+2+ )÷(a﹣).18.(7 分)解不等式组请结合题意,完成本题的解答.(1)解不等式①,得,依据是:.(2)解不等式③,得.(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.19.(7 分)如图,在?ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,B D相交于点O,求证:OE=OF.20.(8 分)某公司共25 名员工,下表是他们月收入的资料.月收入/元4500 1800 1000 550 480 340 300 2200 0 0 00000人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是元,众数是元.2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.(8 分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.(8 分)“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).23.(8 分)张老师计划到超市购买甲种文具100 个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买 1 个甲种文具,需增加购买 2 个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具.(1)①当减少购买 1 个甲种文具时,x= ,y= ;②求y 与x之间的函数表达式.(2)已知甲种文具每个 5 元,乙种文具每个 3 元,张老师购买这两种文具共用去540 元,甲、乙两种文具各购买了多少个?24.(8 分)如图,PA,PB是⊙O 的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O 于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥ AC.25.(8 分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口 A 的正南方向,港口 B 的正西方向的 D 处,它沿正北方向航行5km 到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37≈ ° 0.60,cos37≈° 0.80,tan37 °≈ 0.75)26.(8 分)已知函数y=﹣x2+(m﹣1)x+m(m 为常数).(1)该函数的图象与x 轴公共点的个数是.A.0 B.1 C.2 D.1 或 2( 2)求证:不论m 为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤ m≤ 3 时,求该函数的图象的顶点纵坐标的取值范围.27.(11 分)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD(AB> BC)(图①),使AB 与DC 重合,得到折痕EF,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB、PC,得到△PBC.(1)说明△PBC是等边三角形.【数学思考】(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC,他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm,另一边长为 a cm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm 的直角三角形铁片,所需正方形铁片的边长的最小值为cm.2017 年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共 6 小题,每小题2 分,共12 分。
南京市中考数学试卷含详细解版
江苏省南京市初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是()A. - 2B. 2C. - 8D. 8考点:有理数的加法;绝对值. 分析:先计算﹣5+3,再求绝对值即可. 解答:解:原式=|﹣2| =2. 故选B . 点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数. 2.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6 C. x ²y 9 D. -x ²y 9 考点:幂的乘方与积的乘方. 分析:根据幂的乘方和积的乘方的运算方法:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数);求出计算(﹣xy 3)2的结果是多少即可. 解答:解:(﹣xy 3)2 =(﹣x )2•(y 3)2 =x 2y 6,即计算(﹣xy 3)2的结果是x 2y 6. 故选:A . 点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn(m ,n 是正整数);②(ab )n =a n b n (n 是正整数).3.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()A. AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D. △ADE 的面积△ABC 的面积 = 13考点:相似三角形的判定与性质. 分析:第3题图DA CE由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.某市底机动车的数量是2×106辆,新增3×105辆.用科学记数法表示该市底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:底机动车的数量为:3×105+2×106=2.3×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.估计5 -12介于( )A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间考点:第6题图MGFE O CD BA N估算无理数的大小. 分析:先估算的范围,再进一步估算,即可解答.解答: 解:∵ 2.235, ∴﹣1≈1.235, ∴≈0.617,∴介于0.6与0.7之间,故选:C . 点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为() A. 133B. 92C.4313D.2 5考点:切线的性质;矩形的性质. 分析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,得到∠A=∠B=90°,CD=AB=4,由于AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE ,FBGO 是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果. 解答:解:连接OE ,OF ,ON ,OG , 在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点, ∴∠AEO=∠AFO=∠OFB=∠BGO=90°, ∴四边形AFOE ,FBGO 是正方形, ∴AF=BF=AE=BG=2, ∴DE=3,∵DM 是⊙O 的切线, ∴DN=DE=3,MN=MG , ∴CM=5﹣2﹣MN=3﹣MN ,在R t △DMC 中,DM 2=CD 2+CM 2, ∴(3+NM )2=(3﹣NM )2+42,∴NM=,∴DM=3=,故选A.点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.二.填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.考点:算术平方根;平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.若式子x+1在实数范围内有意义,则x的取值范围是.考点:二次根式有意义的条件.分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.计算5×153的结果是.考点:二次根式的乘除法.分析:直接利用二次根式的性质化简求出即可.解答:解:=×=5.故答案为:5. 点评:此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键. 10.分解因式(a - b )(a - 4b )+ab 的结果是 .考点:因式分解-运用公式法. 分析:首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可. 解答:解:(a ﹣b )(a ﹣4b )+ab =a 2﹣5ab+4b 2+ab =a 2﹣4ab+4b 2 =(a ﹣2b )2.故答案为:(a ﹣2b )2. 点评:此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .考点:解一元一次不等式组. 分析:分别解每一个不等式,再求解集的公共部分. 解答:解:,解不等式①得:x >﹣1, 解不等式②得:x <1,所以不等式组的解集是﹣1<x <1. 故答案为:﹣1<x <1. 点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 考点:根与系数的关系;一元二次方程的解. 分析:利用一元二次方程的根与系数的关系,两根的和是﹣m ,两个根的积是3,即可求解. 解答:解:设方程的另一个解是a ,则1+a=﹣m ,1×a=3,解得:m=﹣4,a=3.故答案是:3,﹣4.点评:本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A',再作点A'关于y轴的对称点,得到点A'',则点A''的坐标是( , ).考点:关于x轴、y轴对称的点的坐标.分析:分别利用x轴、y轴对称点的性质,得出A′,A″的坐标进而得出答案.解答:解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.点评:此题主要考查了关于x轴、y轴对称点的性质.(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.工种人数每人每月工资元电工 5 7000木工 4 6000瓦工 5 50001名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”).考点:方差.分析:利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大.解答:解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:增大.点评:此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键.15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= °.1y=考点:圆内接四边形的性质. 分析:连接CE ,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD ,然后求解即可. 解答:解:如图,连接CE ,∵五边形ABCDE 是圆内接五边形, ∴四边形ABCE 是圆内接四边形, ∴∠B+∠AEC=180°, ∵∠CED=∠CAD=35°, ∴∠B+∠E=180°+35°=215°. 故答案为:215.点评:本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .考点:反比例函数与一次函数的交点问题. 分析:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,由于点A 在反比例函数y 1=上,设A (a ,),求得点B 的坐标代入反比例函数的解析式即可求出结果. 解答:解:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D , ∵点A 在反比例函数y 1=上, ∴设A (a ,),∴OC=a ,AC=, ∵AC ⊥x 轴,BD ⊥x 轴, ∴AC ∥BD ,∴△OAC ∽△OBD , ∴,∵A 为OB 的中点, ∴=,∴BD=2AC=,OD=2OC=2a , ∴B (2a ,), 设y 2=, ∴k=2a •=4,∴y 2与x 的函数表达式是:y=. 故答案为:y=.点评:本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用. 三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来.考点: 解一元一次不等式;在数轴上表示不等式的解集. 分析:不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可. 解答:第17题图–1–2–31230解:去括号,得2x+2﹣1≥3x+2, 移项,得2x ﹣3x ≥2﹣2+1, 合并同类项,得﹣x ≥1, 系数化为1,得x ≤﹣1,这个不等式的解集在数轴上表示为:点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 18.(7分)解方程2x -3 = 3x考点:解分式方程. 专题: 计算题. 分析:观察可得最简公分母是x (x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程两边同乘以x (x ﹣3),得2x=3(x ﹣3). 解这个方程,得x=9.检验:将x=9代入x (x ﹣3)知,x (x ﹣3)≠0. 所以x=9是原方程的根. 点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.(7分)计算⎝⎛⎭⎫2a ²-b ² - 1a ² - ab ÷ aa +b考点:分式的混合运算. 分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可. 解答:解:(﹣)÷=[﹣]×=[﹣]×=×=.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD = CD BD. (1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.考点:相似三角形的判定与性质. 分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°. 解答:(1)证明:∵CD 是边AB 上的高, ∴∠ADC=∠CDB=90°,∵=.∴△ACD ∽△CBD ;(2)解:∵△ACD ∽△CBD , ∴∠A=∠BCD ,在△ACD 中,∠ADC=90°, ∴∠A+∠ACD=90°, ∴∠BCD+∠ACD=90°, 即∠ACB=90°. 点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.21.(8分)为了了解某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合抽样结果,得到下列统计图.第20题图A(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较与抽样学生50米跑成绩合格率情况,写出一条正确的结论.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.解答:解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与相比,该市大学生50米跑成绩合格率下降了5%(答案不唯一).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.考点:列表法与树状图法.专题:计算题.分析:(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.解答:解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.23.(8分)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km /h 和36km /h .经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 位,测得∠DBO=58°,此时B 处距离码头O 有多远?(参考数据:sin 58° ≈ 0.85,cos 58° ≈ 0.53,tan 58° ≈ 1.60)考点:解直角三角形的应用.分析:设B 处距离码头Oxkm ,分别在Rt △CAO 和Rt △DBO 中,根据三角函数求得CO 和DO ,再利用DC=DO ﹣CO ,得出x 的值即可.解答:解:设B 处距离码头Oxkm ,在Rt △CAO 中,∠CAO=45°, 东北O B A∴CO=AO •tan ∠CAO=(45×0.1+x )•tan45°=4.5+x ,在Rt △DBO 中,∠DBO=58°,∵tan ∠DBO=,∴DO=BO •tan ∠DBO=x •tan58°,∵DC=DO ﹣CO ,∴36×0.1=x •tan58°﹣(4.5+x ),∴x=≈=13.5.因此,B 处距离码头O 大约13.5km .点评:本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键.24.(8分)如图,AB ∥ CD ,点E 、F 分别在AB 、CD 上,连接EF ,∠AEF 、∠CFE 的平分线交于点G ,∠BEF 、∠DFE 的平分线交于点H .(1) 求证:四边形EGFH 是矩形.(2) 小明在完成(1)的证明后继续进行了探索.过G 作MN ∥ EF ,分别交AB 、CD 于点M 、N ,过H 作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.考点:菱形的判定;全等三角形的判定与性质;矩形的判定.分析:(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH 是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP 是菱形,只要证MN=NQ ,再证∠MGE=∠QFH 得出即可.解答:(1)证明:∵EH 平分∠BEF ,∴∠FEH=∠BEF ,∵FH 平分∠DFE ,小明的证明思路 由AB ∥CD ,MN ∥EF ,PQ ∥EF ,易证四边形MNQP 是平行四边形.要证▱MNQP 是菱形, 只要证NM=NQ .由已知条件 , MN ∥ EF ,可证NG = NF ,故只要证 GM = FQ ,即证△MGE ≌△QFH .易证 , , 故只要证 ∠MGE = ∠QFH ,∠QFH = ∠GEF ,∠QFH=∠EFH , 第24题图P H G A D C∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠EFG=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;(2)解:答案不唯一:由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证 GE=FH、∠GME=∠FGH.故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.点评:此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.25.(10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)DA考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A 为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.解答:解:满足条件的所有图形如图所示:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法.26.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB.(2)连接OE,交CD于点F,OE ⊥ CD.求证:△ABE是等边三角形.考点:圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.(第26题)EOCABD分析:(1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE ,然后利用等边对等角可得∠DCE=∠AEB ,进而可得∠A=∠AEB ;(2)首先证明△DCE 是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB ,可得△ABE 是等腰三角形,进而可得△ABE 是等边三角形.解答:证明:(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE ,∵DC=DE ,∴∠DCE=∠AEB ,∴∠A=∠AEB ;(2)∵∠A=∠AEB ,∴△ABE 是等腰三角形,∵EO ⊥CD ,∴CF=DF ,∴EO 是CD 的垂直平分线,∴ED=EC ,∵DC=DE ,∴DC=DE=EC ,∴△DCE 是等边三角形,∴∠AEB=60°,∴△ABE 是等边三角形.点评:此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义.(2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?x /kgy /元D B120 C 60 A考点:二次函数的应用.分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.解答:解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.点评:本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.。
2008年江苏省中考数学几何解答题精选37题
2008年江苏省中考数学几何解答题精选37题1(08年江苏常州)(本小题满分7分) 已知:如图,AB=AD,AC=AE,∠BAD=∠CAE. 求证:AC=DE.2(08年江苏常州)已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED. 求证:AE 平分∠BAD.3(08年江苏常州)如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意..图.,并写出它们的周长.4(08年江苏常州)(本小题满分8分)如图,港口B 位于港口O 正西方向120海里外,小岛C 位于港口O 北偏西60°的方向.一艘科学考察船从港口O 出发,沿北偏东30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C 用1小时装补给物资后,立即按原来的速度给考察船送去.(1) 快艇从港口B 到小岛C 需要多少时间?(2) 快艇从小岛C(第22题)(第23题)5(08年江苏淮安24题)(本小题9分)已知;如图.矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连结AE、DE. (1)试判断四边形AODE的形状,不必说明理由; (2)请你连结EB、EC.并证明EB=EC.6(08年江苏淮安26题)(本小题10分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若,DE=3.求:(1) ⊙O的半径; (2)弦AC的长; (3)阴影部分的面积.7(08年江苏淮安27题)(本小题lO分)我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图l是由△A复制出△A1,又由△Al复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图l中标出的是一种可能的复制结果.它用到_____次平移._______次旋转.小明发现△B∽△A,其相似比为_________.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是________;(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;(4)图3是正五边形EFGHI.其中心是O.连结O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.8(08年江苏连云港18题)(本小题满分8分)如图,A B C △内接于O ,A B 为O 的直径,2B A C B ∠=∠,6A C =,过点A 作O 的切线与O C 的延长线交于点P ,求P A 的长.9(08年江苏连云港20题)(本小题满分8分)如图,在直角梯形纸片A B C D 中,A B D C ∥,90A ∠= ,C D AD >,将纸片沿过点D 的直线折叠,使点A 落在边C D 上的点E 处,折痕为D F .连接E F 并展开纸片. (1)求证:四边形AD EF 是正方形;(2)取线段A F 的中点G ,连接E G ,如果B G C D =,试说明四边形G B C E 是等腰梯形.10(08年江苏连云港25题)(本小题满分12分)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段A B 的最小覆盖圆就是以线段A B 为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);(3)某地有四个村庄E F G H ,,,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.BCPO A(第18题图) ECBDAGF(第20题图)AAB BCC 80100(第25题图1)F11(08年江苏南京21题)(6分)如图,在A B C D 中,E F ,为B C 上两点,且B E C F =,AF D E =. 求证:(1)A B F D C E △≌△;(2)四边形A B C D 是矩形.12(08年江苏南京22题)(6分)如图,菱形A B C D (图1)与菱形E F G H (图2)的形状、大小完全相同.(1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ; (2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述)13(08年江苏南京23题)(6分)如图,山顶建有一座铁塔,塔高30m C D =,某人在点A 处测得塔底C 的仰角为20,塔顶D 的仰角为23,求此人距C D 的水平距离A B .(参考数据:sin 200.342≈,cos 200.940≈,tan 200.364≈,sin 230.391≈,cos 230.921≈,tan 230.424≈)(第21题)A BCDEF图1(第22题)B图2EF G(第23题)ABCD 202314(08年江苏南通21题)如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?15(08年江苏南通22题)已知:如图,M 是 AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN =4.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.16(08年江苏南通27题)在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切) (1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.(第22题)ABC MNO ·A BP北东(第21题)(第27题)方案一A 方案二A CD17(08年江苏苏州23题)(本题6分)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4. 求证:(1)△ABC ≌△ADC ; (2)BO=DO .18(08年江苏苏州27题)(本题9分)如图,在△ABC 中,∠BAC=90°,BM 平分∠ABC 交AC 于M ,以A 为圆心,AM 为半径作OA 交BM 于N ,AN 的延长线交BC 于D ,直线AB 交OA 于P 、K 两点.作MT ⊥BC 于T (1)求证AK=MT ; (2)求证:AD ⊥BC ; (3)当AK=BD 时, 求证:B N A C B PB M=.19(08年江苏宿迁21题)(本题满分8分)如图,在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:CF AB =;(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.20(08年江苏宿迁23题)(本题满分10分) 如图,⊙O 的直径AB 是4,过B 点的直线MN 是⊙O 的切线,D 、C 是⊙O 上的两点,连接AD 、BD 、CD 和BC .(1)求证:CDB CBN ∠=∠;(2)若DC 是ADB ∠的平分线,且︒=∠15DAB ,求DC 的长.NMBAFEDCBA第21题21(08年江苏泰州23题)如图,⊿ABC 内接于⊙O ,AD 是⊿ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,⊿ABE 与⊿ADC 相似吗?请证明你的结论。
南京中考数学试题及答案
南京中考数学试题及答案一、选择题(每小题2分,共40分)1. 一堆沙子被分成若干堆,第一堆有12千克,第二堆是第一堆的2倍,第三堆是第二堆的2倍,以此类推。
如果沙子分了n堆,第n堆有多少千克?A. 24B. 36C. 48D. 60答案:D. 602. 若a = 3,b = 2,则下列等式中正确的是:A. a^b = 9B. (a+b)^2 = 25C. a/b = 1.5D. a×b = 6答案:C. a/b = 1.53. 一辆车以每小时60公里的速度行驶,行驶了5小时后剩余油量的三分之一。
若保持相同的速度行驶9小时,则剩余油量的三分之一是原来的多少?A. 3/5B. 4/5C. 1/15D. 1/9答案:A. 3/5...十、解答题1. 已知函数y = 2x - 3,求出x的取值范围使得y ≥ 5。
解答:由题可列出不等式:2x - 3 ≥ 5解方程得:2x ≥ 8x ≥ 4所以x的取值范围为[4, +∞)。
2. 甲、乙、丙三个容器共装有水700升。
能否用甲、乙、丙三个容器各自的蓄水量排出550升的水?如果能,请说明具体步骤;如果不能,请给出解释。
解答:不可以。
设甲容器的蓄水量为x升,乙容器的蓄水量为y升,丙容器的蓄水量为z升。
根据题意,可列出以下方程组:x + y + z = 700x + y + z - 550 = 0解该方程组得:x = 200 - zy = 550 - x - z = 350 + z要排出550升的水,根据题意可得:x ≥ 550200 - z ≥ 550z ≤ -350由上述不等式组可知,不可能找到满足条件的解,所以不能用甲、乙、丙三个容器排出550升的水。
...根据南京中考数学试题及答案,大家可以更好地了解南京中考数学试题的难度和题目类型,从而更好地备考南京中考,取得优异的成绩。
希望本文所提供的试题和答案能对大家有所帮助。
祝大家取得优异的成绩!。
2008年南京市中考数学试题及详解
2008年江苏省南京市中考数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共10小题,每小题2分,共计20分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.3-的绝对值是( ) A .3-B .3C .13-D .132.2008年5月27日,北京2008年奥运会火炬接力传递活动在南京境内举行,火炬传递路线全程 约12 900m ,将12 900m 用科学记数法表示应为( ) A .50.12910⨯B .41.2910⨯C .312.910⨯D .212910⨯3.计算23()ab 的结果是( ) A .5abB .6abC .35a bD .36a b4.2的平方根是( ) A .4BC.D.5.已知反比例函数的图象经过点(21)P -,,则这个函数的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第三、四象限6这个新的图形可以是下列图形中的( ) A .三角形B .平行四边形C .矩形D .正方形7.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m8.如图,O 是等边三角形ABC 的外接圆,O 的半径为2则等边三角形ABC 的边长为( ) ABC .D .9.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,(第6题) (第8题)其它类同).这个时间段内顾客等待时间不少于6分钟的人数为( ) A .5 B .7 C .16 D .3310.如图,已知O 的半径为1,AB 与O 相切于点A ,OB 与O 交于点C ,OD OA ⊥,垂足为D ,则cos AOB ∠的值等于( )A .ODB .OAC .CD D .AB二、填空题(本大题共6小题,每小题3分,共计18分.不需写出解答过程,请把答案直接填写在答题..卡相应位置.....上) 11的结果是 . 12.函数1xy x-=中,自变量x 的取值范围是 . 13.已知1O 和2O 的半径分别为3cm 和5cm ,且它们内切,则圆心距12O O 等于 cm .14.若等腰三角形的一个外角为70,则它的底角为 度. 15.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一 球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率 是 .16.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器, 它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.三、解答题(本大题共12小题,共计82分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:2(21)2(21)3a a +-++,其中a =18.(6分)解方程22011x x x -=+-.19.(6分)解不等式组205121123x x x ->⎧⎪+-⎨+⎪⎩,≥,并把解集在数轴上表示出来.(第10题)(第9题)/min(第16题)6520.(6分)我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭月使用塑料袋的数量,结果如下(单位:只) 65,70,85,75,85,79,74,91,81,95.(1)计算这10名学生所在家庭平均月使用塑料袋多少只? (2)“限塑令”执行后,家庭月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1 000名学生所在家庭月使用塑料袋可减少多少只? 21.(6分)如图,在ABCD 中,E F ,为BC 上两点,且BE CF =,AF DE =. 求证:(1)ABF DCE △≌△; (2)四边形ABCD 是矩形.22.(6分)如图,菱形ABCD (图1)与菱形EFGH (图2)的形状、大小完全相同.(1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ; (2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述)23.(6分)如图,山顶建有一座铁塔,塔高30m CD =,某人在点A 处测得塔底C 的仰角为20,塔顶D 的仰角为23,求此人距CD 的水平距离AB .(参考数据:sin 200.342≈,cos 200.940≈,tan 200.364≈,sin 230.391≈,cos 230.921≈,tan 230.424≈)(第19题)5-4- 3- (第21题) A B CD EF 图1 A (第22题) B图2 E FH (第23题)ABCD202324.(7分)小明和小颖做掷骰子的游戏,规则如下: ①游戏前,每人选一个数字; ②每次同时掷两枚均匀骰子;③如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜. (1(2他们大?请说明理由. 25.(7分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?26.(8分)已知二次函数2y x bx c =++中,函数y 与自变量x 的部分对应值如下表:(1(2)当x 为何值时,y 有最小值,最小值是多少?(3)若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,试比较1y 与2y 的大小.(第25题)27.(8分)如图,已知O 的半径为6cm ,射线PM 经过点O ,10cm OP ,射线PN 与O 相切于点Q .A B ,两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s . (1)求PQ 的长;(2)当t 为何值时,直线AB 与O 相切?28.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;问题解决 (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?(第27题)(第28题)y2008年江苏省南京市中考数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计20分)1、解:|-3|=-(-3)=3.故选A.2、解:12 900=1.29×104.故选B.3、解:(ab2)3=a3•(b2)3=a3b6.故选D.4、5、解:∵图象过(-2,1),∴k=xy=-2<0,∴函数图象位于第二,四象限.故选C.6、解:因为把等腰梯形沿中位线剪开后形成了两个等腰梯形,不可能拼成三角形,故A错,又因为两个等腰梯形的角不可能为90°,∴不能拼出矩形和正方形C,D错.故选B.7、解:设小刚举起的手臂超出头顶是xm根据同一时刻物高与影长成比例,得8、解:连接OA,并作OD⊥AB于D,则∠OAD=30°,OA=2,9、解:由频数直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的人数为5+2=7人.故选B.10、解:∵CD⊥OA,∴∠CDO=90°,∵OC=1,∴cos∠AOB=OD:OC=OD.故选A.二、填空题(每小题3分,共计18分)11x12.0解:要使函数表达式有意义,则分式分母不为0,解得:x≠0.故答案为x≠0.13.2解:根据两圆内切,圆心距等于两圆的半径之差,得圆心距=5-3=2.14.35解:∵等腰三角形的一个外角为70°, ∴与它相邻的三角形的内角为110°;①当110°角为等腰三角形的底角时,两底角和=220°>180°,不合题意,舍去; ②当110°角为等腰三角形的顶角时,底角=(180°-110°)÷2=35°. 因此等腰三角形的底角为35°. 故填35.15.0.3解:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3. 16.3解:∵∠A=65°,∴该圆周角所对的弧所对的圆心角是130°, ∴共需安装360°÷130°≈3.三、解答题(本大题共12小题,共计82分) 17.(本题6分)解:原式2441423a a a =++--+ ····················· 3分242a =+. ································ 4分当a =22424210a +=⨯+=. ················· 6分18.(本题6分)解:方程两边同乘(1)(1)x x -+,得2(1)0x x --=. ····························· 3分解这个方程,得2x =. ································· 5分 检验:当2x =时,(1)(1)0x x -+≠.所以2x =是原方程的解. ·························· 6分 19.(本题6分)解:解不等式①,得2x <. ························· 2分 解不等式②,得1x -≥. ·························· 4分 所以,不等式组的解集是12x -<≤. ···················· 5分 不等式组的解集在数轴上表示如下:···························· 6分 20.(本题6分)解:(1)1(65708575857974918195)8010+++++++++=. 答:这10名学生所在家庭平均月使用塑料袋80只. ·············· 3分 (2)8010005040000⨯⨯=%.答:执行“限塑令”后,估计1 000名学生所在家庭月使用塑料袋可减少40 000只. 6分 21.(本题6分) 解:(1)BE CF =,BF BE EF =+,CE CF EF =+,BF CE ∴=.······························· 1分 四边形ABCD 是平行四边形,AB DC ∴=.······························· 2分 在ABF △和DCE △中,AB DC =,BF CE =,AF DE =, ABF DCE ∴△≌△. ··························· 3分 (2)解法一:ABF DCE △≌△,B C ∴∠=∠. ······························ 4分 四边形ABCD 是平行四边形, AB CD ∴∥.180B C ∴∠+∠=.90B C ∴∠=∠=. ···························· 5分 ∴四边形ABCD 是矩形. ·························· 6分 解法二:连接AC DB ,. ABF DCE △≌△, AFB DEC ∴∠=∠.AFC DEB ∴∠=∠.···························· 4分 在AFC △和DEB △中,AF DE =,AFC DEB ∠=∠,CF BE =, AFC DEB ∴△≌△.AC DB ∴=.······························· 5分 四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形. ·························· 6分22.(本题6分) 解:(1)①;②;④; ··························· 3分 (2)①画图正确; ····························· 5分 ②答案不惟一,例如:对应线段相等,OC OE =等.······························· 6分 23.(本题6分) 解:在Rt ABC △中,20CAB ∠=,tan tan 20BC AB CAB AB ∴=∠=. ···················· 2分在Rt ABD △中,23DAB ∠=,tan tan 23BD AB DAB AB ∴=∠=.···················· 4分 tan 23tan 20(tan 23tan 20)CD BD BC AB AB AB ∴=-=-=-.30500(m)tan 23tan 200.4240.364CD AB ∴==--≈.答:此人距CD 的水平距离AB 约为500m . ·················· 6分 24.(本题7分) 解:(1)填表正确; ···························· 3分 (2)由上表可以看出,同时投掷两枚骰子,可能出现的结果有36种,它们出现的可能性相同.所有的结果中,满足两枚骰子点数和为5(记为事件A )的结果有4种,即(1,4),(2,3),(3,2)(4,1),所以小明获胜的概率为41()369P A ==; ················· 4分满足两枚骰子点数和为6(记为事件B )的结果有5种,即(1,5),(2,4),(3,3)(4,2),(5,1),所以小颖获胜的概率为5()36P B =; ····················· 5分要想使自己获胜的概率比他们大,必须满足两枚骰子点数和出现的结果多于5种,由所列表格可知,只有两枚骰子点数和为7(记为事件C )的结果多于5种,有6种,即(1,6),(2,5),(3,4)(4,3),(5,2),(6,1),所以61()366P C ==.因此,要想使自己获胜的概率比他们大,所选数字应为7.7分 25.(本题7分)解法一:设矩形温室的宽为m x ,则长为2m x .根据题意,得(2)(24)288x x --=. ·························· 4分解这个方程,得110x =-(不合题意,舍去),214x =. ··················· 6分所以14x =,221428x =⨯=.答:当矩形温室的长为28m ,宽为14m 时,蔬菜种植区域的面积是2288m . ···· 7分 解法二:设矩形温室的长为m x ,则宽为1m 2x .根据题意,得12(4)2882x x ⎛⎫--= ⎪⎝⎭. ·························· 4分解这个方程,得120x =-(不合题意,舍去),228x =. ··················· 6分所以28x =,11281422x =⨯=. 答:当矩形温室的长为28m ,宽为14m 时,蔬菜种植区域的面积是2288m . ···· 7分 26.(本题8分)解:(1)根据题意,当0x =时,5y =;当1x =时,2y =.所以521.c b c =⎧⎨=++⎩,解得45.b c =-⎧⎨=⎩,所以,该二次函数关系式为245y x x =-+. ················· 2分 (2)因为2245(2)1y x x x =-+=-+,所以当2x =时,y 有最小值,最小值是1. ·················· 4分(3)因为1()A m y ,,2(1)B m y +,两点都在函数245y x x =-+的图象上, 所以,2145y m m =-+,222(1)4(1)522y m m m m =+-++=-+.2221(22)(45)23y y m m m m m -=-+--+=-. ·············· 5分所以,当230m -<,即32m <时,12y y >; 当230m -=,即32m =时,12y y =; 当230m ->,即32m >时,12y y <. ···················· 8分27.(本题8分) (1)连接OQ .PN 与O 相切于点Q ,OQ PN ∴⊥,即90OQP ∠=. ······················ 2分10OP =,6OQ =,8(cm)PQ ∴==. ························ 3分(2)过点O 作OC AB ⊥,垂足为C .点A 的运动速度为5cm/s ,点B 的运动速度为4cm/s ,运动时间为t s , 5PA t ∴=,4PB t =.10PO =,8PQ =,PA PB PO PQ∴=. P P ∠=∠,PAB POQ ∴△∽△.90PBA PQO ∴∠=∠=. ························· 4分 90BQO CBQ OCB ∠=∠=∠=,∴四边形OCBQ 为矩形.BQ OC ∴=. O 的半径为6,6BQ OC ∴==时,直线AB 与O 相切.①当AB 运动到如图1所示的位置.84BQ PQ PB t =-=-.由6BQ =,得846t -=.解得0.5(s)t =. ······························ 6分 ②当AB 运动到如图2所示的位置.48BQ PB PQ t =-=-.由6BQ =,得486t -=.解得 3.5(s)t =. 图2图1所以,当t 为0.5s 或3.5s 时直线AB 与O 相切.··············· 8分 28.(本题10分)解:(1)900; ······························· 1分(2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. ······· 2分(3)由图象可知,慢车12h 行驶的路程为900km , 所以慢车的速度为90075(km /h)12=; ···················· 3分 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4=,所以快车的速度为150km/h . ··············· 4分 (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)⨯=,所以点C 的坐标为(6450),.设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得044506.k b k b =+⎧⎨=+⎩, 解得225900.k b =⎧⎨=-⎩, 所以,线段BC 所表示的y 与x 之间的函数关系式为225900y x =-. ······ 6分自变量x 的取值范围是46x ≤≤. ····················· 7分(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h .把 4.5x =代入225900y x =-,得112.5y =.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . ······ 10分。
2008年南京市栖霞区初三中考数学第二次模拟试题及答案
栖霞区2008年初三数学模拟试卷(二)满分120分.考试时间120分钟注意事项: 1.答卷前将密封线内的项目及桌号填写清楚.2.用钢笔或圆珠笔(蓝色或黑色)直接答在答卷纸上,答在试卷上无效.一、选择题(每小题2分,共20分) 1. 3-的倒数是(▲) A .13-B .13C .3-D .32. 2008年第29届奥运会火炬接力活动历时130天,传递总里程约万千米.传递总里程用科学记数法表示为(▲)A .1.3710⨯千米B .51.3710⨯千米C .41.3710⨯千米D .413.710⨯千米3. 下列计算错误的是(▲) A .347x x x =B .236()x x =C .33x x x ÷=D .4442x x x +=4.2的算术平方根是(▲). A .2B .2C .±2D .±25.不等式组1030x x +<->⎧⎨⎩,的解集是 ( ▲ )A.3x >B.1x <-C.3x <D.13x -<<6.星期天,小王去朋友家借书,下图是他离家的距离y (千米)与时间x 钟)的函数图象,根据图象信息,下列说法正确的是(▲) A .小王去时的速度大于回家的速度 B .小王在朋友家停留了10分钟C .小王去时所花的时间少于回家所花的时间D .小王去时走上坡路,回家时走下坡路7.下列轴对称图形中,对称轴条数最少的是( ) A.等边三角形B.正方形C.正六边形D.圆8. 在Rt ABC △中, 90=∠C ,如果2=AB ,1=BC ,那么B sin 的值是(▲)第12题D BE AF C A .21B .23C .33D .39.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球(▲).A .28个B .30个C .36个D .42个 10. 一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是(▲)A .9πB .18πC .27πD .39π二、填空题(每小题3分,共18分)11.在数轴上与表示6的点的距离最近的整数点所表示的数是▲. 12.若□ABCD 与□EBCF 关于BC 所在直线对称,∠ABE =90°,则∠F =▲13. 一养鱼专业户从鱼塘捕得同时放养的草鱼100条,他从中任选5条,称得它们的质量如下(单位:kg ):,,,,.则这100条鱼的总质量约为▲kg .14.若a 2+b 2=7,ab =2,则(a -b )2的结果是▲15. 如图,把边长为1的正方形ABCD 绕顶点A 逆时针旋转30o 到正方形AB′C′D′,则它们的公共部分的面积等于▲.16. 如图,AM 、AN 分别切⊙O 于M 、N 两点,点B 在⊙O 上,且∠MBN =70°,则A ∠=▲.三、(每小题6分,共24分) 17. 计算:22111x x x ---.18. 解方程组:2622x y x y -=⎧⎨+=-⎩ ①②(第15题) (第16题)19.如图,在直角坐标平面内,O 为原点,点A 的坐标为(100),,点B 在第一象限内,5BO =,3sin 5BOA =∠.求:(1)点B 的坐标;(2)cos BAO ∠的值.20.如图,已知点D 在ABC △的BC 边上,DE AC ∥交AB 于E ,DF AB ∥ 交AC 于F . (1)求证:AE DF =;(2)若AD 平分BAC ∠,试判断四边形AEDF 的形状,并说明理由.四、(每小题6分,共12分)21.一袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出一球,请问: (1)“摸出的球是白球”是什么事件?它的概率是多少? (2)“摸出的球是黄球”是什么事件?它的概率是多少? (3)“摸出的球是红球或黄球”是什么事件?它的概率是多少?22. 如图,已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数my x=的图象的两个交点. (1)求此反比例函数和一次函数的函数关系式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值X 围.五、(每小题7分,共14分)EAF CDBxOByA第22题23.李明只有10000元做成本,一次性经销一种成本为每千克40元的水产品,据市场调查分析,若按每千克50元销售,一个月能售出500千克,销售单价每上涨1元,月销售量就减少10千克,要实现月销售利润8000元的目标,销售单价应定为多少元?24.如图,AB 是半圆O 的直径,长为30cm ,延长AB 到点C ,使AB BC 21,有一个动点P 从点B 出发,以2πcm/s 的速度沿圆周逆时针运动,当到点A 立即停止运动.(1)利用尺规作图,CP 与半圆O 相切时点P 的位置;(不写做法,保留作图痕迹) (2)求CP 与半圆O 相切时,点P 运动的时间.六、(每小题7分,共14分)25.如图,我国海军为保卫海疆,在海岸线相距20海里的A 、B 处设立观测站(AB 为直线),海岸线以外12海里X 围内为我国领海,外国船只未经许可,不得私自进入.一天观测员发现一艘外国船只行驶至C 处,在A 处测得∠CAB 为60°,在B 处测得∠CBA 为45°.通过计算说明观测员是否需要向未经许可的船只发出警告,令其退回?(2取1.4;3取1.7)26. 三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?第25题C AB(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.七、(本题8分)27.如图,半径为2的⊙O ,圆心在直角坐标系的原点处,直线l 的函数关系式为:y =x 3且与⊙O 相交与点A .(1)求点A 的坐标;(2)如果把直线l 沿x 轴的正方向平移,在平移的过程中,直线l 能与⊙O 相切吗?若能,求出相切时直线l 的函数关系式;若不能,说明理由.八、(本题10分)28.已知,在Rt △OAB 中,∠OAB =900,∠BOA =300,AB =2.若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内.将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处.(1)求点C 的坐标;(2)若抛物线bx ax y +=2(a ≠0)经过C 、A 两点,求此抛物线的函数关系式;(3)若抛物线的对称轴与OB 交于点D ,点P 为线段DB 上一点,过P 作y 轴的平行线,交抛物线于点M .问:是否存在这样的点P ,使得四边形CDPM 为等腰梯形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.第27题第28题2007—2008学年度初三数学模拟试卷(二)一、选择题(每小题2分,共20分)1. A2. B3. C4. B5. B6. B7. A8. B9. A 10. B 二、填空题(每小题3分,共18分) 11. 212. 45°13. 140 14.3 153316. 40° 三、计算题(每小题6分,共24分) 17.解:22111x x x --- 21(1)(1)1x x x x =-+--………… 2分2(1)(1)(1)x x x x -+=+-………… 4分1(1)(1)x x x -=+-11x =+. ………… 6分 18. 解法一:2⨯+①②得510x =…………3分 解得:2x =…………4分将2x =代入①得2y =-…………5分∴方程组的解为22x y =⎧⎨=-⎩…………6分解法二:由①得26y x =-③………… 3分 将③代入②得2(26)2x x +-=- 解得:2x =………… 4分将2x =代入③得2y =-…………5分∴方程组的解为22x y =⎧⎨=-⎩………… 6分19. 解:(1)如图2,作BH OA ⊥,垂足为H , ················································ 1分在Rt OHB △中,5BO =,3sin 5BOA ∠=, 3BH ∴=.4OH ∴=.……………………………… 2分∴点B 的坐标为(43),.……………………3分(2)10OA =,4OH =,6AH ∴=.………………4分在Rt AHB △中,3BH =,AB ∴= 5分cos 5AH BAO AB ∴∠==6分 20.解:(1)DE AC ∵∥,ADE DAF ∠=∠ 同理DAE FDA ∠=∠AD DA =∵ADE DAF ∴△≌△ AE DF =∴…………3分(2)若AD 平分BAC ∠,四边形AEDF 是菱形. 证明:DE AC ∥,DF AB ∥∴四边形AEDF 是平行四边形 DAF FDA ∠=∠ AF DF =∴∴平行四边形AEDF 为菱形…………6分四、(每小题6分,共12分)21. (1)“摸出的球是白球”是不可能事件,它的概率为0; …………2分(2)“摸出的球是黄球”是不确定事件,它的概率为0.4; …………4分 (3)“摸出的球是红球或黄球”是必然事件,它的概率为1. …………6分 22. (1) ∵点A (-4,2)和点B (n ,-4)都在反比例函数y =xm的图象上, ∴2,44.m m n ⎧=⎪⎪-⎨⎪-=⎪⎩解得8,2.m n =-⎧⎨=⎩··································································· 2分又由点A (-4,2)和点B (2,-4)都在一次函数y =kx +b 的图象上,图2x∴42,2 4.k b k b -+=⎧⎨+=-⎩解得1,2.k b =-⎧⎨=-⎩································································ 4分∴反比例函数的函数关系式为8y x=-,一次函数的函数关系式为y =-x -2 . 5分 说明:两函数关系式出现一个错误即不给分 . (2) x 的取值X 围是x >2或-4<x <0 . 6分 五、(每小题7分,共14分)23.解:设销售单价应定为x 元,根据题意,得()()[]8000501050040=---x x ,…………………………………………(3分)解得.80,6021==x x …………………………………………………………(5分)∴601=x 时,销售数量=400,需要成本=400×40=16000>10000,∴601=x 舍去.……(6分) 答:销售单价应定为80元.……………………………………………………(7分) 24. 解:(1)略……………………………………………………………(2分) (2)∵AB =30,AB BC 21=,∴OP =OB =15,OC =30, …………………………(3分) ∵CP 与半圆O 相切于点P ,∴CO ⊥OP ,…………(5分) ∴cos ∠POC =OC OP =213015=,∴∠POC =60°,…(5分) ⌒BP l =。
2008年中考数学试题及答案解析
2008年中等学校招生统一考试数学试卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A .525.310⨯亩B .62.5310⨯亩C .425310⨯亩D .72.5310⨯亩2)3.下列各点中,在反比例函数2y x=-图象上的是()A .(21),B .233⎛⎫⎪⎝⎭,C .(21)--,D .(12)-,4.下列事件中必然发生的是( )A .抛两枚均匀的硬币,硬币落地后,都是正面朝上B .掷一枚质地均匀的骰子,朝上一面的点数是3C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取 值范围是( ) A .0x > B .0x <C .2x >D .2x <6.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或807.二次函数22(1)3y x =-+的图象的顶点坐标是( )A .(13),B .(13)-,C .(13)-,D .(13)--, 8.如图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE , 交对角线BD 于点F ,连接CF ,则图中全等三角形共有( )正面第2题图A .B .C .D .第5题图xADCEFB第8题图A .1对B .2对C .3对D .4对二、填空题(每小题3分,共24分)9.已知A ∠与B ∠互余,若70A ∠=,则B ∠的度数为 . 10.分解因式:328m m -= .11.已知ABC △中,60A ∠=,ABC ∠,ACB ∠的平分线交于点O ,则BOC ∠的度数为 .12.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补 充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可). 13.不等式26x x -<-的解集为 .14.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米.15.观察下列图形的构成规律,根据此规律,第8第15题图16.在平面直角坐标系中,点A 的坐标为(11),,点B 的坐标为(111),,点C 到直线AB 的距离为4,且ABC △是直角三角形,则满足条件的点C 有 个.三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.计算:101(1)52-⎛⎫π-+-+- ⎪⎝⎭18.解分式方程:1233xx x=+--.19.先化简,再求值:222()()2y x y x y x y ++---,其中13x =-,3y =.第1个 ……第2个 第3个 第4个ADC BO 第12题图 B C DA 第14题图20.如图所示,在66⨯的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,如图①中的三角形是格点三角形. (1)请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两个不同的格点四边形,并将这两个格点四边形分别画在图②,图③中; (2)直接写出这两个格点四边形的周长.四、(每小题10分,共20分)21.如图所示,AB 是O 的一条弦,OD AB ⊥,垂足为C ,交O 于点D ,点E 在O 上.(1)若52AOD ∠=,求DEB ∠的度数;(2)若3OC =,5OA =,求AB 的长.22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.图① 第20题图图②图③第21题图 小刚 小明A 1B 1C 1A B C 第22题图23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩. 六、(本题12分)24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升?(3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)第23题图 一班竞赛成绩统计图 二班竞赛成绩统计图25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.八、(本题14分) 26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.2008年沈阳市中等学校招生统一考试C E ND A BM图① C A EM B D N图② 第25题图第26题图数学试题参考答案及评分标准一、选择题(每小题3分,共24分) 1.B 2.A 3.D 4.C 5.C 6.D7.A8.C二、填空题(每小题3分,共24分) 9.2010.2(2)(2)m m m +-11.12012.90BAD ∠=(或AD AB ⊥,AC BD =等)13.4x >14.1215.65 16.8 三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.解:原式1(2)5=+-+- ···························································· 4分125=-+- ··················································································· 5分6= ······································································································ 6分18.解:12(3)x x =-- ·················································································· 2分126x x =--7x = ··········································································································· 5分 检验:将7x =代入原方程,左边14==右边 ························································ 7分所以7x =是原方程的根 ·················································································· 8分 (将7x =代入最简公分母检验同样给分)19.解:原式2222222xy y x xy y x y =++-+-- ················································ 4分 xy =- ········································································································· 6分 当13x =-,3y =时,原式1313⎛⎫=--⨯= ⎪⎝⎭······················································································ 8分 20.解:(1)答案不唯一,如分割线为三角形的三条中位线中任意一条所在的直线等.································· 2分拼接的图形不唯一,例如下面给出的三种情况:图① 图② 图③ 图④图①~图④,图⑤~图⑦,图⑧~图⑨,画出其中一组图中的两个图形. ······················ 6分 (2)对应(1)中所给图①~图④的周长分别为4+8,4+4+ 图⑤~图⑦的周长分别为10,8+8+图⑧~图⑨的周长分别为2+4+ ···································· 10分 四、(每小题10分,共20分) 21.解:(1)OD AB ⊥,AD DB ∴= ··························································· 3分 11522622DEB AOD ∴∠=∠=⨯= ································································· 5分 (2)OD AB ⊥,AC BC ∴=,AOC △为直角三角形, 3OC =,5OA =,由勾股定理可得4AC == ·············································· 8分 28AB AC ∴== ························································································· 10分 22.解:(1)1()3P =一次出牌小刚出象牌“” ··················································· 4分(2)树状图(树形图):·············································································· 8分图⑤ 图⑥图⑦图⑧ 图⑨A 1B 1C 1 AA 1B 1C 1 BA 1B 1C 1C开始小刚 小明或列表···························································· 8分 由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种. ········································································ 9分1()3P ∴=一次出牌小刚胜小明. ····································································· 10分 五、(本题12分) 23.解:(1)21······························································································ 2分 (2)一班众数为90,二班中位数为80 ······························································· 6分 (3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好; ···································································································· 8分 ②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; ················································································································· 10分 ③从B 级以上(包括B 级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好. ······························································································· 12分 六、(本题12分) 24.解:(1)设y 与x 之间的关系为一次函数,其函数表达式为y kx b =+ ················ 1分将(0100),,(180),代入上式得, 10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩20100y x ∴=-+ ·························································································· 4分验证:当2x =时,20210060y =-⨯+=,符合一次函数; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数.∴可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律. ··················································· 5分 y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+ ··························· 6分 (2)当 4.2x =时,由20100y x =-+可得16y =即货车行驶到C 处时油箱内余油16升. ····························································· 8分 (3)方法不唯一,如:方法一:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 设在D 处至少加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯+=+, ··················································· 11分 解得,69a =(升) ····················································································· 12分方法二:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 汽车行驶18千米的耗油量:1820 4.580⨯=(升) D B ,之间路程为:63680 4.218282-⨯-=(千米)汽车行驶282千米的耗油量:2822070.580⨯=(升) ················································································· 11分 70.510(16 4.5)69+--=(升) ···································································· 12分 方法三:由(1)得,货车行驶中每小时耗油20升, ············································· 9分设在D 处加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯++≤,解得,69a ≥ ····························································································· 11分 ∴在D 处至少加油69升,货车才能到达B 地. ················································· 12分七、(本题12分) 25.证明:(1)①BAC DAE ∠=∠ BAE CAD ∴∠=∠AB AC =,AD AE = ABE ACD ∴△≌△BE CD ∴= ·································································································· 3分 ②由ABE ACD △≌△得ABE ACD ∠=∠,BE CD =M N ,分别是BE CD ,的中点,BM CN ∴= ················································· 4分 又AB AC = ABM ACN ∴△≌△AM AN ∴=,即AMN △为等腰三角形 ···························································· 6分 (2)(1)中的两个结论仍然成立. ···································································· 8分 (3)在图②中正确画出线段PD由(1)同理可证ABM ACN △≌△ CAN BAM ∴∠=∠ BAC MAN ∴∠=∠ 又BAC DAE ∠=∠MAN DAE BAC ∴∠=∠=∠AMN ∴△,ADE △和ABC △都是顶角相等的等腰三角形 ································· 10分 PBD AMN ∴∠=∠,PDB ADE ANM ∠=∠=∠PBD AMN ∴△∽△ ···················································································· 12分 八、(本题14分)26.解:(1)点E 在y 轴上 ·············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨+=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:2829y x x =--+ ·················································· 9分(3)存在符合条件的点P ,点Q . ································································· 10分。
2008年江苏省中考数学压轴题精选(含答案)
2008年江苏省中考数学压轴题精选精析1(08江苏常州28题)(答案暂缺)如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O ,得到直线l ,设P 是直线l 上一动点。
(1) 求点A 的坐标;(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S ,点P 的横坐标为x,当462682S +≤≤+时,求x的取值范围.2(08江苏淮安28题)(答案暂缺)28.(本小题14分)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2—1图象的顶点为P ,与x 轴交点为 A 、B,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;(2)连结AP,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标;(3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.(第28题)ly x-1-2-4-3-1-2-4-312435123(第24题图)3(08江苏连云港24题)(本小题满分14分)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,.(1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究:①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.(08江苏连云港24题解析)解:(1)由直角三角形纸板的两直角边的长为1和2, 知A C ,两点的坐标分别为(12)(21),,,.设直线AC 所对应的函数关系式为y kx b =+. ············ 2分有221k b k b +=⎧⎨+=⎩,.解得13k b =-⎧⎨=⎩,.所以,直线AC 所对应的函数关系式为3y x =-+. ·········· 4分 (2)①点M 到x 轴距离h 与线段BH 的长总相等. 因为点C 的坐标为(21),,所以,直线OC 所对应的函数关系式为12y x =. 又因为点P 在直线AC 上,所以可设点P 的坐标为(3)a a -,. 过点M 作x 轴的垂线,设垂足为点K ,则有MK h =因为点M 在直线OC 上,所以有(2)M h h ,. ··· 6分 因为纸板为平行移动,故有EF OB ∥,即EF GH ∥.又EF PF ⊥,所以PH GH ⊥.法一:故Rt Rt Rt MKG PHG PFE △∽△∽△,(第24题答图)从而有12GK GH EF MK PH PF ===. 得1122GK MK h ==,11(3)22GH PH a ==-.所以13222OG OK GK h h h =-=-=.又有13(3)(1)22OG OH GH a a a =-=--=-. ············ 8分所以33(1)22h a =-,得1h a =-,而1BH OH OB a =-=-,从而总有h BH =. ······················· 10分法二:故Rt Rt PHG PFE △∽△,可得12GH EF PH PF =-.故11(3)22GH PH a ==-.所以13(3)(1)22OG OH GH a a a =-=--=-.故G 点坐标为3(1)02a ⎛⎫- ⎪⎝⎭,. 设直线PG 所对应的函数关系式为y cx d =+,则有330(1)2a ca d c a d -=+⎧⎪⎨=-+⎪⎩,.解得233c d a =⎧⎨=-⎩ 所以,直线PG 所对的函数关系式为2(33)y x a =+-. ········· 8分 将点M 的坐标代入,可得4(33)h h a =+-.解得1h a =-.而1BH OH OB a --=-,从而总有h BH =. ············ 10分②由①知,点M 的坐标为(221)a a --,,点N 的坐标为12a a ⎛⎫ ⎪⎝⎭,.ONH ONG S S S =-△△1111133(1)222222a NH OH OG h a a a -=⨯-⨯=⨯⨯-⨯⨯- 22133133224228a a a ⎛⎫=-+-=--+ ⎪⎝⎭. ··············· 12分当32a =时,S 有最大值,最大值为38. S 取最大值时点P 的坐标为3322⎛⎫⎪⎝⎭,. ··············· 14分4(08江苏南京28题)(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;问题解决 (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?(08江苏南京28题解析)28.(本题10分) 解:(1)900; ··························· 1分 (2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. ··· 2分 (3)由图象可知,慢车12h 行驶的路程为900km,所以慢车的速度为90075(km /h)12=; ················3分 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4=,所以快车的速度为150km/h . ·············4分 (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)⨯=,所以点C 的坐标为(6450),.设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得044506.k b k b =+⎧⎨=+⎩,解得225900.k b =⎧⎨=-⎩,所以,线段BC 所表示的y 与x 之间的函数关系式为225900y x =-. ·· 6分自变量x 的取值范围是46x ≤≤. ················· 7分(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . ·· 10分(第28题)y5。
08南京下关区中考“一模”数学卷含答案
2007—2008年初三数学模拟试卷(一)满分120分.考试时间120分钟下列各题所附的四个选项中,有且只有一个是正确的. 一、选择题(每小题2分,共20分)1.比-1小的数是A . 1B .-1C .-2D .0 2.计算x 3·x 的结果是A .x 2B .x 3C .x 4D .2 x 4 3.嫦娥一号运行1小时的行程约28 600 000 m ,用科学记数法可表示为A .0.286×108 mB .2.86×107 mC .28.6×106 mD .2.86×105 m 4.化简 4 等于A .-2B .2C .±2D .16 5.下列二次根式中,与2是同类二次根式的是A . 4B . 6C .8D .12 6.方程x 2-4x +4=0的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根7.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是A .B .C .D . 8.分式方程 1x –2 = 3x 的解为A .x = 1B .x = 2C .x = 3D .原方程无解 9.如图,在Rt △ABC 中,∠C = 90°,∠BAC 的角平分线AD 交BC 于点D ,CD = 2,则点D 到AB 的距离是A .1B .2C .3D .410.观察图中两组数据的折线图,你认为下列说法中正确的是 A.离散程度较大的是甲组数据 B.离散程度较大的是乙组数据C.甲、乙两组数据离散程度一样大 D.仅凭本图不能作出判断二、填空题(每小题3分,共18分) 11.x – 1在实数范围内有意义,则x 的取值范围是 . 12.如图,直线a b ,被直线c 所截,若a b ∥,160∠=°, 则2∠= °.13.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 .1 2第12c ab8%DCB A16%20%56%14.如果2x – 1的值为 12,那么4x 2-4x – 14 = .15.写出反比例函数y = – 1x 图象上一个点的坐标是 .16.如图,点E (0,4),O (0,0),C (5,0)在⊙A 上,B E 是⊙A 上的一 条弦.则tan ∠OBE = . 三、(每小题6分,共18分) 17.计算: 8+(2)0-12 .18.先化简,再求值:23111x x x----,其中x =2.19.如图,已知:E 、F 是ABCD 的对角线AC 上的两点. DE ⊥AC , BF ⊥AC .求证: DE = BF .四、(每题6分,共18分)20.某校九年级对最近一次月考进行了抽样分析,其中某道单选题的答题情况如下图所示.(1)该校对多少名学生进行了抽样?(2)如果正确答案是C ,本次抽样中,答对此道题的有多少人?(3)若该校九年级共有750名学生参加考试,请你估计本次考试中答对此道题的人数约为多少?21.为迎接2008北京奥运会,某校举行班级乒乓球对抗赛,每个班级选派1对男女混合双打选手参赛,小明、小亮两名男生准备在小敏、小颖、小丽三名女生中各自随机选择一名组成一对参赛.(1)列出所有可能的配对结果;(2)求出小明与小丽配对的概率.22.如图,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与AB相切于点E,与BC相切于点F,连接EF .⑴判断EF与AC的位置关系(不必说明理由);⑵FG是圆的一条直径,连接AG.判断AG与圆的位置关系,并说明理由.五、(每小题7分,共14分)23.2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表所示,表中缺失了2005年、2007年相关数据.已知2007年药品降价金额是2005年药品降价金额的3倍,结合表中信息,求2005年和2007年的药品24.已知二次函数y = ax 2 – 2 ax + 3在直角坐标平面内的部分图象如图所示. (1)求该二次函数的关系式;(2)将该二次函数的图象沿x 轴向左平移几个单位,可使平移后所得图象经过坐标原点?写出平移后所得图象与x 轴的另一个交点的坐标.六、(每小题7分,共14分)25.为了测量学校旗杆AB 的高度,学校数学实践小组做了如下实验:在阳光的照射下,旗杆AB 的影子恰好落在水平地面BC 和斜坡坡面CD 上,测得BC = 20 m ,CD = 18 m ,太阳光线AD 与水平面夹角为30°且与斜坡CD 垂直.根据以上数据,请你求出旗杆AB 的高度.(结果精确到0.1 m ,参考数据:2 = 1.41,3 = 1.73)AB CD30°26.南京电视台在黄金时段的2分钟广告时间内,计划插播分别为15秒和30秒的两种广告.电视台规定黄金时段的广告收费标准是:时长为15秒的广告每播一次收费0.8万元,时长为30秒的广告每播一次收费1.2万元.设插播时长为15秒的广告x次,2分钟广告时间内的总收益为y万元.(1)求y与x之间的的函数关系式;(2)如果要求两种时长广告插播的次数都不少于2次,那么插播时长为15秒的广告多少次时,2分钟广告时间内电视台的总收益最大?最大收益是多少万元?七、(本题8分)27.阅读下列材料:任意给定一个矩形ABCD,一定存在另一个矩形A´B´C´D´,使它的周长和面积分别是矩形ABCD周长和面积的k倍(k≥2,且k是整数).我们把矩形A´B´C´D´叫做矩形ABCD 的k倍矩形.例:矩形ABCD的长和宽分别为3和1,它的周长和面积分别为8和3;矩形A´B´C´D´的长和宽分别为4+10和4–10,它的周长和面积分别为16和6.这时,矩形A´B´C´D´的周长和面积分别是矩形ABCD周长和面积的2倍,则矩形A´B´C´D´叫做矩形ABCD的2倍矩形.解答下列问题:(1)填空:一个矩形的周长和面积分别为10和6,则它的2倍的矩形的周长为,面积为;(2)已知矩形ABCD的长和宽分别为2和1,那么是否存在它的k倍矩形A´B´C´D´,使A´B´:AB=B´C´:BC?若存在,请求出k的值;若不存在,请说明理由.八、(本题10分)28.如图所示,在平面直角坐标系中,四边形OABC 是等腰梯形,BC ∥OA ,OA = 7,AB = 4,∠COA =60°,点P 为x 轴上的一个动点(点P 与点0,A 不重合).连结CP ,过点P 作PD 交AB 于点D .(1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标; (3)当点P 运动什么位置时,使得∠CPD =∠OAB ,且AB BD =85,求这时点P 的坐标。
南京2008数学中考卷
专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个数的平方根是4,那么这个数是()A. 16B. 4C. 2D. 82. 下列函数中,哪一个是一元二次函数?()A. y = 3x + 1B. y = 2x² 3x + 1C. y = x³ 2D. y = √(x 1)3. 在直角坐标系中,点(3, 2)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列图形中,对称轴数量最多的是()A. 等边三角形B. 矩形C. 正方形D. 圆5. 下列哪个数是合数?()A. 11B. 13C. 15D. 17二、判断题(每题1分,共5分)1. 两个负数相乘,结果是正数。
()2. 平行线的斜率相等。
()3. 一元二次方程的解一定是实数。
()4. 任何两个奇数相加都是偶数。
()5. 互质的两个数一定是质数。
()三、填空题(每题1分,共5分)1. 如果一个数的算术平方根是9,那么这个数是______。
2. 直线y = 2x + 1的斜率是______。
3. 两个平行线的距离是指它们的______距离。
4. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式是______。
5. 100的因数有:1、2、4、5、10、______、______、100。
四、简答题(每题2分,共10分)1. 请简述一元二次方程的求根公式。
2. 请说明直角三角形的勾股定理。
3. 什么是无理数?请举例说明。
4. 请解释概率的基本公式。
5. 请简述平行线的性质。
五、应用题(每题2分,共10分)1. 某商店进行打折促销,一件商品原价200元,打8折后售价是多少?2. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求它的体积。
3. 一辆汽车以60km/h的速度行驶,行驶了2小时后,行驶了多少公里?4. 一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的面积。
南京2008数学中考卷
南京2008数学中考卷(考试时间:90分钟,满分:100分)一、选择题(共7题,每题4分,满分28分)1. (4分)下列选项中,哪一个数是无理数?A. √9B. √16C. √3D. 0.3333…2. (4分)已知a+b=5,ab=3,则a²+b²的值为:A. 7B. 16C. 23D. 343. (4分)函数y=2x+1的图象是一条直线,下列说法正确的是:A. 斜率为2,截距为1B. 斜率为1,截距为2C. 斜率为2,截距为1D. 斜率为1,截距为24. (4分)下列各数中,最小的数是:A. πB. 3C. 0D. √25. (4分)下列四个几何图形中,哪一个图形是中心对称图形?A. 矩形B. 正三角形C. 正方形D. 梯形6. (4分)已知等差数列{an}中,a1=1,a3=3,则数列的公差d 为:A. 1B. 2C. 3D. 47. (4分)若平行线l1:2x+3y+1=0,l2:2x+3y+c=0,则c的值为:A. 0B. 1C. 2D. 3二、填空题(共5题,每题4分,满分20分)8. (4分)已知函数f(x)=x²2x+1,则f(3)=______。
9. (4分)在三角形ABC中,a=8,b=10,cosA=3/5,则sinB的值为______。
10. (4分)已知一组数据的方差是9,那么这组数据的标准差是______。
11. (4分)若|a|=3,|b|=4,则|a+b|的最大值为______。
12. (4分)一个正方体的体积是64立方厘米,则它的表面积是______平方厘米。
三、解答题(共3题,每题10分,满分30分)13. (10分)解方程:2(x1)²=3(2x+1)。
14. (10分)已知函数f(x)=x²+2x3,求f(x)的最小值。
15. (10分)在平面直角坐标系中,已知点A(2,3),点B在x轴上,点C在y轴上,且△ABC为等腰直角三角形,求点B、C的坐标。
2008年南京市溧水县初三中考数学第二次模拟试题及答案
1 / 12溧水县2007—2008学年度第二学期初三第二次调研测试数学试卷注意事项:选择题答案请用2B 铅笔填涂在答题卡上,非选择题请在答题卷指定区域内作答,在试题卷上答题无效.一、选择题(每小题2分,共20分) 1.计算│-2│-2的结果是( ▲ ). A.0B.-2C.-4D.4x 6÷x 3的结果是( ▲ ). A .x 9B.x 3C.x 2D.23.一次数学测试后,随机抽取九年级二班5名学生的成绩如下:78,85,91,98,98.关于这组数据说法错误....的是 ( ▲ ). A .极差是20 B .众数是98C .中位数是91D .平均数是914.从某班学生中随机选取一名学生是女生的概率为35,则该班女生与男生的人数比是( ▲ ). A.3∶2 B.3∶5C. 2∶3 D.2∶55.不等式组⎩⎨⎧>->-03042x x 的解集为( ▲ ).A .x >2B .x <3C .x >2或x <-3D .2<x <3 6.抛物线y =x 2-1的顶点坐标是( ▲ ).A .(0,1)B .(0,-1)C .(1,0)D .(-1,0) 7.如果a ∠是等边三角形的一个锐角,则tan α的值是( ▲ ). A.12B.33 C.1D.38.如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,则∠BCD 的度数是( ▲ ).A .130°B .150°C .40°D .65°(第8题图)(第10题图)2 / 129.若112M y ⎛⎫- ⎪⎝⎭,,214N y ⎛⎫- ⎪⎝⎭,,312P y ⎛⎫⎪⎝⎭,三点都在函数(0)ky k x=<的图象上, 则1y 、2y 、3y 的大小关系为( ▲ ).A .231y y y >>B .213y y y >>C .312y y y >>D .321y y y >>10.如图,在平面直角坐标系中,圆心在x 轴上的⊙E 与两坐标轴分别交于A 、B 、C 、D 四点,已知A (-1,0),B (9,0),则线段C D 的长度为( ▲ ). A .3 B .4 C .6 D .8 二、填空题(每小题3分,共18分) 11.因式分解:2m 2-8=▲ .12.要使二次根式26x -有意义,x 应满足的条件是_____▲_____. 13.将一副直角三角尺如图放置,则∠ABC =▲ °.14.已知某个几何体的主视图、左视图、俯视图分别为三角形、三角形、圆,则该几何体是▲.15.已知圆锥的底面半径为9㎝,母线长为30㎝,则圆锥的侧面积为▲ (结果保留π). 16.如图,正方形OABC 的边长为2,则该正方形绕点O 逆时针旋转45后,B 点的坐标为▲.三、(每小题5分,共15分) 17.计算:0(π1)123+-+-.18.解方程:21233x x x -+=--.C BAO y x(第13题图)(第16题图)3 / 129cm14cm19.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息, (1)求整齐叠放纸杯的高度y (cm)与纸杯数x (个)之间的一次函数关系式; (2)若小明把50个纸杯整齐叠放在一起时,它的高度是多少?四、(第20、21、22题,每小题6分,第23题7分,共25分)20.在“五·一”期间,小明、小亮等同学随家人一同到某旅游景点游玩.下表是该旅游景点的票价情况票价 成人 40元/X学生按成人票价的5折优惠小明他们13个人,共需420元,问小明他们一共去了几个成人?几个学生?21.《中学生体质健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76分~85分为良好;60分~75分为及格;59分及以下为不及格.某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.(1)在抽取的学生中不及格人数所占的百分比是▲;(2)若抽取的学生中优秀的人数有9人,请算出共抽取了多少名学生?(3) 小明按以下方法计算出抽取的学生平均得分是:(90+78+66+42)÷4=69.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式;(不必算出结果)各 等 级 人 数 比不及格优秀 18%52%及格 良好各等级学生平均分数7866429020406080100优秀良好及格不及格等级均分4 / 1222.甲、乙两人组队参加一次竞猜游戏活动,活动中抽到一道选择题,有A 、B 、C 三个选项,只有选项B 是正确答案.甲、乙两人都不知道正确答案,两人各任意猜一个答案,若规定两人答案都正确得3分,两人中有且只有一个人的答案正确得1分,两人答案都不正确得0分.回答下列问题:(1)两人该题得3分的概率是多少? (2)两人该题得1分的概率是多少?23.已知,O 为正方形ABCD 对角线上一点,以O 为圆心,OA 的长为半径的⊙O 与BC 相切于M ,与AB 、AD 分别相交于E 、F . (1)求证:CD 与⊙O 相切;(2)若⊙O 的半径为2,求正方形ABCD 的边长.五、(第24题7分,第25题8分,共15分)24.如图,在ABC △中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于F ,且AF BD =,连结BF . (1)求证:D 是BC 的中点.(2)如果AB AC =,试判断四边形AFBD 的形状,并证明你的结论.ABDCE F5 / 1225.如图,某边防巡逻队在一个海滨浴场岸边的A 点处发现海中的B 点有人求救,便立即派三名救生员前去营救.1号救生员从A 点直接跳入海中;2号救生员沿岸边(岸边看成是直线)向前跑到C 点,再跳入海中;3号救生员沿岸边向前跑300m 到离B 点最近的D 点,再跳入海中.救生员在岸上跑的速度都是6m /s ,在水中游泳的速度都是2m /s .若∠BAD = 45°,∠BCD =60°,三名救生员同时从A 点出发,请说明谁先到达营救地点B . (2≈1.4,3≈1.7)六、(8分)26.我们知道,用一块直角三角板就可以过一点画一条直线的垂线.如图,AB 是⊙O 的弦,现在只有一块无刻度单位.....的直角三角板(斜边大于⊙O 的直径),请你用两种不同....的方法分别在图①、图②中确定出弦AB 中点的位置(画出图形,标出直角),并且分别写出画图的步骤(不要证明).七、(本题8分)ABO图① 图②ABO6 / 1227.按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据.要使任意一组都在20~100(含20和变换成一组新数据后能满足下列两个要求:(i )新数据都在60~100(含60和100)之间;(ii )新数据之间的大小关系与对应的原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x 的关系式是y x p =+(100)x -,请说明:当12p =时,这种变换满足上述两个要求; (2)若按关系式2()y a x h k =-+(0a >)将数据进行变换, 请写出一个满足上述要求的这种关系式.并利用函数性质说 明你所写函数关系式满足上述要求.八、(本题11分)28.如图, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴,垂足为P ,连结AC 交NP 于Q ,连结MQ . (1)点___▲___(填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的取值X 围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由.溧水县2008年初三第二次调研测试数学试卷参考答案一、选择题(每题2分,共20分)二、填空题(每小题3分,共18分)7 / 128 / 1211.()()222m m +-12.x ≥3 13.165 14.圆锥 15.270πcm 2 16.()三、(每小题5分,共15分)17.解:原式=1-3分=15分18.解:去分母得 22(3)1x x -+-=……………………………………… 2分 解得 x = 5……………………………………………………… 4分 经检验 x = 5是原方程的根∴原方程的根是x = 5……………………………………………… 5分 19.解:(1)设y kx b =+,由题得39,814.k b k b +=⎧⎨+=⎩……………………… 2分解得:k =1,b =6………………………………………………3分∴y 与x 的一次函数关系式为6y x =+……………………………4分 (2)当x =50时,y =56……………………………………………… 5分四、(第20、21、22题,每小题6分,第23题7分,共25分)20.解:设去了x 个成人,y 个学生. ……………………………………… 1分根据题意得13,4020420.x y x y +=⎧⎨+=⎩………………………………………3分解得:x =8 ,y =5…………………………………………………5分答:略……………………………………………………………………………6分 21.解:(1)4%……………………………………………………………………1分;(2) 9÷18% =50(人)…………………………………………………3分 (3)不正确……………………………………………………………………4分 正确的算法:90×18%+78×26%+66×52%+42×4%…………………6分 (或905018%785026%665052%42504%50⨯⨯+⨯⨯+⨯⨯+⨯⨯)22.解:列表或画树状图或其它枚举法正确…………………………………………2分9 / 12(1)P (得3分)=19……………………………………………………………4分 (2)P (得1分)=49……………………………………………………………6分23.(1)连接OM ,过点O 作ON ⊥CD ,垂足为N .……………………………1分∵⊙O 与BC 相切于M ,∴OM ⊥BC .……………………………………2分 ∵正方形ABCD 中,AC 平分∠BCD ,∴OM=ON .………………………3分 ∴CD 与⊙O 相切………………………………………………………4分 (2)设正方形ABCD 的边长为a .可证得△∽△CAB ……………………………………………………5分 ∴OM CO AB CA =,∴a =…………………………………6分 解得 a1……………………………………………………7分∴正方形ABCD1.五、(第24题7分,第25题8分,共15分) 24.(1)证明:AF BC ∥,AFE DCE ∴=∠∠……………………………1分E 是AD 的中点,AE DE ∴=.………………………………………2分 AEF DEC =∠∠,AEF DEC ∴△≌△.……………………………………………………3分 AF DC ∴=,AF BD =BD CD ∴=,D ∴是BC 的中点.…………………………………………4分(2)四边形AFBD 是矩形………………………………………………… 5分AB AC =,D 是BC 的中点AD BC ∴⊥ ,90ADB ∴=∠………………………………………… 6分AF BD =,AF BC ∥∴四边形AFBD 是平行四边形,…………………………………………7分 ∴四边形AFBD 是矩形.25.解:(1)在△ABD 中,∠A=45°,∠D=90°,AD=300, ∴AB=cos 45AD=︒. ………………………………………… 1分tan45300BD AD=⨯︒=.…………………………………………2分在△ABD中,∵∠BCD=45°,∠D=90°,∴sin60BDBC===︒…………………………………3分∴tan60BDCD===︒.…………………………………4分1号救生员到达B点所用的时间为210215022300≈=(秒).………………5分2号救生员到达B点所用的时间为7.19133250502320063100300≈+=+-(秒).…6分3号救生员到达B点所用的时间为20023006300=+(秒).……………………………7分∵191.7<200<210,∴2号救生员先到达营救地点B点.………………………………………………………8分六、(8分)26.解:画图正确每个2分,画法正确每个2分.方法一:如图①,过O画AB的垂线l交AB于D,则点D就是AB的中点.方法二:如图②,连结AO、BO,分别过点A、B画BC AO⊥,AE BO⊥,BC与AE相交于点F,过点O、F画直线l交AB于点D,则点D就是AB的中点.①②③10 / 1211 / 12方法三:如图③,连结AO 、BO ,分别过点A 、B 画,AG AO ⊥,BG BO ⊥,BG 与AG相交于点G ,过点O 、G 画直线l 交AB 于点D ,则点D 就是AB 的中点..答案不唯一,方法很多,其它方法参照给分.七、(本题8分)27.(1)当12p =时,1(100)2y x x =+-,即1502y x =+. ∵k>0,∴y 随着x 的增大而增大,即12p =时,满足条件(ii ).……………1分 又当20x =时,12050602y =⨯+=;当100x =时,1100501002y =⨯+=. 而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(i ).………2分 综上可知,当12p =时,这种变换满足要求;…………………………………………… 3分 (2)如取21(20)60160y x =-+,…………………………………………………………6分 0a >,∴当20100x ≤≤时,y 随x 的增大而增大.满足条件(ii ).…………… 7分 令20x =,得60y =;令100x =,得 100y =.∵当原数据在20~100之间时,新数据都在60~100之间,∴满足条件(i ).综上可知,这种变换满足要求………………………………………………………………8分 本题是开放性问题,答案不唯一.若所给出的关系式满足:()20a h ≤;()b 若20100x =,时,y 的对应值m n ,都能落在60~100之间,则这样的关系式都符合要求.八、(本题11分)28.解:(1)点 M ………………………………………………………………1分(2)经过t 秒时,NB t =,2OM t =,则3CN t =-,42AM t =-∵BCA ∠=MAQ ∠=45,∴ 3QN CN t ==-,∴ 1 PQ t =+……2分 ∴11(42)(1)22AMQ S AM PQ t t ==-+△22t t =-++…………3分 ∴2219224S t t t ⎛⎫=-++=--+ ⎪⎝⎭…………………………………4分 ∵02t ≤≤…………………………………………………………5分∴当12t =时,S 的值最大.……………………………………………6分 (3)存在.…………………………………………………………7分12 / 12 设经过t 秒时,NB =t ,OM =2t ,则3CN t =-,42AM t =-, ∴BCA ∠=MAQ ∠=45.①若90AQM ∠=,则PQ 是等腰Rt △MQA 底边MA 上的高, ∴PQ 是底边MA 的中线 ∴12PQ AP MA ==∴11(42)2t t +=-,∴12t =. ∴点M 的坐标为(1,0)……………………………………9分 ②若90QMA ∠=,此时QM 与QP 重合∴QM QP MA ==,∴142t t +=-.∴1t =,∴点M 的坐标为(2,0)…………………………11分。
2008年江苏省南京市初中毕业生学业考试数学试题
( )2 9 0 C 1 . ×l3
径 为 2 则等边三 角形 A C的 . B
边长 为( ( A ) . () B
) .
( ) .9×l' B 12 o
( ) 2 ×12 D 19 0
()√ C23
( ) 4 D23
图2
、
同的红球 、 白球 和黑 球 , 中摸 出一 球 , 出红球 的 从 摸 概率是 O2 摸出 白球 的概率 是 05 那 么 , 出黑 球 ., .. 摸 的概率是 . 1 . 图 5 有 一 圆形 展厅 , 6如 ,
◇ c E <>G
曰 ’
a
b
在其圆形边 缘上 的点 A处安 装 了一台监视器 , 它的监控 角度是
() A F △ D凹 ; 1△ B
图7
D
二 、 空题( 填 每小题 3分 , 1 分 ) 共 8 I. 1计算 芝 的结果是 一
_ -
.
1. 2 函数 )=l ̄ , x中, 自变量 的取 值 范 围是
x
( )四 边 形 A C 是 2 BD
l . 知 o0 3已 。和 o0 的半 径 分 别 为 3c 和 m 5c 且它们 内切 , 圆心距 0 0 等 于 m, 则 : 角为 度. c. — n
矩形 .
2 . 6分 ) 图 8 菱 形 A C 图 8 ) 菱 形 2( 如 , B D( a与 E G 图 8) F H( b 的形状 、 大小完全相同 .
D H
1. 4若等腰 三角形 的一个外 角 为 7 o则它 的底 o, 1. 5 口袋 内装 有一 些 除颜色 不 同外其 余完 全 相
中学教与学 ) .
2008年江苏省中考数学压轴题精选(含答案)
2008年江苏省中考数学压轴题精选精析1(08江苏常州28题)(答案暂缺)如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点.(1) 求点A 的坐标;(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标; (3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,当462682S +≤≤+时,求x 的取值范围.2(08江苏淮安28题)(答案暂缺)28.(本小题14分)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标;(3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.(第28题)ly x-1-2-4-3-1-2-4-312435123(第24题图)3(08江苏连云港24题)(本小题满分14分)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,.(1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究:①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.(08江苏连云港24题解析)解:(1)由直角三角形纸板的两直角边的长为1和2,知A C ,两点的坐标分别为(12)(21),,,. 设直线AC 所对应的函数关系式为y kx b =+. ·············································· 2分有221k b k b +=⎧⎨+=⎩,.解得13k b =-⎧⎨=⎩,.所以,直线AC 所对应的函数关系式为3y x =-+. ········································ 4分 (2)①点M 到x 轴距离h 与线段BH 的长总相等. 因为点C 的坐标为(21),,所以,直线OC 所对应的函数关系式为12y x =. 又因为点P 在直线AC 上, 所以可设点P 的坐标为(3)a a -,.过点M 作x 轴的垂线,设垂足为点K ,则有MK h =. 因为点M 在直线OC 上,所以有(2)M h h ,. ·············· 6分 因为纸板为平行移动,故有EF OB ∥,即EF GH ∥. 又EF PF ⊥,所以PH GH ⊥.法一:故Rt Rt Rt MKG PHG PFE △∽△∽△,(第24题答图)从而有12GK GH EF MK PH PF ===. 得1122GK MK h ==,11(3)22GH PH a ==-.所以13222OG OK GK h h h =-=-=.又有13(3)(1)22OG OH GH a a a =-=--=-. ··········································· 8分所以33(1)22h a =-,得1h a =-,而1BH OH OB a =-=-,从而总有h BH =.·················································································· 10分法二:故Rt Rt PHG PFE △∽△,可得12GH EF PH PF =-.故11(3)22GH PH a ==-.所以13(3)(1)22OG OH GH a a a =-=--=-.故G 点坐标为3(1)02a ⎛⎫-⎪⎝⎭,. 设直线PG 所对应的函数关系式为y cx d =+,则有330(1)2a ca d c a d -=+⎧⎪⎨=-+⎪⎩,.解得233c d a =⎧⎨=-⎩ 所以,直线PG 所对的函数关系式为2(33)y x a =+-. ·································· 8分 将点M 的坐标代入,可得4(33)h h a =+-.解得1h a =-.而1BH OH OB a --=-,从而总有h BH =. ············································ 10分 ②由①知,点M 的坐标为(221)a a --,,点N 的坐标为12a a ⎛⎫ ⎪⎝⎭,.ONH ONG S S S =-△△1111133(1)222222a NH OH OG h a a a -=⨯-⨯=⨯⨯-⨯⨯- 22133133224228a a a ⎛⎫=-+-=--+ ⎪⎝⎭.······················································· 12分 当32a =时,S 有最大值,最大值为38. S 取最大值时点P 的坐标为3322⎛⎫⎪⎝⎭,. ·························································· 14分4(08江苏南京28题)(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?(08江苏南京28题解析)28.(本题10分) 解:(1)900; ························································································· 1分 (2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. ·················· 2分 (3)由图象可知,慢车12h 行驶的路程为900km ,所以慢车的速度为90075(km /h)12=;·························································· 3分 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4=,所以快车的速度为150km/h . ··········································· 4分 (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)⨯=,所以点C 的坐标为(6450),.设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得044506.k b k b =+⎧⎨=+⎩,解得225900.k b =⎧⎨=-⎩,所以,线段BC 所表示的y 与x 之间的函数关系式为225900y x =-. ··············· 6分 自变量x 的取值范围是46x ≤≤. ····························································· 7分 (5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . ··············· 10分(第28题)y5.(08江苏南通28题)(14分)已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.(08江苏南通28题解析)解:(1)∵D (-8,0),∴B 点的横坐标为-8,代入14y x =中,得y =-2. ∴B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴A (8,2).从而8216k =⨯=.……………………………………………………………………3分(2)∵N (0,-n ),B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上,∴mn k =,B (-2m ,-2n),C (-2m ,-n ),E (-m ,-n ). ……………4分 S 矩形DCNO 22mn k ==,S △DBO =1122mn k =,S △OEN =1122mn k =, ………………7分∴S 四边形OBCE = S 矩形DCNO -S △DBO - S △OEN =k .∴4k =. …………………………8分由直线14y x =及双曲线4y x=,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).………………………………………………………9分 设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得 42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==. ∴直线CM 的解析式是2233y x =+.………………………………………………11分 (3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1、M 1.(第28题)设A 点的横坐标为a ,则B 点的横坐标为-a .于是 111A M MA a mp MP M O m-===. 同理MB m aq MQ m+==,……………………………13分 ∴2a m m ap q m m-+-=-=-.……………………14分6.(08江苏苏州28题)(答案暂缺)28.(本题9分) 课堂上,老师将图①中△AOB 绕O 点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化当△AOB 旋转90°时,得到△A 1OB 1.已知A(4,2)、B(3,0).(1)△A 1OB 1的面积是 ;A 1点的坐标为( , ;B 1点的坐标为( , );(2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB 绕AO 的中点C(2,1)逆时针旋转90°得到△A′O′B′,设O′B′交OA 于D ,O′A′交x 轴于E .此时A′、O′和B′的坐标分别为(1,3)、(3,-1)和(3,2),且O′B′ 经过B 点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB 重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD 的面积)最小,求四边形CFBD 的面积;(3)在(2)的条件一下,△AOB 外接圆的半径等于 .7.(08江苏宿迁27题)(本题满分12分)如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为)0,5(,顶点D 在⊙O 上运动.(1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切; (2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.(第28题)第27题(08江苏宿迁27题解析)解:(1) ∵四边形ABCD 为正方形 ∴CD AD ⊥ ∵A 、O 、D 在同一条直线上 ∴︒=∠90ODC ∴直线CD 与⊙O 相切; (2)直线CD 与⊙O 相切分两种情况:①如图1, 设1D 点在第二象限时,过1D 作x E D ⊥11轴于点1E ,设此时的正方形的边长为a ,则2225)1(=+-a a ,解得4=a 或3-=a (舍去).由BOA Rt ∆∽11OE D Rt ∆ 得OBOD BA E D OA OE 1111==∴54,53111==E D OE ∴)54,53(1-D ,故直线OD 的函数关系式为x y 34-=;②如图2, 设2D 点在第四象限时,过2D 作x E D ⊥22轴于点2E ,设此时的正方形的边长为b ,则2225)1(=++b b ,解得3=b 或4-=b (舍去).由BOA Rt ∆∽22OE D Rt ∆ 得OBOD BA E D OA OE 2222== ∴53,54222==E D OE ∴)53,54(2-D ,故直线OD 的函数关系式为x y 43-=. (3)设),(0y x D ,则201x y -±=,由)0,5(B 得x x x DB 1026)1()5(22-=-+-=∴x x BD S 513)1026(21212-=-==∵11≤≤-x第27题图1第27题图2∴851318513=-==+=最小值最大值,S S .8.(08江苏泰州29题)已知二次函数)0(21≠++=a c bx ax y 的图象经过三点(1,0),(-3,0),(0,23-)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008南京中考数学试题参考答案一、选择题(本大题共10小题,每小题2分,共计20分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.3-的绝对值是( ) A .3-B .3C .13-D .132.2008年5月27日,北京2008年奥运会火炬接力传递活动在南京境内举行,火炬传递路线全程约12 900m ,将12 900m 用科学记数法表示应为( ) A .50.12910⨯B .41.2910⨯C .312.910⨯D .212910⨯3.计算23()ab 的结果是( ) A .5abB .6abC .35a bD .36a b4.2的平方根是( ) A .4BC.D.5.已知反比例函数的图象经过点(21)P -,,则这个函数的图象位于( ) A .第一、三象限 B .第二、三象限C .第二、四象限D .第三、四象限6.如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形, 这个新的图形可以是下列图形中的( )A .三角形B .平行四边形C .矩形D .正方形7.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( ) A .0.5m B .0.55m C .0.6m D .2.2m8.如图,O 是等边三角形ABC 的外接圆,O 的半径为2, 则等边三角形ABC 的边长为( ) ABC.D.9.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为( ) A .5 B .7 C .16 D .33(第6题)(第8题)10.如图,已知O 的半径为1,AB 与O 相切于点A ,OB 与O 交于点C ,OD OA ⊥,垂足为D ,则cos AOB ∠的值等于( )A .ODB .OAC .CD D .AB二、填空题(本大题共6小题,每小题3分,共计18分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11的结果是 . 12.函数1xy x-=中,自变量x 的取值范围是 . 13.已知1O 和2O 的半径分别为3cm 和5cm ,且它们内切,则圆心距12O O 等于 cm . 14.若等腰三角形的一个外角为70,则它的底角为 度. 15.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一 球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率 是 .16.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器, 它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.三、解答题(本大题共12小题,共计82分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:2(21)2(21)3a a +-++,其中a =18.(6分)解方程22011x x x -=+-.(第10题)(第9题) /min(第16题)19.(6分)解不等式组205121123x x x ->⎧⎪+-⎨+⎪⎩,≥,并把解集在数轴上表示出来.20.(6分)我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭月使用塑料袋的数量,结果如下(单位:只)65,70,85,75,85,79,74,91,81,95.(1)计算这10名学生所在家庭平均月使用塑料袋多少只? (2)“限塑令”执行后,家庭月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1 000名学生所在家庭月使用塑料袋可减少多少只? 21.(6分)如图,在ABCD中,E F ,为BC 上两点,且BE CF =,AF DE =. 求证:(1)ABF DCE △≌△; (2)四边形ABCD 是矩形.22.(6分)如图,菱形ABCD (图1)与菱形EFGH (图2)的形状、大小完全相同. (1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ; (2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法);(第19题)5- 4- 3- 2- 1- 1 (第21题) A B CD EF 图1A (第22题)B CD 图2E F②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述) 23.(6分)如图,山顶建有一座铁塔,塔高30m CD ,某人在点A 处测得塔底C 的仰角为20,塔顶D 的仰角为23,求此人距CD 的水平距离AB .(参考数据:sin 200.342≈,cos 200.940≈,tan 200.364≈,sin 230.391≈,cos 230.921 ≈,tan 230.424 ≈)24.(7分)小明和小颖做掷骰子的游戏,规则如下: ①游戏前,每人选一个数字; ②每次同时掷两枚均匀骰子;③如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜. (1(2)小明选的数字是5,小颖选的数字是6.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由. 25.(7分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?(第23题) AB CD 20 2326.(8分)已知二次函数2y x bx c =++中,函数y 与自变量x 的部分对应值如下表:(1(2)当x 为何值时,y 有最小值,最小值是多少?(3)若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,试比较1y 与2y 的大小. 27.(8分)如图,已知O 的半径为6cm ,射线PM 经过点O ,10cm OP =,射线PN 与O 相切于点Q .A B ,两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s . (1)求PQ 的长;(2)当t 为何值时,直线AB 与O 相切?28.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距......离.为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取(第27题) y(1)甲、乙两地之间的距离为km;(2)请解释图中点B的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(每小题3分,共计18分) 1112.0x ≠13.214.3515.0.316.3三、解答题(本大题共12小题,共计82分) 17.(本题6分)解:原式2441423a a a =++--+ ····················································································· 3分242a =+. ···························································································································· 4分当a =22424210a +=⨯+=. ···································································· 6分 18.(本题6分)解:方程两边同乘(1)(1)x x -+,得2(1)0x x --=. ··················································································································· 3分解这个方程,得 2x =. ··································································································································· 5分 检验:当2x =时,(1)(1)0x x -+≠.所以2x =是原方程的解.····································································································· 6分 19.(本题6分)解:解不等式①,得2x <. ································································································· 2分 解不等式②,得1x -≥. ····································································································· 4分 所以,不等式组的解集是12x -<≤. ··············································································· 5分 不等式组的解集在数轴上表示如下:··············································································································· 6分 20.(本题6分) 解:(1)1(65708575857974918195)8010+++++++++=. 答:这10名学生所在家庭平均月使用塑料袋80只. ························································· 3分 (2)8010005040000⨯⨯=%.答:执行“限塑令”后,估计1 000名学生所在家庭月使用塑料袋可减少40 000只. ···· 6分21.(本题6分) 解:(1)BE CF = ,BF BE EF =+,CE CF EF =+, BF CE ∴=. ························································································································ 1分 四边形ABCD 是平行四边形, AB DC ∴=. ························································································································ 2分 在ABF △和DCE △中,AB DC = ,BF CE =,AF DE =, ABF DCE ∴△≌△. ·········································································································· 3分 (2)解法一:ABF DCE △≌△, B C ∴∠=∠. ······················································································································· 4分 四边形ABCD 是平行四边形, AB CD ∴∥.180B C ∴∠+∠= .90B C ∴∠=∠= . ·············································································································· 5分∴四边形ABCD 是矩形. ····································································································· 6分 解法二:连接AC DB ,. ABF DCE △≌△, AFB DEC ∴∠=∠. AFC DEB ∴∠=∠. ············································································································ 4分 在AFC △和DEB △中,AF DE = ,AFC DEB ∠=∠,CF BE =, AFC DEB ∴△≌△. AC DB ∴=. ························································································································ 5分 四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. ····································································································· 6分 22.(本题6分) 解:(1)①;②;④; ··········································································································· 3分 (2)①画图正确; ················································································································· 5分 ②答案不惟一,例如:对应线段相等, OC OE =等. ························································································································ 6分 23.(本题6分) 解:在Rt ABC △中,20CAB ∠=,tan tan 20BC AB CAB AB ∴=∠= . ·············································································· 2分在Rt ABD △中,23DAB ∠=,tan tan 23BD AB DAB AB ∴=∠= . ·············································································· 4分tan 23tan 20(tan 23tan 20)CD BD BC AB AB AB ∴=-=-=- .30500(m)tan 23tan 200.4240.364CD AB ∴==-- ≈.答:此人距CD 的水平距离AB 约为500m . ······································································· 6分24.(本题7分) 解:(1)填表正确; ··············································································································· 3分 (2)由上表可以看出,同时投掷两枚骰子,可能出现的结果有36种,它们出现的可能性相同.所有的结果中,满足两枚骰子点数和为5(记为事件A )的结果有4种,即(1,4),(2,3),(3,2)(4,1),所以小明获胜的概率为41()369P A ==; ·············································· 4分 满足两枚骰子点数和为6(记为事件B )的结果有5种,即(1,5),(2,4),(3,3)(4,2),(5,1),所以小颖获胜的概率为5()36P B =; ····························································· 5分 要想使自己获胜的概率比他们大,必须满足两枚骰子点数和出现的结果多于5种,由所列表格可知,只有两枚骰子点数和为7(记为事件C )的结果多于5种,有6种,即(1,6),(2,5),(3,4)(4,3),(5,2),(6,1),所以61()366P C ==.因此,要想使自己获胜的概率比他们大,所选数字应为7. ····················································································· 7分 25.(本题7分)解法一:设矩形温室的宽为m x ,则长为2m x .根据题意,得(2)(24)288x x --= . ······································································································· 4分解这个方程,得110x =-(不合题意,舍去),214x =. ············································································ 6分 所以14x =,221428x =⨯=.答:当矩形温室的长为28m ,宽为14m 时,蔬菜种植区域的面积是2288m . ················· 7分 解法二:设矩形温室的长为m x ,则宽为1m 2x .根据题意,得 12(4)2882x x ⎛⎫--= ⎪⎝⎭.····································································································· 4分 解这个方程,得120x =-(不合题意,舍去),228x =. ··········································································· 6分 所以28x =,11281422x =⨯=. 答:当矩形温室的长为28m ,宽为14m 时,蔬菜种植区域的面积是2288m . ················· 7分 26.(本题8分)解:(1)根据题意,当0x =时,5y =;当1x =时,2y =.所以521.c b c =⎧⎨=++⎩,解得45.b c =-⎧⎨=⎩,所以,该二次函数关系式为245y x x =-+. ····································································· 2分 (2)因为2245(2)1y x x x =-+=-+,所以当2x =时,y 有最小值,最小值是1. ······································································· 4分 (3)因为1()A m y ,,2(1)B m y +,两点都在函数245y x x =-+的图象上, 所以,2145y m m =-+,222(1)4(1)522y m m m m =+-++=-+.2221(22)(45)23y y m m m m m -=-+--+=-. ·························································· 5分 所以,当230m -<,即32m <时,12y y >; 当230m -=,即32m =时,12y y =; 当230m ->,即32m >时,12y y <. ··············································································· 8分27.(本题8分) (1)连接OQ .PN 与O 相切于点Q ,OQ PN ∴⊥,即90OQP ∠= . ························································································ 2分 10OP = ,6OQ =,8(cm)PQ ∴==. ······························································································ 3分 (2)过点O 作OC AB ⊥,垂足为C .点A 的运动速度为5cm/s ,点B 的运动速度为4cm/s ,运动时间为t s , 5PA t ∴=,4PB t =.10PO = ,8PQ =,PA PBPO PQ∴=. P P ∠=∠ ,。