最新七年级数学余角和补角试题及答案

合集下载

人教版七年级上第四章余角和补角同步练习题(含答案)

人教版七年级上第四章余角和补角同步练习题(含答案)

人教版七年级上第四章余角和补角同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知7622α'∠=︒,则α∠的补角是( ).A .10338'︒B .10378'︒C .1338'︒D .1378'︒ 2.若一个角的补角加上20︒后等于这个角余角的3倍,则这个角的度数为( ). A .25︒ B .35︒ C .45︒ D .55︒ 3.如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠互补的是( ) A . B . C . D .4.将一副三角板按如图方式摆放,则下列结论错误的是( )A .1135∠=︒B .2145∠=︒C .12∠=∠D .12270∠+∠=︒ 5.如果∠α和∠β互补,且∠α<∠β,则下列表示∠α的余角的式子中:∠90°﹣∠α;∠∠β﹣90°;∠12(∠α+∠β);∠12(∠β﹣∠α).其中正确的有( )A .1个B .2个C .3个D .4个 6.如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东20°的方向上,那么AOB ∠的大小为( )A .110°B .130°C .140°D .150°7.在如图所示的方位角中,射线OA 表示的方向是( )A .东偏南60°B .南偏东30°C .南偏东60°D .南偏西60°8.如果一个角的余角等于这个角的补角的14,那么这个角是( ) A .30 B .45︒ C .60︒ D .75︒9.如图,直线DE 与BC 相交于点O ,1∠与2∠互余,150BOE ∠=︒,则AOE ∠的度数是( )A .120︒B .130︒C .140︒D .150︒10.已知∠AOB =70°,以O 为端点作射线OC ,使∠AOC =42°,则∠BOC 的度数为( ) A .28° B .112° C .28°或112° D .68°二、填空题11.将18.25°换算成度、分、秒的结果是__________.12.如图,直线AB ,CD 相交于点O ,EO ∠AB ,垂足为O ,∠EOC =35°,则∠AOD 的度数为______.13.如图,在渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B 处,在B 处看见灯塔M 在北偏东15°方向,此时灯塔M 与渔船的距离是______海里.14.如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3,∠2=55°,那么∠4=_____度.三、解答题15.如图,AB CD ,连接CA 并延长至点H ,CF 平分ACD ∠,CE CF ⊥,GAH ∠与AFC ∠互余.(1)求证:AG CE ∥;(2)若110GAF ∠=,求AFC ∠的度数.16.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D作DE l ⊥交于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,NG l ⊥于点G ,由(1)易知NG =_______,ND 与直线l 交于点P ,求证:NP DP =.17.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A 处测得北偏东30°方向上,距离为20海里的B 处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向以20海里/小时的速度前去拦截.问:经过多少小时,海监执法船恰好在C 处成功拦截.18.如图,点O 是等边三角形ABC 内的一点,∠BOC =150°,将∠BOC 绕点C 按顺时针方向旋转一定的角度,得到∠ADC ,连接OD ,OA .(1)求∠ODC 的度数;(2)试判断AD 与OD 的位置关系,并说明理由;(3)若OB =2,OC =3,求AO 的长(直接写出结果).参考答案:1.A【分析】直接将180°减去∠α即可.【详解】解:∠∠α=7622︒',∠∠α的补角为180180762210338α︒-∠=︒-︒'=︒',故选A .【点睛】本题考查了补角的定义,即如果两个角的和是180°,那么其中一个角就是另一个角的补角,因此,已知一个角,那么它的补角就等于180°减去这个已知角,解题的关键是牢记概念和公式等.2.B【分析】可先设这个角为∠α,则根据题意列出关于∠α的方程,问题可解【详解】解:设这个角为∠α,依题意,得180°-∠α+20°=3(90°﹣∠α)解得∠α=35°.故选B .【点睛】此题考查的两角互余和为90°,互补和为180°的性质,关键是根据题意列出方程求解.3.D【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】解:A 、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项不符合题意;B 、图中∠α=∠β,不一定互余,故本选项错误;C 、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D 、图中∠α+∠β=180°,互为补角,故本选项正确.故选:D .【点睛】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.4.B【分析】如图,根据一副三角板的特征可得∠3=∠4=45°,然后根据平角的定义可得∠1和∠2的度数,进而可排除选项.【详解】解:如图,由题意得:∠3=∠4=45°,∠13180,24180∠+∠=︒∠+∠=︒,∠12135∠=∠=︒,故A 、C 正确,B 错误;∠12270∠+∠=︒,故D 正确;故选B .【点睛】本题主要考查补角的性质及角的和差关系,熟练掌握补角的性质及角的和差关系是解题的关键.5.C【分析】由α∠和β∠互补,可得180αβ∠+∠=︒,即:180αβ=︒-∠,119022αβ∠+∠=︒,再用不同的形式表示α∠的余角.【详解】解:α∠和β∠互补, 180αβ∴∠+∠=︒,180αβ∴∠=︒-∠,119022αβ∠+∠=︒ 于是有:α∠的余角为:90α︒-∠,故∠正确,α∠的余角为:9090(180)90αββ︒-∠=︒-︒-∠=∠-︒,故∠正确,α∠的余角为:1111902222ααβαβα︒-∠=∠+∠-∠=∠-∠,故∠正确, 而1()902αβ∠+∠=︒,而α∠不一定是直角,因此∠不正确,因此正确的有∠∠∠,故选:C .【点睛】本题考查互为余角、互为补角的意义,熟悉利用等式的性质进行变形和整体代入的方法是解题的关键.6.C【分析】结合图形,然后求出OA 与西方的夹角的度数,再列式计算即可得解.【详解】解:∠点A 在点O 北偏西60°的方向上,∠OA 与西方的夹角为90°-60°=30°,又∠点B 在点O 的南偏东20°的方向上,∠∠AOB =30°+90°+20°=140°.故选:C .【点睛】本题考查了方向角,熟记概念是解题的关键,结合图形更形象直观.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.7.C【分析】表示OA 的方式有两种,东偏南30°;南偏东60°;作出判断即可.【详解】根据题意,得表示OA 的方式有东偏南30°;南偏东60°两种,故选C.【点睛】本题考查了方位角的表示法,熟练掌握方位角的表示方法是解题的关键. 8.C【分析】设这个角是x ︒,根据题意得190(180)4x x -=-,解方程即可. 【详解】解:设这个角是x ︒,根据题意得190(180)4x x -=-, 解得x =60,故选:C .【点睛】此题考查角度计算,熟练掌握一个角的余角及补角定义,并正确列得方程解决问题是解题的关键.9.A【分析】直接利用互余的定义以及结合平角的定义得出∠AOC 以及∠EOC 的度数,进而得出答案.【详解】解:∠∠1与∠2互余,∠1290∠+∠=︒,∠90AOC ∠=°,∠150BOE ∠=︒,∠18015030EOC ∠=︒-︒=°,∠9030120AOE AOC EOC ∠=∠+∠=︒+︒=︒.故选:A【点睛】此题主要考查了邻补角以及余角,正确掌握相关定义是解题关键.10.C【分析】根据题意画出图形,利用数形结合求解即可.【详解】解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故选C.【点睛】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.11.18°15′0″【分析】根据将高级单位化为低级单位时,乘以60,即可求得答案.【详解】18.25°=18°+0.25×60=18°15′0″,故答案为18°15′0″.【点睛】本题考查了度、分、秒的换算,掌握1度=60分,即1°=60′,1分=60秒,即1′=60″是解题的关键.12.125°【分析】由两直线垂直,求得∠AOE=90°;由∠AOC与∠EOC互余,∠EOC=35°,即可得到∠AOC的度数;再由∠AOD与∠AOC互补,即可得出∠AOD的度数.【详解】解:∠EO∠AB,∠∠AOE=90°,又∠∠EOC=35°,∠∠AOC=∠AOE-∠EOC=90°-35°= 55°,∠∠AOD=180°-∠AOC=180°-55°=125°,故答案为:125°.【点睛】本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.13.【分析】过点B作BN∠AM于点N,由已知可求得BN的长;再根据勾股定理求BM的长.×28=14海里,∠MAB=30°,∠ABM=105°.【详解】解:由已知得,AB=12过点B作BN∠AM于点N.∠在直角∠ABN中,∠BAN=30°AB=7海里.∠BN=12在直角∠BNM中,∠MBN=45°,则直角∠BNM是等腰直角三角形.即BN=MN=7海里,∠BM=.故答案为:【点睛】本题考查的是勾股定理解直角三角形的应用-方向角问题,正确标注方向角、掌握勾股定理是解题的关键.14.55【分析】根据余角的定义及等角的余角相等即可求解.【详解】解:∠∠1与∠2互余,∠∠1+∠2=90°,∠∠3与∠4互余,∠∠3+∠4=90°,又∠1=∠3,∠∠2=∠4=55°,故答案为:55.【点睛】本题考查了余角的定义及等角的余角相等等知识点,属于基础题,计算过程中细心即可.15.(1)见解析(2)20AFC ∠=︒【分析】(1)根据角平分线得出ACF FCD ∠∠=,利用平行线的性质可得AFC FCD ∠∠=,然后利用各角之间的关系得出GAH ECA ∠∠=,再由平行线的判定即可证明;(2)根据平行线的性质得出HAF ACD ∠∠=,GAH ECA ∠∠=.结合图形利用各角之间的数量关系得出20∠︒=FCD ,再由平行线的性质即可得出结果.(1)证明:∠CF 平分ACD ∠,∠ACF FCD ∠∠=.∠AB ∠CD ,∠AFC FCD ∠∠=,∠ACF AFC ∠∠=,∠GAH ∠与AFC ∠互余,即90GAH AFC ∠+∠︒=,∠90GAH ACF ∠+∠︒=.∠CE CF ⊥,∠90ECF ECA ACF ∠∠+∠︒==,∠GAH ECA ∠∠=,∠AG ∠CE(2)解:∠AB ∠CD ,AG ∠CE ,∠HAF ACD ∠∠=,GAH ECA ∠∠=.∠HAF GAH ACD ECA ∠+∠∠+∠=,即GAF ECD ∠∠=.∠110GAF ∠︒=,∠110ECD ∠︒=.∠90ECF ∠︒=,∠1109020FCD ECD ECF ∠∠∠︒︒=-=-=.∠AB ∠CD ,∠20AFC ∠︒=.【点睛】题目主要考查平行线的判定和性质及各角之间的等量代换,熟练掌握平行线的判定和性质是解题关键.16.(1)DE ,AE ;(2)AC .证明见详解.【分析】(1)根据(AAS)≌ABC DAE ,得出AC =DE ,BC =AE 即可;(2)过D 作DE ∠直线l 于E ,先证∠MCA ∠∠AGN (AAS ),得出AC =NG ,由(1)知(AAS)≌ABC DAE ,得出AC =DE ,再证∠NGP ∠∠DEP (AAS )即可.(1)解:∠(AAS)≌ABC DAE ,∠AC =DE ,BC =AE ,故答案为DE ,AE ;(2)证明:过D 作DE ∠直线l 于E ,∠90MAN ∠=︒,∠∠CAM +∠NAG =90°,∠BM ∠l ,∠∠MCA =90°,∠∠M +∠CAM =90°,∠∠M =∠NAG ,∠NG l ⊥,∠∠AGN =90°,在∠MCA 和∠AGN 中,MCA AGN M GAN MA AN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠MCA ∠∠AGN (AAS ),∠AC =NG ,由(1)知(AAS)≌ABC DAE ,∠AC =DE ,∠NG =DE ,在∠NGP 和∠DEP 中,90NGP DEP GPN EPDNG DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∠∠NGP ∠∠DEP (AAS )∠NP =DP ,故答案为AC .【点睛】本题考查一线三直角全等问题,掌握余角性质,三角形全等判定与性质是解题关键. 17【分析】过点C 作CD ∠AB 交线段AB 延长线于点D ,证∠ACD 是等腰直角三角形,得AD =CD ,由勾股定理得AC,AD =CD,然后由AD −BD =AB 求出BD ,进而求出AC ,再利用路程=速度×时间即可求解.【详解】解:如图,过点C 作CD ∠AB 交线段AB 延长线于点D ,∠∠BAC =75°−30°=45°,∠∠ACD 是等腰直角三角形,∠AD =CD ,∠ACCD ,∠∠DBC =∠BAE =90°−30°=60°,∠∠BCD =30°,∠BC =2BD ,AD =CD =, ∠AD −BD =AB ,20BD -= 海里,解得:BD =10)1 海里,∠CD (30=+ 海里,∠AC =(海里),∠t ==C 处成功拦截. 【点睛】此题考查了解直角三角形的应用−方向角问题,勾股定理、等腰直角三角形的判定等知识,正确作出辅助线构造直角三角形是解题的关键.18.(1)60°(2)AD OD ⊥,见解析(3)AO =【分析】(1)根据旋转的性质得到三角形ODC 为等边三角形即可求解;(2)将∠BOC 绕点C 按顺时针方向旋转一定的角度,得到∠ADC ,可知∠ADC =∠BOC =150°,即得∠ADO =∠ADC -∠ODC =90°,故AD ∠OD ;(3)在Rt ∠AOD 中,由勾股定理即可求得AO 的长.(1)由旋转的性质得:CD CO =,OCB DCA ∠=∠.∠ACO OCB ACO DCA ∠+∠=∠+∠,即ACB DCO ∠=∠.∠ABC 为等边三角形,∠60ACB ∠=︒.∠60DCO ∠=︒.∠OCD 为等边三角形,60ODC ∠=︒.(2)由旋转的性质得,150BOC ADC ∠=∠=︒.∠60ODC ∠=︒,∠90ADO ADC ODC ∠=∠-∠=︒.即AD OD ⊥.(3)由旋转的性质得,AD =OB =2,∠∠OCD 为等边三角形,∠OD =OC =3,在Rt ∠AOD 中,由勾股定理得:AO【点睛】本题考查等边三角形中的旋转变换,涉及直角三角形判定、勾股定理等知识,解题的关键是掌握旋转的性质,旋转不改变图形的大小和形状.。

最新余角和补角练习题大全及答案

最新余角和补角练习题大全及答案

精品文档余角与补角练习题及答案A卷:基础题一、选择题1 •如图1所示,直线AB, CD相交于点O, OEL AB,那么下列结论错误的是()COE互为余角./ B0D与/ A • Z A0C与/ COE互为余角B 是对顶角A0C与/ BOD /C0E与/ B0E互为补角D C1图) 2 •如图所示,Z 1与Z 2是对顶角的是(X ZA H X C D•下列说法正确的是()3 •锐角一定等于它的余角 B •钝角大于它的补角 A •锐角不小于它的补角 D •直角小于它的补角 C ) , BO L DO则下列结论正确的是(4 •如图2 所示,AC L OC3Z 2=3 D • Z 1 = ZZ 2 B • Z 2=Z 3 C • Z 1 = Z A.Z 1 =c/?5图 图2 图3、填空题 互余,且/仁35 ° ,则/ 2的补角的度数为则/ . O3所示,直线 a 丄b ,垂足为,L 是过点0的直线,/ 1=406 •如图 _____________ 则/ ?若/ COB=?135? ?MOD= .丄相交于点所示,直线 7.如图4AB, CDO OMAB ------------------------ 8 .对对顶角. 对互余的角.CFCAB 如图5所示,9 三、解答题COE=55BOE=90OCDAB1C 如图所示,BOD 求/ ?的度数.精品文档. .°,Z AOC=?120? OE 平分/ AOD 相交于点11.如图所示,直线 AB 与CDO AO 啲度数•求/BOD /B 卷:提高题一、七彩题,/ FOB 相交于点,EFO / AOF=3 1.(一题多解题)如图所示,三条直线 ABCD EOC 勺度数./ AOC=90,求/二、知识交叉题 °,求这个角.•(科内交叉题)一个角的补角与这个角的余角的和比平角少102(科外交叉题)如图所示,当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象•若z°,z°,则光的传播方向改变了精品文档.精品文档 三、实际应用题.5.已知/ 1 与/ 2 ________ 2= 条直线相交于一点,共有 丄CD 于点,CE 丄,则图中共有 直线,相交于点,/°,若/°精品文档AOCDBE3. 度. _______ 2=?28?1=424•如图所示是一个经过改造的台球桌面的示意图,图中4个角上的阴影部分分别表示4个入球袋•如果一个球按图中所示的方向被击岀(?假设用足够的力气击岀,使球可以经过多次反射)那么该球最后落入哪个球袋?在图上画岀被击的球所走路程.四、经典中考题的一条直线,0?EFO为过点,济南,4分)已知:如图所示,AB丄CD,垂足为点5. (2007 )2的关系一定成立的是(则/ 1与/ •互为对顶角•互补 D CA •相等B.互余的余角等于A=40°,则/ A ________ ( 6 • 2008,南通,3分)已知/参考答案卷A 一、错误,故选 C.点拨:因为/ COE与/ DOE互为补角,所以CC 1 • BD 3 • 2 • 丄DQ BOAO4 C 点拨:因为丄0C °,BOD=90所以/ AOC=90,/ 1=902+2=903+ 即zz°,zz°,精品文档.精品文档根据同角的余角相等可得/ 1 = / 3,故选C._、5. 125 ° 点拨:因为/ 1与/ 2互余,所以/ 1 + Z 2=90 °,又因为/ 1=35 °,?所以/ 2=90° -35=55 °,所以180° - / 2=180 ° -55 ° =125 °,即/ 2?的补角的度数是125 ° •6. 50° 点拨:由已知可得/ 1 + Z 2=180 ° -90 ° =90°,/ 2=90 ° - / 1= 90° -?40 ° =50 ° .7. 45°点拨:因为OM L AB,所以/ MOD-/ BOD=90,所以/ MOD=90 - / BOD又因为/ BOD=180 - / COB=180 -135 ° =45 °,所以/ MOD=90 -45 ° =45 °.8. 6 点拨:如图所示,直线AB, CD EF相交于点O,Z AOD与/ BOC / AOE与/ BOF;/ DOE 与/ COF / DOB与/ COA / EOB与/ FOA / EOC与/ FOD?匀分别构成对顶角,共有6对对顶角.互余•与/ FCB与/ ECD互余,/ DCFCD9 4 点拨:由AB丄,可得/ ACEACB为平角,ECD可得/与/ DCF互余,又由于/由CE丄CF 4对.ACE与/ BCF互余,共有所以/ 三、BOE=90 °,与/ AOE 互补,/ 10.解:因为/ BOE °,COE/ COA=90 / BOE=?180-90° =90 °,即/所以/ AOE=180 - °,°=35/° -COE=90° -?55 又/ COE=55,所以/ COA=90 COA=35 ./相交于点O,所以/ BOD因为直线AB, CDAOC=120 ,,所以/ BOD/ CD11.解:因为直线AB与相交于点O ° ,° =60-120AOC+?/ AOD=180,所以/ AOD=180 因为/ 11 ° . 60° =30AOD因为OE平分/,所以/AOE=AOD/ X _________________ 22可得?AODAOCBODAOCBO拨:由/与/是对顶角,可得/的度数•由/与/互补,精品文档.精品文档/AOD的度数,又由OE平分/ AOD可得/ AOE的度数.B卷、1•解法一:因为/ FOB+/ AOF=180°,Z AOF=3/ FOB (已知),所以/ FOB+3?/ FOB=180 (等量代换),所以/ FOB=45°, 所以/ AOE=/ FOB=45 (对顶角相等),因为/ AOC=90 , 所以/ EOC=/ AOC-/ AOE=90 -45 ° =45 ° .解法二:因为/ FOB+/ AOF=180,/ AOF=3/ FOB所以/ FOB+3/ FOB=180°, ?所以/ FOB=45 ,所以/ AOF=3/ FOB=3X 45° =135 ° ,所以/ BOE=/ AOF=135 .又因为/ AOC=90 ,所以/ BOC=180 - / AOC=180 -90 ° =90°,所以/ EOC=/ BOE-/ BOC=?135 -90 ° =45 ° .2 .解:设这个角为X,则其补角为180 ° -X,余角为90° -X ,根据题意,得(?180 ° -X ) + (90° -X ) =180 ° -10 °,解得x=50 ° ,所以这个角的度数为50°.点拨:本题是互余,互补及平角的概念的一个交叉综合题,要理清各种关系,才能正确列岀方程.3. 14点拨:本题是对顶角的性质在物理学中的应用.4•解:落入2号球袋,如图所示.精品文档.精品文档球被击中后在桌面上走的路线与台球桌面的边缘构成的角此题应与实际相联系,点拨:等于反弹后走的路线与台球桌面的边缘构成的角. 四、BOC=90°.于点丄CDO所以/ 5. B 点拨:因为AB,COE所以// 2CD又与EF相交于点O, ? B . 1°,即/与/ 2互余,故选COE=2所以/ 1 + // 1+ ZZ BOC=90 °. -40 ° =50°/° 的余角为点拨:/°.650 A90-A=90精品文档.。

最新部编版人教初中数学七年级上册《4.3.3 余角和补角 同步导练设计及答案》精品测试题

最新部编版人教初中数学七年级上册《4.3.3 余角和补角 同步导练设计及答案》精品测试题

- 1 - D C A B N M(2)FE 前言:该同步导练设计由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的同步导练设计助力考生查漏补缺,在原有基础上更进一步。

(最新精品同步导练设计)4.3.3 余角和补角同步导练基础导练1.一个锐角和一个钝角的和等于一个平角.( )2.一个角的补角大于这个角.( )3.一个钝角减去一个锐角必然得到一个锐角.( )4.一个角的补角减去这个角的余角是一个直角.( )5.同角或等角的余角相等,补角也相等.( )6.若有一个公共顶点和一条公共边的两个角互补,则这两个角的另一边必在同一直线上.( )7.120.5°=120°50′.( ) 12.42°51′÷3+16°29′×4=80°13′.( )8.两个角的和等于________( ),就说这两个角互为余角;•两个角的和等于________( ),就说这两个角互为补角. 9.已知∠1=43°27′,则∠1的余角是_______,补角是________. 10.•从一个角的顶点引出的一条_______,•把这个角分成两 个相等的角,•这条______叫做这个角的_______.11.如果两个角是对顶角,那么这两个角_______.12.如图(2),∠AME 的补角是_______,对顶角是_______.13.计算:8°43′50″-18°43′26″×5-37°3′÷3=_________.14.计算:180°-52°18′36″-25°36″×4=____________.15.如图(5),已知∠COE=∠BOD=∠AOC=90°,则图中与∠BOC 相等的角为_______,与∠BOC 互补的角为_______,与∠BOC 互余的角为________.能力提升D C A B (5)O E。

人教版初中七年级上册数学《余角和补角》练习题

人教版初中七年级上册数学《余角和补角》练习题

4321E DBACO45︒30︒60︒68︒O东南西北第四章 几何图形初步4.3 角 4.3.3 余角和补角1.如图所示,∠1是锐角,则∠1的余角是( ). A .1212∠-∠ B .132122∠-∠ C .1(21)2∠-∠ D .1(21)3∠+∠2、(1)A 看B 的方向是北偏东21°,那么B 看A 的方向( )A:南偏东69° B:南偏西69° C:南偏东21° D:南偏西21°(2)如图,下列说法中错误的是( )A: OC 的方向是北偏东60° B: OC 的方向是南偏东60° C: OB 的方向是西南方向 D: OA 的方向是北偏西22°(3)在点O 北偏西60°的某处有一点A ,在点O 南偏西20°的某处有一点B ,则∠AOB 的度数是( )A:100° B:70° C:180° D:140°3、若一个角的补角等于它的余角4倍,求这个角的度数。

4、如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?A O60南东北西5、如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。

人教版七年级上第四章余角和补角同步练习题(含解析)

人教版七年级上第四章余角和补角同步练习题(含解析)

人教版七年级上第四章余角和补角同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为( )A .120°B .60°C .30°D .150° 2.下列命题中,真命题的个数为( )个.∠一个角的补角可以是锐角;∠两条平行线上的任意一点到另一条平行线的距离是这两条平行线间的距离; ∠平面内,过一点有且只有一条直线与已知直线垂直;∠平面内,过一点有且只有一条直线与已知直线平行.A .1个B .2个C .3个D .4个 3.如图,在Rt ABC ∆中,90ACB ∠=︒,CD AB ⊥于点D ,下列结论中错误的是( )A .ACDB ∠=∠ B .2CD AD BD =C .··AC BC ABCD = D .2·BC AD AB = 4.如果90αβ∠+∠=︒,且β∠与γ∠互余,那么α∠与γ∠的关系为( ).A .互余B .互补C .相等D .不能确定 5.在ABC 中,60C ∠=°,按图中虚线将C ∠剪去后,12∠+∠等于( ).A .120︒B .220︒C .240︒D .300︒ 6.如图,OA 是北偏东30方向的一条射线,若90AOB ∠=︒,则OB 的方向角是( )A .北偏西30B .北偏西60︒C .东偏北30D .东偏北60︒ 7.如图,下列说法中错误的是( ).A .OA 方向是北偏东20︒B .OB 方向是北偏西15︒C .OC 方向是南偏西30︒D .OD 方向是东南方向8.若1∠与2∠互为余角,1∠与3∠互为补角,则下列结论:∠3290∠-∠=︒;∠3227021∠+∠=︒-∠;∠3122∠-∠=∠;∠312∠<∠+∠.其中正确的有( )A .4个B .3个C .2个D .1个9.如图所示,已知//AB CD ,则( ).A .123∠=∠+∠B .123∠∠∠>+C .213∠=∠+∠D .123∠∠∠<+10.入射光线和平面镜的夹角为40︒,转动平面镜,使入射角减小10︒,反射光线与入射光线的夹角和原来相比较将( )A .减小40︒B .减小10︒C .减小20︒D .不变二、填空题11.若∠B 的余角为57.12°,则∠B=_____°_____’_____”12.如图,AB CD 、相交于点O ,OE 平分AOD ∠,若60BOC ∠=︒,则COE ∠的度数是_____________.13.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,∠ACB =85°,则C 处在B 处的_____ 度方向.14.如图,直线AB 与CD 相交于点O ,OM ∠AB ,若∠DOM =55°,则∠AOC =______°.三、解答题15.小宋对三角板在平行线间的摆放进行了探究(1)如图(1),已知a b ∥,小宋把三角板的直角顶点放在直线b 上.若140∠=︒,直接写出2∠的度数;若1m ∠=︒,直接写出2∠的度数(用含m 的式子表示).(2)如图(2),将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的直角顶点与45°角的顶点重合于点A ,含30°角的直角三角板的斜边与纸条一边b 重合,含45°角的三角板的另一个顶点在纸条的另一边a 上,求1∠的度数.16.李华同学用11块高度都是1cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD (∠ABC =90°,AB =BC ),点B 在EF 上,点A 和C 分别与木墙的顶端重合,求两堵木墙之间的距离EF .17.如图,B 处在A 处的南偏西45°方向,C 处在B 处的北偏东80°方向.(1)求ABC ∠;(2)若//CD AB ,则D 处应在C 处的什么方向?并说明理由.18.如图,在ABC 中,75A ∠=︒,45C ∠=︒,BE 是ABC 的角平分线,BD 是边AC 上的高.(1)求CBE ∠的度数;(2)求DBE ∠的度数.参考答案:1.D【分析】根据∠1和∠2互为余角,可得230∠=︒ ,再由∠2与∠3互补,即可求解.【详解】解:∠∠1和∠2互为余角,∠1=60°,∠∠2=90°﹣∠1=90°﹣60°=30°,∠∠2与∠3互补,∠∠3=180°﹣∠2=180°﹣30°=150°.故选:D .【点睛】本题主要考查了余角和补角的性质,熟练掌握互为余角的两角之和等于90°,互为补角的两角之和等于180°是解题的关键.2.C【分析】根据补角的定义、平行公理、平行线的性质、点到直线的距离的定义、垂线的性质定理判断即可,【详解】∠一个角的补角可以是锐角,理由:钝角的补角是锐角,故∠正确.∠两条平行线上的任意一点到另一条平行线的距离是这两条平行线间的距离,理由:两条平行直线之间距离的定义,故∠正确.∠平面内,过一点有且只有一条直线与已知直线垂直,理由:垂线的性质定理,故∠正确. ∠平面内,过直线外一点有且只有一条直线与已知直线平行,故∠错误.故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.D【分析】A .利用同角的余角即可推出结果;B .证∠ADC∠∠CDB ,由性质得AD CD =CD BD 即可;C .利用三角形面积两种求法相等即可;D .证∠ABC∠∠CBD ,由性质得BC AB =BD BC即可.【详解】解:A .90ACB ∠=︒,90ACD BCD ∴∠+∠=︒, CD AB ⊥,90B BCD ∴∠+∠=︒,ACD B ∴∠=∠,A 正确,不符合题意;B .90ACB ∠=︒,CD AB ⊥,∠∠A+∠B=90º,∠A+∠ACD=90º,∠ADC=∠CDB=90º,∠∠ACD=∠B ,∠△ADC∠△CDB ,AD CD =CD BD, 2·CD AD BD ∴=,B 正确,不符合题意;C .由三角形的面积公式得,11 (22)AC BC AB CD =, ··AC BC ABCD ∴=,C 正确,不符合题意;D .90ACB ∠=︒,CD AB ⊥,∠∠A+∠B=90º,∠BCD+∠B =90º,∠ACB=∠CDB =90º,∠∠A=∠BCD ,∠∠ABC∠∠CBD , ∠BC AB =BD BC. 2·BC BD AB ∴=,D 错误,符合题意;故选择:D .【点睛】本题考查同角的余角性质,三角形面积的求法,三角形相似的判定与性质,比例中项问题,掌握同角的余角性质,会用三角形面积的求法证等积式,三角形相似的判定与性质证比例中项问题是解题关键.4.C【分析】根据同角的余角相等即可得到答案.【详解】解:∠∠β与∠γ互余,∠∠β+∠γ=90°,又∠∠α+∠β=90°,∠∠α=∠γ,故选C .【点睛】本题主要考查了同角的余角相等,解题的关键在于能够熟练掌握相关概念. 5.C【分析】利用补角的定义可知:1180∠+∠=︒DEC ,2180EDC ∠+∠=︒,由三角形内角和定理可知: 180120∠+∠=︒-∠=︒DEC EDC C ,代入即可求出12=240∠+∠︒.【详解】解:假设虚线为DE ,∠1180∠+∠=︒DEC ,2180EDC ∠+∠=︒,∠12360∠+∠+∠+∠=︒DEC EDC ,∠60C ∠=°,∠18060=120∠+∠=︒-︒︒DEC EDC ,∠()12360=240∠+∠=︒-∠+∠︒DEC EDC ,故选:C .【点睛】本题考查补角的定义,三角形内角和定理,理解补角的定义,找出12360∠+∠+∠+∠=︒DEC EDC 是解题的关键.6.B【分析】利用已知得出∠1的度数,进而得出OB 的方向角.【详解】解:如图所示:∠OA 是北偏东30°方向的一条射线,∠AOB=90°,∠∠1=90°-30°=60°,∠OB 的方向角是北偏西60°.故选:B .【点睛】此题主要考查了方向角,正确利用互余的性质得出∠1度数是解题关键. 7.A【分析】由方位角的含义逐一判断各选项即可得出答案.【详解】解:OA 方向是北偏东70︒,故A 错误;OB 方向是北偏西15︒,故B 正确;OC 方向是南偏西30︒,故C 正确;OD 方向是东南方向,故D 正确;故选:A .【点睛】本题考查的是方位角,掌握方位角的含义是解题的关键.8.B【分析】根据互余的两角之和为90°,互补的两角之和为180°,即可求出有关的结论.【详解】解:∠∠1+∠2=90°(1),∠1+∠3=180°(2),∠(2)−(1)得,∠3−∠2=90°,∠∠正确.(1)+(2)得,∠3+∠2=270°−2∠1,∠∠正确.(2)−(1)×2得,∠3−∠1=2∠2,∠∠正确.由∠1+∠3=180°,∠1+∠2=90°,得,∠3=180°−∠1=2∠1+2∠2−∠1=∠1+2∠2,∠∠3>∠1+∠2,∠∠错误.故选:B .【点睛】本题考查互余互补的有关定义,掌握在不同题型中的变式应用,每一问中的运算所用的运算方法是解题关键.9.A【分析】根据平行线的性质,得3ABO ∠=∠;根据补角的性质,得1801AOB ∠=-∠;根据角的和差的性质计算,即可得到123∠=∠+∠,从而完成求解.【详解】∠//AB CD∠3ABO ∠=∠∠1801AOB ∠=-∠又∠1802ABO ABO ∠=-∠-∠∠312∠=∠-∠∠123∠=∠+∠故选:A .【点睛】本题考查了平行线、角的知识;解题的关键是熟练掌握平行线、补角、角的和差的性质,从而完成求解.10.C【分析】要知道入射角和反射角的概念:入射光线与法线的夹角,反射角是反射光线与法线的夹角,在光反射时,反射角等于入射角.【详解】解:入射光线与平面镜的夹角是40︒,所以入射角为904050︒-︒=︒.根据光的反射定律,反射角等于入射角,反射角也为50︒,所以入射光线与反射光线的夹角是100︒.入射角减小10︒,变为501040︒-︒=︒,所以反射角也变为40︒,此时入射光线与法线的夹角为80︒.则反射光线与入射光线间的夹角和原来比较将减小20︒.故选:C .【点睛】本题考查了有关角的计算,首先要熟记光的反射定律的内容,搞清反射角与入射角的关系,特别要掌握反射角与入射角的概念,它们都是反射光线和入射光线与法线的夹角.11. 32 52 48【分析】根据互为余角列式,再进行度分秒换算,求出结果.【详解】57.12°='''57712︒ 根据题意得:∠B=90°-'''57712︒='''895960︒-'''57712︒=()8957︒-()'597-''(60-12) ='''325248︒故答案为'''325248︒.【点睛】本题考查余角的定义,正确进行角度的计算是解题的关键.12.150°【分析】根据对顶角、邻补角,角平分线的定义即可判断.【详解】∠∠BOC =60︒,∠∠AOD =∠BOC =60︒.∠∠AOC =180︒−60︒=120︒,∠OE 平分∠AOD∠∠AOE =12∠AOD =12×6030︒︒=. ∠∠AOC +12030150AOE COE ∠∠︒︒︒==+=,故答案为150︒.【点睛】本题主要考查对顶角、邻补角,角平分线的定义.13.80【分析】方向角是从正北或正南方向到目标方向所形成的小于90︒的角.【详解】解:B 处在A 处的南偏西45︒方向,C 处在A 处的南偏东15︒方向,451560BAC ∴∠=︒+︒=︒,85ACB ∠=︒,180608535ABC ∴∠=︒-︒-︒=︒,C ∴处在B 处的北偏东453580︒+︒=︒,故答案为80.【点睛】本题考查了方向角,解题的关键是熟练利用平行线的性质与三角形的内角和定理.14.35【分析】根据垂线的定义,求一个角的余角即可求解.【详解】解:∠OM ∠AB ,∠∠BOM =90°,∠∠DOM =55°,∠∠BOD =90°﹣55°=35°,∠∠AOC =∠BOD =35°,故答案为:35.【点睛】本题考查了求一个角的余角,掌握垂线的定义是解题的关键.15.(1)130º,(90+m )º(2)15º【分析】(1)根据两直线平行同旁内角互补,以及平角的定义来解决此题;(2)如图,先由两直线平行同旁内角互补得出∠DBA+∠FCA=180º,再根据三角板中各角的度数计算拼接后图形中有关角的度数,再通过三角形内角和等于180度计算即可.(1)∥,解:∠a b∠∠2+∠3=180°,由题意和图知,∠1+∠3=90º,∠1=40º∠∠2=180º-(90º-∠1)=90º+∠1=90º+40º=130º;∠=︒,那么若1m∠2=(90+m)º(2)解:如图,把图中各点标上字母,延长CA交直线a于点B,由题意知,∥,∠a b∠∠DBA+∠FCA=180º,∠∠FCA=60º,∠∠DBA=120º,∠∠DAE=45º,∠F AC=90º,∠∠BAD=180º-∠DAE-∠F AC=45º△中,∠1+∠DBA+∠BAD=180º,在ABD∠∠1=180º-45º-120º=15º;【点睛】此题考查了平行线的性质和三角板中的角度计算问题,解题的关键是数形结合.16.11cm【分析】根据∠ABE的余角相等求出∠EAB=∠CBF,然后利用“角角边”证明∠ABE和∠BCF 全等,根据全等三角形对应边相等可得AE=BF,BE=CF,于是得到结论.【详解】解:∠AE ∠EF ,CF ∠EF ,∠∠AEB =∠BFC =90°,∠∠EAB +∠ABE =90°,∠∠ABC =90°,∠∠ABE +∠CBF =90°,∠∠EAB =∠CBF ,在∠ABE 和∠BCF 中,90EAB CBF AEB BFC AB BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∠∠ABE ∠∠BCF (AAS ),∠AE =BF =5cm ,BE =CF =6cm ,∠EF =5+6=11(cm ).【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.17.(1)35ABC ∠=︒;(2)D 处应在C 处的南偏西45°的方向上,见解析【分析】(1)根据方位角的定义,可知由已知得:45A ∠=,80EBC ∠=,再根据AF ∠BE 得到45EBA A ∠=∠=,即可求解;(2)根据平行线的性质,求出∠DCG 的度数即可得到答案.【详解】解:(1)由已知得:45A ∠=︒,80EBC ∠=︒.∠AF ∠BE∠45EBA A ∠=∠=,∠804535ABC EBC EBA ∠=∠-∠=-=(2)D 处应在C 处的南偏西45°的方向上理由如下:∠CG ∠BE ,∠80BCG EBC ∠=∠=∠CD ∠AB ,∠35BCD ABC ∠=∠=∠803545DCG BCG BCD ∠=∠-∠=-=.故D 处应在C 处的南偏西45°的方向上【点睛】本题主要考查了方位角和平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.18.(1)∠CBE =30;(2)∠DBE =15°.【分析】(1)根据三角形内角和可求∠ABC =180°-∠A -∠C =180°-75°-45°=60°,然后根据角平分线∠CBE =11603022ABC ∠=⨯︒=︒; (2)先求∠DBC =90°-∠C=90°-45°=45°,再利用两角之差计算即可.【详解】解:(1)∠∠ABC +∠A +∠C =180°,75A ∠=︒,45C ∠=︒,∠∠ABC =180°-∠A -∠C =180°-75°-45°=60°,∠BE 是ABC 的角平分线,∠∠CBE =11603022ABC ∠=⨯︒=︒; (2)∠BD ∠AC ,∠∠BDC =90°,∠∠DBC +∠C =90°,∠45C ∠=︒∠∠DBC =90°-∠C=90°-45°=45°,∠∠DBE =∠DBC -∠CBE =45°-30°=15°.【点睛】本题考查三角形内角和,角平分线定义,直角三角形两锐角互余,角的和差,掌握三角形内角和,角平分线定义,直角三角形两锐角互余,角的和差是解题关键.。

七年级数学下册《余角与补角》典型例题(含答案)

七年级数学下册《余角与补角》典型例题(含答案)

《余角与补角》典型例题例1 下列判断正确的是( )A .图(1)中1∠和2∠是一组对顶角B .图(2)中1∠和2∠是一组对顶角C .图(3)中1∠和2∠互为补角D .图(4)中1∠和2∠是互为顶角例2 如图,AOB 是一条直线,︒=∠︒=∠90,90DOE AOC 问图中,互余的角有哪几对?哪些角是相等的.例3 在下图中,直线AE 、BF 、CG 、DH 交于O 点,且BF DH CG AE ⊥⊥,,请找出一对互余的角,找出一对互补的角,找出一对对顶角,找出三对相等的角并说出理由.例4 一个角的补角等于这个角余角的4倍,求这个角.例5 已知一个角的余角比它的补角的135还少4°,求这个角. (4) 1 2参考答案例1 分析: 图(1)中1∠与2∠不是由两条直线相交的构成的角故1∠与2∠不是对顶角图(2)中1∠和2∠不是对顶角图(3)中︒≠∠+∠18021图(4)中1∠与2∠互为补角解:D例2 分析:由互为余角的定义,只需找出图中的和为90°的角即可.解:互余的角有:1∠与2∠,3∠与4∠,2∠与3∠,1∠与4∠相等的角有:BOC DOE AOC ∠=∠=∠∠=∠∠=∠,42,31例3 分析:如果两个角的和是直角则这两个角互余;如果两个角的和是平角则这两个角互补.根据这两个定义再结合图形就可以找到互补、互余的角,再根据同角的余角、补角相等,对顶角相等就可以找出角之间的相等关系.解:AOB ∠和COB ∠互余;AOB ∠和EOB ∠互补;AOB ∠和EOF ∠是对顶角; BOC AOH ∠=∠,都是AOB ∠的余角;BOE AOF ∠=∠,都是AOB ∠的补角;DOE AOH ∠=∠是对顶角.说明:我们在找角与角之间的关系时,必须要有依据,这也是我们研究几何所必须注意的.例4 分析:若两个角互补则这两个角的和是180°,若两个角互余,则这两个角的和是 90,如果设这个角是︒x 就可以由已知和补角、余角的概念列出方案,最后求出x .解:设这个角是︒x ,则这个角的余角是︒-)90(x ,这个角的补角是︒-)180(x ,依题意,得)90(4180x x -=-解得60=x答:这个角是60°.说明:在用方程解几何问题时,设的未知数和答都必须明确单位,根据设的未知数决定是否在解得的x 的值加不加单位.例5 分析:题中给出了这个角的余角与补角之间的关系,又由于余角和补角都和这个角有关,因此可建立这个角和它的余角,补角的一个关系式,利用方程求解.解:设这个角为︒x ,则它的余角为︒-)90(x ,补角为︒-)180(x 由题意得4)180(13590--=-x x解这个方程得 25.40=x答:这个角的度数为40.25°.。

6.3.3余角和补角+课时训练2024-2025学年人教版七年级数学上册+

6.3.3余角和补角+课时训练2024-2025学年人教版七年级数学上册+

6.3.3余角和补角一、单选题1.如果∠α=n°,而∠α既有余角,也有补角,那么n的取值范围是( )A.90°<n<180°B.0°<n<90°C.n=90°D.n=180°2.若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关系是()A.相等B.互补C.互余D.∠α=90°+∠γ3.与25°角互余的角的度数是()A.55°B.65°C.75°D.155°4.一个角的补角比这个角的余角的3倍少10︒,这个角为()A.20︒B.30︒C.40︒D.50︒5.已知∠A与∠B的和是90°,∠C与∠B互为补角,则∠C比∠A大()A.45°B.90°C.135°D.180°6.如图,∠AOB和∠COD都是直角,若∠AOC=32°,则∠BOD的度数为()A.58°B.48°C.32°D.22°7.下列说法:①连接两点之间线段的长度叫两点之间的距离;②∠A的补角与∠A的余角的差一定等于直角;③从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线;④平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个.其中正确结论的个数是()A.1 B.2 C.3 D.48.若∠α与∠β互余,且∠α:∠β=3:2,那么∠α与∠β的度数分别是()A.54°,36°B.36°,54°C.72°,108°D.60°,40°二、填空题1.已知∠α=60°32',则∠α的补角是 .2.一个角的度数是35°45′,那么这个角的余角的度数是.3.如果一个角的余角是15°,那么这个角的补角是.4.图中,∠1与∠2的关系是_____.5.若∠α=33°24′,则∠α的余角度数为°.(结果化成度)三、解答题1.已知平面内有A、B、C、D四点,请按下列要求作图.(1)作射线AC,线段DC;(2)作∠BAD的补角,并标上字母;(3)用量角器量出∠BAC的度数,并求出它的余角的度数(精确到度);(4)在图中求作一点P,使P点到A、B、C、D四点的距离和最短.2.如图,直线AB,CD相交于点O,射线OF是∠BOD的平分线,∠DOE=90°,∠AOE=48°,求∠FOD的度数.3.如图,已知∠AOB的补角等于它的余角的10倍.(1)求∠AOB的度数;(2)若OD平分∠BOC,∠AOC=3∠BOD,求∠AOD的度数.4.如图,两个直角三角形的直角顶点重合,∠AOC=40°,求∠BOD的度数.结合图形,完成填空:解:因为∠AOC+∠COB=°,∠COB+∠BOD=①所以∠AOC=.②因为∠AOC=40°,所以∠BOD=°.在上面①到②的推导过程中,理由依据是:.5.如图∠AOB=120∘,OF平分∠AOB,2∠1=∠2(1)判断∠1与∠2互余吗?试说明理由.(2)∠2与∠AOB互补吗?试说明理由.6.如图,射线OC、OD在∠AOB的内部.(1)∠AOB=169°,∠AOC=∠BOD=90°,求∠COD的度数.(2)当∠AOC=∠BOD=90°,试判断∠AOD与∠BOC的关系,说明理由.(3)当∠AOC=∠BOD=α,(2)中的结论还存在吗?为什么?。

余角和补角专项练习30题(有答案)ok

余角和补角专项练习30题(有答案)ok

余角和补角专项练习30题(有答案)1.若Z a=40\则Z a的余角是 _______________ ・2.已知一个角的补角比这个角的余角的3倍大10。

,求这个角的度数.3・已知一个角的补角等于这个角的余角的4倍,求这个角的度数.4•-个角的余角比它的补角的护少2。

,求这个角.5・一个角的补角是123°24/16//,则这个角的余角是多少.6. 一个角的补角是它的3倍,这个角是多少度7.如图,Z AOC和ZBOD都是直角,如果Z AOB=150°,求Z COD的度数.& <e.已知Z a和Z B互余,且Z a比Z B小25%求Z a --lz p的度数.510. 一个角的补角是它的余角的10倍,求这个角.已知一个角的补角比这个角小30。

,求这个角的度数.12・已知Z a与ZB互为补角,并且Z a的两倍比ZB大60%求Z a、Z p.13・已知Z a=2Z p, Z a的余角的3倍等于Z B的补角,求Z cu Z B的度数. 13・若与Z2互余,上3与上1互补,Z 2=27°18\求Z 3的度数.14.如图,A、0、B 在同一条直线上,Z AOD=Z DOB=Z COE=90°.(1)图中Z 2的余角有 __________ , Z1的余角有______________(2)请写出图中相等的锐角,并说明为什么(3)Z1的补角是什么Z 2有补角吗若有.请写出.15・若一个角的余角与这个角的补角之比是2: 7,求这个角的邻补角.迢-个角的补角与它的余角的2倍的差是平角的寺求这个角.17・已知互余两角的差为20。

,求这两个角的度数.18.如图,OC是Z AOB的平分线,且ZAOD二90°.(1)图中Z COD的余角是____________ :(2)如果Z COD=24°45\ 求Z BOD 的度数.则与Z BOC 相等的角有谁图中共有多少对互为余角请写出来.19.如图,OD 平分Z BOC, OE 平分Z AOC,若Z BOC=70°, Z AOC=50°,请求出Z AOB 与Z DOE 的大小,并判断它 们是否互补.20. 一个角的余角比它的2倍角的补角还少15。

2023-2024学年人教部编版初中数学七年级上册课时练《4.3.3 余角和补角》02(含答案)

2023-2024学年人教部编版初中数学七年级上册课时练《4.3.3 余角和补角》02(含答案)

人教版七年级数学上册《4.3.3余角和补角》课时练班级:___________姓名:___________得分:___________一、选择题1.已知∠A=55°,则它的余角是()A.25° B.35° C.45° D.55°2.若两个角互补,则()A.这两个角都是锐角B.这两个角都是钝角C.这两个角一定是一个锐角,一个钝角D.以上答案都不对3.如图,一艘轮船在O处同时测得小岛A,B的方向分别为北偏西30°和东北方向,则∠AOB的度数是()A.135° B.115° C.105° D.75°4.如图所示,∠AOC=∠BOC=90°,∠AOD=∠COE,则图中互为余角的共有()A.5对B.4对C.3对D.2对5.已知岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.6.一个锐角的补角比它的余角大()A.45° B.60° C.90° D.120°7.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图1 B.图2 C.图3 D.图4 8.已知∠α和∠β互补,且∠α>∠β,则有下列式子:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β);⑤12(∠α-90°),其中表示∠β的余角的式子有()A.4个B.3个C.2个D.1个二、填空题9.如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为.10.若∠A与∠B互为余角,∠A=30°,则∠B的补角是。

11.若∠1与∠2互余,且∠1∶∠2=3∶2,则∠1=,∠2=.12.若∠α=∠β,且∠α+∠1=180°,∠β+∠2=180°,则∠1与∠2的大小关系是,理由是.13.已知∠α=59°20′,若∠α与∠β互余,且∠β与∠γ互余,则∠γ的度数为.14.如图,根据点A,B,C,D,E在图中的位置填空.(1)射线OA表示;(2)射线OB表示;(3)射线OC表示;(4)射线OD表示;(5)射线OE表示.15.下列说法中正确的有(填序号).①钝角与锐角互补;②∠α的余角是90°-∠α;③∠β(0°<∠β<180°)的补角是180°-∠β;④若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余.三、解答题16.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=25°,OD平分∠COE.(1)求∠COB的度数;(2)写出图中所有互补的角.17.如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE (射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)18.已知∠AOB=35°,与∠AOC互为余角,与∠BOD互为补角,OM平分∠AOC,ON平分∠BOD。

人教版数学七年级上册第4章433余角和补角同步练习(解析版)

人教版数学七年级上册第4章433余角和补角同步练习(解析版)

人教版数学七年级上册第4章 4.3.3余角和补角同步练习一、单选题(共12题;共24分)1、在直线AB上取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数()A、60°B、90°C、120°D、60°或120°2、如图,已知∠B=30°,∠BAC=90°,AD⊥BC于D,∠B=40°,则图中互余的角有()对.A、4对B、5对C、6对D、7对3、下列各图中,∠1与∠2互为余角的是()A、B、C、D、4、下列说法:①35=3×3×3×3×3;②﹣1是单项式,且它的次数为1;③若∠1=90°﹣∠2,则∠1与∠2互为余角;④对于有理数n、x、y(其中xy≠0),若 = ,则x=y.其中不正确的有()A、3个B、2个C、1个D、0个5、如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为()A、60°B、50°C、40°D、30°6、时钟显示为9:30时,时针与分针所夹角度是()A、90°B、100°C、105°D、110°7、如图,直线AB⊥CD于点O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A、互为余角B、互为补角C、互为对顶角D、互为邻补角8、如果∠α与∠β是邻补角,且∠α>∠β,那么∠β的余角是()A、B、C、D、不能确定9、已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A、相等B、互余C、互补D、互为对顶角10、如果一个角的两边和另一个角的两边互相平行,那么这两个角之间关系为()A、相等B、互补C、相等或互补D、不能确定11、如图,AB∥CD,CE⊥BD,则图中与∠1互余的角有()A、1个B、2个C、3个D、4个12、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中真命题的个数为()A、3个B、2个C、1个D、0个二、填空题(共5题;共6分)13、如果两个角互补,并且它们的差是30°,那么较大的角是________.14、若一个角的3倍比这个角补角的2倍还少2°,则这个角等于________.15、如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为________.16、如果∠1+∠2=90°,而∠2与∠3互余,那么∠1与∠3的数量关系是________.17、看图填空,并在括号内说明理由:如图,已知∠BAP与∠APD互补,∠1=∠2,说明∠E=∠F.∵∠BAP与∠APD互补,________∴∠E=∠F.________.三、解答题(共3题;共15分)18、一个锐角的补角等于这个锐角的余角的3倍,求这个锐角?19、如图,在四边形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分线分别与AD,BC相交于E,F两点,FG⊥BE于点G,∠1与∠2之间有怎样的数量关系?为什么?20、已知,如图,AC⊥BC,HF⊥AB,CD⊥AB,∠1与∠2互补.求证:DE⊥AC.四、综合题(共3题;共31分)21、如图,若直线AB与直线CD交于点O,OA平分∠COF,OE⊥CD.(1)写出图中与∠EOB互余的角;(2)若∠AOF=30°,求∠BOE和∠DOF的度数.22、如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.23、已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系________;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.答案解析部分一、单选题1、【答案】D【考点】余角和补角,垂线【解析】【解答】解:由OC⊥OD,可得∠DOC=90°,如图1,当∠AOC=30°时,∠BOD=180°﹣30°﹣90°=60°;如图2,当∠AOC=30°时,∠AOD=90°﹣30°=60°,此时,∠BOD=180°﹣∠AOD=120°.故选D【分析】根据题意可知,射线OC、OD可能在直线AB的同侧,也可能在直线AB的异侧,分两种情况进行讨论即可.2、【答案】A【考点】余角和补角,垂线【解析】【解答】解:图中互余的角有:∠B与∠BAD,∠C,∠C与∠DAC,∠E与∠F,共4对.故选A【分析】根据直角三角形两锐角互余和同角的余角相等写出相等的角即可.3、【答案】B【考点】余角和补角【解析】【解答】解:四个选项中,只有选项B满足∠1+∠2=90°,即选项B中,∠1与∠2互为余角.故选B.【分析】如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.4、【答案】B【考点】单项式,等式的性质,余角和补角,有理数的乘方【解析】【解答】解:35=3×3×3×3×3,①说法正确,不符合题意;﹣1是单项式,且它的次数为0,②说法错误,符合题意;若∠1=90°﹣∠2,则∠1与∠2互为余角,③说法正确,不符合题意;对于有理数n、x、y(其中xy≠0),若 = ,则x与y不一定线段,④说法错误,符合题意,故选:B.【分析】根据有理数的乘方的意义、单项式的概念、余角的定义、等式的性质进行判断即可.5、【答案】A【考点】余角和补角,平行线的性质【解析】【解答】解:∵∠1=30°,∴∠3=180°﹣90°﹣30°=60°,∵直尺两边互相平行,∴∠2=∠3=60°.故选:A.【分析】根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.6、【答案】C【考点】钟面角、方位角【解析】【解答】解:9:30时,时针与分针所夹角度是30× =105°,故选:C.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.7、【答案】A【考点】余角和补角,对顶角、邻补角【解析】【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°.故选:A.【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余,从而求解.8、【答案】C【考点】余角和补角,对顶角、邻补角【解析】【解答】解:∵∠α与∠β是邻补角,∴∠α+∠β=180°,∴(∠α+∠β)=90°,∴∠β的余角是:90°﹣∠β= (∠α+∠β)﹣∠β= (∠α﹣∠β),故选:C.【分析】根据补角定义可得∠α+∠β=180°,进而得到(∠α+∠β)=90°,然后根据余角定义可得∠β的余角是:90°﹣∠β再利用等量代换可得(∠α+∠β)﹣∠β,然后计算即可.9、【答案】B【考点】余角和补角,对顶角、邻补角,垂线【解析】【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.10、【答案】C【考点】余角和补角,平行线的性质【解析】【解答】解:两个角的两边互相平行,如图(1)所示,∠1和∠2是相等关系,如图(2)所示,则∠3和∠4是互补关系.故选:C.【分析】根据两个角的两边互相平行及平行线的性质,判断两角的关系即可,注意不要漏解.11、【答案】C【考点】余角和补角,垂线,平行线的性质【解析】【解答】解:∵CE⊥BD,∴∠CBD=∠EBD=90°,∴∠ABC+∠1=90°,∠1+∠EBF=90°,即∠ABC、∠EBF与∠1互余;∵AB∥CD,∴∠1=∠D,∵∠C+∠D=90°,∴∠C+∠1=90°,即∠C与∠1互余;图中与∠1互余的角有3个,故选:C.【分析】由垂线的定义得出∠ABC+∠1=90°,∠1+∠EBF=90°,得出∠ABC、∠EBF与∠1互余;由平行线的性质和余角关系得出∠C+∠1=90°,得出∠C与∠1互余.12、【答案】B【考点】余角和补角,对顶角、邻补角,平行公理及推论,命题与定理【解析】【解答】解:①对顶角既要考虑大小,还要考虑位置,相等的角不一定是对顶角,故①错误;②互补的角不一定是邻补角,所以不一定是平角,故②错误;③互补的两个角也可以是两个直角,故③错误;④平行于同一条直线的两条直线平行,是平行公理,故④正确;⑤邻补角的平分线的夹角正好是平角的一半,是直角,所以互相垂直,故⑤正确.所以真命题有④⑤两个.故选:B.【分析】根据所学的公理定理对各小题进行分析判断,然后再计算真命题的个数.二、填空题13、【答案】【考点】余角和补角【解析】【解答】解:设较大角为x,则其补角为180°﹣x,由题意得:x﹣(180°﹣x)=30°,解得:x=105°.故答案为:105°.【分析】设较大角为x,则其补角为180°﹣x,根据它们的差是30°可列出方程,解出即可.14、【答案】71.6°【考点】余角和补角【解析】【解答】解:设这个角为x,由题意得,3x=2(180°﹣x)﹣2°,解得,x=71.6°故答案为:71.6°.【分析】设这个角为x,根据题意和补角的概念列出方程,解方程即可.15、【答案】50°【考点】余角和补角,平行线的性质【解析】【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.16、【答案】相等【考点】余角和补角【解析】【解答】解:∵∠2与∠3互余,∴∠2+∠3=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.故答案为:相等.【分析】根据同角的余角相等解答.17、【答案】已知;同旁内角互补,两直线平行;两直线平行,内错角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【考点】余角和补角,平行线的判定与性质【解析】【解答】证明:∵∠BAP与∠APD互补(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠BAP﹣∠1=∠APC﹣∠2(等量代换),即∠3=∠4,∴AE∥PF,(内错角相等,两直线平行),∴∠E=∠F(两直线平行,内错角相等).故答案为:已知;同旁内角互补,两直线平行;两直线平行,内错角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【分析】先根据题意得出AB∥CD,再由平行线的性质得出∠BAP=∠APC,根据∠1=∠2可得出∠3=∠4,进而得出AE∥PF,据此可得出结论.三、解答题18、【答案】解:设这个角的度数为x°,则根据题意得:180﹣x=3(90﹣x),解得:x=45,即这个锐角为45°.【考点】余角和补角【解析】【分析】设这个角的度数为x°,则根据题意得出180﹣x=3(90﹣x),求出方程的解即可.19、【答案】解:∠1=∠2,理由:∵∠A=∠C=90°,根据四边形的内角和得,∠ADC+∠ABC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠EBC= ∠ABC,∠2= ∠ADC,∴∠EBC+∠2= ∠ABC+ ∠ADC=90°,∵FG⊥BE,∴∠FGB=90°,∴∠1+∠EBC=90°,∴∠1=∠2【考点】余角和补角,角平分线的性质,多边形内角与外角【解析】【分析】先根据四边形的内角和求出∠ADC+∠ABC=180°,再结合角平分线得出∠EBC+∠2=90°,再利用直角三角形的两锐角互余得出,∠1+∠EBC=90°,即可得出结论.20、【答案】证明:如图所示,∵HF⊥AB,CD⊥AB,∴CD∥HF,∴∠2+∠3=180°,又∵∠1与∠2互补,∴∠2+∠1=180°,∴∠1=∠3,∴DE∥BC,∵AC⊥BC,∴DE⊥AC.【考点】余角和补角,平行线的判定与性质【解析】【分析】根据AC⊥BC,DE⊥AC,易证DE∥BC,那么∠2+∠3=180°,而∠1与∠2互补,从而可证∠1=∠3,即可得出DE∥BC,结合AC⊥BC,易得DE⊥AC.四、综合题21、【答案】(1)解:∵OA平分∠COF,∴∠COA=∠FOA=∠BOD,∵OE⊥CD,∴∠EOB+∠BOD=90°,∴∠COA+∠EOB=90°,∠FOA+∠EOB=90°,∴与∠EOB互余的角是:∠COA,∠FOA,∠BOD(2)解:∵∠AOF=30°,由(1)知∠COA=∠FOA=∠BOD=30°,∴∠DOF=180°﹣∠FOA﹣∠BOD=120°,∵OE⊥CD,∴∠BOE=90°﹣30°=60°【考点】角平分线的定义,余角和补角,对顶角、邻补角,垂线【解析】【分析】(1)由于OA平分∠COF和∠COA与∠BOD是对顶角,得到∠COA=∠FOA=∠BOD,根据垂直定义有∠EOB+∠BOD=90°,根据互为余角的定义即可得到结论;(2)由(1)知∠COA=∠FOA=∠BOD=30°,由平角的意义可求得∠DOF,根据垂直定义可求得∠BOE.22、【答案】(1)解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)解:∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=90°﹣30°=60°.【考点】余角和补角,垂线【解析】【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数23、【答案】(1)∠A+∠C=90°;(2)解:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)解:如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【考点】余角和补角,平行线的判定与性质【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.。

人教版七年级数学上册角4.余角和补角

人教版七年级数学上册角4.余角和补角

10.如图,∠AOC与∠BOD都是90°,且∠AOB∶∠AOD= 2∶11,求∠AOB与∠BOC的度数. 解:∠AOB=20°,∠BOC=70°
知识点3:表示方向的角 11.(例题4变式)如图,下列说法正确的个数有( D ) ①射线OA表示北偏东30°;②射线OB表示北偏西30°;③射线 OD表示南偏西45°,也叫西南方向;④射线OC表示正南方向. A.1个 B.2个 C.3个 D.4个
4.若∠A的余角等于40°,则∠A的补角等于( C ) A.40° B.50° C.130° D.140° 5.如果一个角的余角等于它本身,那么这个角等于 45° ________;若一个角的补角等于它本身,则这个90角°等于 _______.
6.如图,已知点O是直线AB上的一点,∠BOC=40°,OD,OE分 别是∠BOC,∠AOC的平分线. (1)求∠AOE的度数; (2)写出图中与∠EOC互余的角; (3)∠COE有补角吗?若有,请把它找出来,并说明理由. 解:(1)∠AOE=70° (2)图中与∠EOC互余的角有∠COD, ∠BOD (3)∠COE的补角是∠BOE,理由:因为∠AOE= ∠EOC,∠AOE+∠BOE=180°,所以∠COE+∠BOE= 180°,则∠COE的补角是∠BOE
18.已知∠α 与∠β 互余,且∠α 比∠β 小 25°,求 2∠α-15∠β 的值. 解:设∠α 的度数为 x°,则∠β 的度数为(x+25)°,又∠α 与∠β 互余,所以 x+x+25=90,解得 x=32.5,即∠α=32.5°,则∠β =57.5°,所以 2∠α-15∠β=2×32.5°-15×57.5°=53.5°
15.学校、电影院、公园在平面图上分别用点A,B, C表示,电影院在学校的北偏西30°,公园在学校的 南偏东15°,那么平面图上的∠BAC等于___1_6_5_°___. 16.一个角等于它的补角的3倍,则这个角的补角的 余角是___4_5_°_.

4.3.3 余角和补角-七年级数学人教版(上册)(解析版)

4.3.3 余角和补角-七年级数学人教版(上册)(解析版)

第四章几何图形初步4. 3.3余角和补角一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知∠1+∠2=90°,∠3+∠4=180°,下列说法正确的是A.∠1是余角B.∠3是补角C.∠1是∠2的余角D.∠3和∠4都是补角【答案】C2.如果∠1+∠2=90°,∠2+∠3=90°,那么∠1与∠3的关系是A.∠1+∠3=90°B.∠1+∠3=180°C.∠1=∠3 D.不能确定【答案】C【解析】因为∠1+∠2=90°,∠2+∠3=90°,所以∠1=∠3(等角的余角相等).故选C.3.下列说法正确的是A.锐角的补角一定是钝角B.锐角和钝角的和一定是平角C.互补的两个角可以都是锐角D.互余的两个角可以都是钝角【答案】A【解析】A、因为补角和为180°,设锐角为∠α,则与它互补的角为∠β=180°–∠α为钝角,此选项是正确的;学科¥#网B、锐角∠α=30°,钝角∠β=110°,则和为140°,不一定是平角,此选项错误;C、两个锐角都小于90°,和小于180°,所以此选项错误;D、两个钝角的和一定大于90°,所以此选项错误.故选A.4.如图,OC⊥AB,∠COD=45°,则图中互为补角的角共有A.1对B.2对C.3对D.4对【答案】C二、填空题:请将答案填在题中横线上.6.若∠1的补角为130°,则∠1的余角的度数为__________.【答案】40°【解析】∠1=180°–130°=50°,∠1的余角的度数为90°–50°=40°,故答案为:40°.7.互余且相等的两个角,它们的补角为__________度.【答案】135【解析】根据题意可得,这个角为45°,它们的补角为180°–45°=135°.故答案为135.8.如图,∠AOB=∠COD=90°,则∠AOD+∠BOC=__________.【答案】180°【解析】因为∠AOB=∠COD=90°,所以∠AOD+∠BOC=360°–∠AOB–∠COD=360°–90°–90°=180°.故答案为:180°.9.如图,AO⊥BO,CO⊥DO,则∠AOC__________∠BOD(选填“>”、“=”或“<”).【答案】=【解析】因为AO⊥BO,CO⊥DO,所以∠AOD+∠BOD=90°,∠AOD+∠AOC=90°所以∠AOC=∠BOD.故答案为:=.学@#科网三、解答题:解答应写出文字说明、证明过程或演算步骤.10.若一个角的补角与它余角的2倍的差是平角的14.求这个角的度数.【解析】设这个角的度数为x,根据题意得(180°–x)–2(90°–x)=14×180°,解得x=45°,即这个角为45°.11.如图所示,AOB是一条直线,OC是一条射线,∠AOC=2∠AOF,∠BOC=2∠BOE.(1)∠1与∠2互余吗?(2)指出图中所有互余和互补的角.12.如图,已知∠AOC=∠BOD=90°,∠DOC=55°.求∠AOD和∠BOC的度数.。

七年级数学人教版(上册)4.3.3余角和补角

七年级数学人教版(上册)4.3.3余角和补角

所以 2∠AOM+∠COM+∠CON=90°, 即 3∠AOM+∠CON=90°. 所以∠CON=90°-3∠AOM. 所以∠AON=∠CON+∠AOC=(90°-3∠AOM)+2∠AOM =90°-∠AOM. 因为∠BOD 与∠BOC 互补, 所以∠BOD+∠BOC=180°.
所以∠CON+∠DON+2∠BOD=180°. 又因为∠BOD=∠AOC=2∠AOM, 所以∠DON=180°-∠CON-2∠BOD =180°-(90°-3∠AOM)-4∠AOM =90°-∠AOM. 所以∠AON=∠DON.
(2)若 OP 是∠AOC 的平分线,求∠AOP 的度数. 解:(2)因为∠AON=45°,∠BON=30°, 所以∠AOB=75°. 因为∠BOC 与∠AOB 互余, 所以∠BOC=∠BOC′=15°. 所以∠AOC=90°,∠AOC′=60°. 因为 OP 是∠AOC 的平分线, 所以∠AOP=45°或 30°.
3.如图,过直线 AB 上一点 O 作射线 OC.若∠BOC=29°18′,
则∠AOC= 150°42′

4.如果∠1 与∠2 互余,∠2 与∠3 互补,∠1=50°,那么∠3 = 140° .
5.(教材 P1Байду номын сангаас9 练习 T3 变式)若一个角的补角是它的余角的 6 倍, 求这个角的度数.
解:设这个角为 x°,则它的余角为(90-x)°,补角为(180-x)°. 根据题意,得
14.如图,A,O,B 三点在同一直线上,∠BOD 与∠BOC 互补. (1)∠AOC 与∠BOD 的度数相等吗,为什么? 解:(1)∠AOC=∠BOD. 理由:因为∠BOD 与∠BOC 互补, 所以∠BOD+∠BOC=180°. 因为∠AOC+∠BOC=180°, 所以∠AOC=∠BOD.

4.3.3 余角和补角—2023-2024学年人教版数学七年级上册堂堂练(含答案)

4.3.3 余角和补角—2023-2024学年人教版数学七年级上册堂堂练(含答案)

4.3.3余角和补角—2023-2024学年人教版数学七年级上册堂堂练1.若,则的补角的大小是( )A. B. C. D.2.下列说法正确的是( )A.2不是单项式B.射线与射线是同一条射线C.锐角的补角比它的余角大D.3.657精确到十分位是3.663.如图,是平角,OD平分,OE平分,那么的余角有( )A.1个B.2个C.3个D.4个4.已知,与互余,则的补角是( )A.132°B.138°C.122°D.128°5.如图,OA的方向是北偏东10°,OB的方向是西北方向,若,则OC 的方向是( )A.北偏东65°B.北偏东35°C.北偏东55°D.北偏东25°6.图书馆在餐厅的北偏东方向,那么餐厅在图书馆的________方向.7.已知∠a的补角是它的3倍,则的度数为____________°.8.如图,已知轮船A在灯塔P的北偏西20°的方向上,轮船B在灯塔P的南偏东80°的方向上.(1)求从灯塔P看两轮船的视角(即)的度数;(2)轮船C在的平分线上,则轮船C在灯塔P的什么方位?答案以及解析1.答案:A解析:根据题意可得,的补角为.故选A.2.答案:C解析:2是单项式,故A不符合题意;射线AB与射线BA不是同一条射线,故B不符合题意;锐角的补角比它的余角大90°,故C符合题意;3.657精确到十分位是3.7,故D不符合题意;故选C.3.答案:B解析:OD平分,OE平分,,,又是平角,即,.故选B.4.答案:A解析:,与互余,,的补角的度数为:.故选A.5.答案:A解析:,则,OC与正北方向的夹角是.则OC在北偏东65°.故选A.6.答案:南偏西(或西偏南50°)解析:图书馆在餐厅的北偏东方向,餐厅在图书馆的南偏西(或西偏南50°),故答案为:南偏西(或西偏南).7.答案:45解析:设为x,则的补角为,根据题意得,,解得.故答案为:.8.答案:(1)因为轮船A在灯西东塔P的北偏西20°的方向60°上,轮船B在灯塔P 的南C偏东80°的方向上,所以.(2)因为PC平分,所以,所以.所以轮船C在灯塔P的北偏东40°方向.。

七年级数学上册 第四章(余角和补角)练习 试题

七年级数学上册 第四章(余角和补角)练习 试题

介父从州今凶分市天水学校第四章<余角和补角>一、选择题1.以下说法中正确的选项是 ( )A.一个角的补角只有一个B.一个角的补角必大于这个角C.假设不相等的两个角互补,那么这两个角一个是锐角,一个是钝角D.互余的两个角一定相等2.如果一个角等于360,那么它的余角等于 ( )A. 640B. 540C. 1440D. 360※3.以下结论中,正确的个数有 ( )(1)一个角的补角比这个角的余角大900(2)互余的两个角的比是4:6,这两个角分别是360和540(3)小于平角的角是钝角(4)两个角互补,必定一个锐角,另一个钝角.A.0个 B.1个 C.2个 D.3个4.∠α=∠β,且∠α与∠β互余,那么 ( )A. ∠α=900B.∠β=450C. ∠β=600D. ∠α=3005.以下说法正确的选项是 ( )A.一个锐角的余角是一个锐角 B.一个锐角的补角是一个锐角C.一个锐角的补角不是一个钝角 D.一个锐角的余角是一个直角※6.A看B的方向是北偏东190,那么B看A的方向是 ( )A.南偏东710 B.南偏西710 C.南偏东190 D.南偏西1907.一个锐角的余角加上900,就等于 ( )A.这个锐角的余角 B.这个锐角的补角C.这个锐角的2倍 D.这个锐角的3倍8.一个角的余角比它本身小,这个角是 ( )A.大于450 B.小于450C.大于00小于450 D.大于450小于9009.如图,∠ACB= 900,∠l=∠B,∠2=∠A,那么以下说法错误的选项是 ( )A.∠l与∠2是互为余角 B.∠A与∠B不是互为余角C.∠1与∠A是互为余角 D.∠2与∠B是互为余角10. OA表示南偏西400方向的一条射线,那么OA的方向还可以表示为 ( )A.北偏西400 B.西偏南500 C.西偏南400 D.北偏东400二、填空题11.假设∠α与∠β都是_______角,那么∠α与∠β互补,假设∠α与∠β互补,∠α是锐角,那么∠β是______角.12. 如图,OA与OB的夹角为______0,OC的方向为________.13.如图,直线AB、CD相交于O,∠BOE=900,假设∠3=450,那么∠1=______0,∠4=_____0.∠1和∠2叫做互为____角,∠3和∠4互为_____角.14. 一个角的补角是这个角的5倍,那么这个角的余角为_______015. 一个角的余角是55047/25//,那么这个角是__________.16.如图,∠AOC=∠COB=900,OE平分∠AOC,OD平分∠COB,那么∠COD的余角有_________个,是_________________________.第12题图第13题图第16题图17.假设两角之和是1800,我们说这两个角互补.∠1与∠2互补,∠3与∠4互补,如果∠l=∠2,那么∠2=____0,∠1+∠2+∠3+∠4=_______0. 18.互补两角之比是2:3,那么这两个角分别是______________.19.〔〕∠a= 35019/,那么∠a 的余角等于________. 20.〔〕一个角的余角比它的补角的12少200,那么这个角为______0三、解答题 21.如图,AOB 为直线,OC 平分∠AOD ,∠BOD=300,求∠AOC 的度数. 22.一个角的余角的3倍等于它的补角,求这个角,23.一个角的余角比这个角的补角的一半还少40,求这个角的度数. 24.如图,在一个五边形的边AB 上有一点O ,将O 与五边形的顶点C 、D 、E 相连,∠ COB =360,∠DOE= 540,OC 、OE 分别是∠DOB 、∠AOD 的平分线。

七年级数学余角和补角试题及答案

七年级数学余角和补角试题及答案

来源于网络 余角和补角1、下列说法错误的是 ( )A 、同角或等角的余角相等B 、同角或等角的补角相等C 、两个锐角的余角相等D 、两个直角的补角相等2、如果两个锐角的和是 ,则这两个角互为余角,如果两个角的和是 ,则这两个角互为补角。

3、若∠α=50o ,则它的余角是 ,它的补角是 。

4、若∠β=110o ,则它的补角是 ,它的补角的余角是 。

5、如图,∠ACB=∠CDB=90o ,图中∠ACD 的余角有 个。

6、若∠1与∠2互余,∠3和∠2互补,且∠3=120o ,那么∠1= 。

7、利用三角尺画出下列各角:(1)30o 角 (2)30o 的余角 (3)30o 的补角一、选择题:1、一个角的补角是 () A 、锐角 B 、直角 C 、钝角 D 、以上三种情况都有可能2、一个锐角的补角比这个角的余角大 ( )A 、30oB 、45oC 、60oD 、90o 3、如图,∠AOD=∠DOB=∠COE=90o ,其中共有互余的角( ) A 、2对 B 、3对 C 、4对 D 、6对4、若∠1与∠2互补,∠3与∠1互余,∠2+∠3=240o ,由∠2是∠1的 () A 、251倍 B 、5倍 C 、11倍 D 、无法确定倍数5、若∠1与∠2互为补角,且∠1<∠2,则∠1的余角是 ( )A 、∠1B 、∠1+∠2C 、21(∠1+∠2) D 、21(∠2-∠1)6、32o28’的余角为 ,137o45’的补角是 。

7、∠1与∠2互余,∠1=(6x+8)o,∠2=(4x-8)o,则∠1= ,∠2= 。

8、如图,O 是直线AB 一点,∠BOD=∠COE=90o , A CBD OEDCBA 4321O EDC BA来源于网络 则(1)如果∠1=30o ,那么∠2= ,∠3= 。

(2)和∠1互为余角的有 。

和∠1相等的角有 。

9、如图,O 是直线BD 上一点,∠BOC=36o ,∠AOB=108o , 则与∠AOB 互补的角有 。

七年级数学余角和补角(基础)(含答案)

七年级数学余角和补角(基础)(含答案)

余角和补角(基础)一、单选题(共10道,每道10分)1.下列说法错误的是( )A.同角或等角的余角相等B.如果两个角相等,则他们的补角相等C.若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余D.两个直角的补角相等答案:C解题思路:根据同角或等角的余角相等,同角或等角的补角相等可知,选项A,B,D均正确;如果两个角的和为90°,则这两个角互为余角,所以互余指的是两个角之间的关系,而选项C中三个角的和为90°,不能说他们互余,因此选项C错误.故选C.试题难度:三颗星知识点:补角2.如图,OC⊥AB,∠COD=45°,则图中互为补角的角共有( )A.1对B.2对C.3对D.4对答案:C解题思路:和为180°的两个角互为补角.补角是大小角,只跟大小有关,跟位置无关.图中OC⊥AB,∠COD=45°,可得∠AOC=∠BOC=90°,∠BOD=∠COD=45°,∠AOD=135°,综上可知,互补的角有∠AOC和∠BOC,∠BOD和∠AOD,∠COD和∠AOD,共3对.故选C.试题难度:三颗星知识点:补角3.如图,已知∠AOB=15°,∠AOC=90°,点B,O,D在同一条直线上,则∠COD的度数为( )A.75°B.15°C.105°D.165°答案:C解题思路:∵,∴.∵,∴,∴.故选C.试题难度:三颗星知识点:补角4.如果一个角的余角是50°,那么这个角的补角是( )A.130°B.140°C.150°D.160°答案:B解题思路:一个角的余角是50°,则这个角为,那么这个角的补角是.故选B.试题难度:三颗星知识点:补角5.已知∠1与∠2互余,且∠1=35°,则∠2的补角的度数为( )A.145°B.115°C.135°D.125°答案:D解题思路:由∠1与∠2互余,且∠1=35°,得,所以∠2的补角为.故选D.试题难度:三颗星知识点:补角6.一个锐角的补角比这个角的余角大( )A.30°B.45°C.60°D.90°答案:D解题思路:设这个角为α,则它的补角为180°-α,它的余角为90°-α.180°-α-(90°-α)=90°,因此一个锐角的补角比这个角的余角大90°.故选D.试题难度:三颗星知识点:补角7.若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ的关系是( )A.相等B.互补C.互余D.不确定答案:A解题思路:根据同角的余角相等,可知∠α=∠γ.故选A.试题难度:三颗星知识点:余角8.如图所示,,则与关系为( )A.互补B.互余C.和为45°D.和为22.5°答案:B解题思路:观察图形可知,,又,则与关系为互余.故选B.试题难度:三颗星知识点:补角9.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是( )A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°答案:B解题思路:如图所示,OA是北偏东30°方向的一条射线,OA的方位角是北偏东30°,且射线OB与射线OA垂直,故OB是北偏西60°的一条射线,则OB的方位角是北偏西60°故选B试题难度:三颗星知识点:方位角10.如图,下列说法中错误的是( )A.OA的方向是东北方向B.OB的方向是北偏西60°C.OC的方向是南偏西60°D.OD的方向是南偏东60°答案:D解题思路:A.OA的方向是北偏东45°,也就是东北方向,正确B.OB的方向是北偏西60°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余角和补角
1、下列说法错误的是 ( ) A 、同角或等角的余角相等 B 、同角或等角的补角相等 C 、两个锐角的余角相等 D 、两个直角的补角相等
2、如果两个锐角的和是 ,则这两个角互为余角,如果两个角的和是 ,则这两个角互为补角。

3、若∠α=50º,则它的余角是 ,它的补角是 。

4、若∠β=110º,则它的补角是 ,它的补角的余角是 。

5、如图,∠ACB=∠CDB=90º,图中∠ACD 的余角有 个。

6、若∠1与∠2互余,∠3和∠2互补,且∠3=120º,那么∠1= 。

7、利用三角尺画出下列各角:
(1)30º角 (2)30º的余角 (3)30º的补角 一、选择题:
1、一个角的补角是 ( ) A 、锐角 B 、直角 C 、钝角 D 、以上三种情况都有可能
2、一个锐角的补角比这个角的余角大 ( ) A 、30º B 、45º C 、60º D 、90º
3、如图,∠AOD=∠DOB=∠COE=90º,其中共有互余的角( ) A 、2对 B 、3对 C 、4对 D 、6对
4、若∠1与∠2互补,∠3与∠1互余,∠2+∠3=240º,由∠2是∠1的 ( ) A 、2
5
1
倍 B 、5倍 C 、11倍 D 、无法确定倍数 5、若∠1与∠2互为补角,且∠1<∠2,则∠1的余角是 ( ) A 、∠1 B 、∠1+∠2 C 、
21(∠1+∠2) D 、2
1
(∠2-∠1) 6、32º28’的余角为 ,137º45’的补角是 。

7、∠1与∠2互余,∠1=(6x+8)º,∠2=(4x-8)º,则∠1= ,∠2= 。

8、如图,O 是直线AB 一点,∠BOD=∠COE=90º, 则(1)如果∠1=30º,那么∠2= ,∠3= 。

A
B
D
O E
D C
B
A
E
D C
(2)和∠1互为余角的有 。

和∠1相等的角有 。

9、如图,O 是直线BD 上一点,∠BOC=36º,∠AOB=108º, 则与∠AOB 互补的角有 。

10、已知互余两个角的差是30º,则这两个角的度数分别是________________。

11、如图,∠AOC=∠BOD=90º,∠AOD=130º,求∠BOC 的度数。

12、已知一个角的余角比它的补角的4/9还少6º,求这个角。

参考答案: 基础训练:
1 . C
2 . 90º,180º;
3 .40º, 130º; 4.70º, 20º ; 5. 2; 6 .30º 7. 略 ; 综合提高: 一.选择题:
1 D 2. D 3. C 4. C 5. D 二.填空题:
6.57º32ˊ, 42º15ˊ 7. 58º ,32º, 8.⑴ 60º,30º⑵ ∠2,∠4,∠3; 9.∠ AOD,∠AOC; 10. 60º,30º; 三.解答题: 11.50 º 12.28.8º
各分公司在接到本工作单之日起,根据配置建议开展
参数优化工作,具体要求如下: 一、空闲态驻留策略
B
O D
C
A
D
C
B A
O
UE优先驻留FDD大带宽频点,确保UE能够获得更好的数据业务体验,优先级建议:FDD2.1 = FDD1.8 > FDD800 > TDD2.6 > CDMA
涉及主要参数:
类别功能描述涉及参数参数推荐设置
小区
重选
L1800/21
00同优先
级重选
小区重选优先级7
异频/异系统测量启动门限(2分贝) 9
最低接收电平(2毫瓦分贝) -64
小区重选迟滞值(分贝) 4
EUTRAN小区重选时间(秒) 1
EUTRAN异频重选时间(秒) 1
L1800到
L800重选
(低优先
级重选)
异频频点小区重选优先级7
异频/异系统测量启动门限(2分贝) 9
服务频点低优先级重选门限(2分贝) 6
异频频点低优先级重选门限(2分贝) 11
小区重选迟滞值(分贝) 5
最低接收电平(2毫瓦分贝) -64。

相关文档
最新文档