生物化学下册课后习题答案
生物化学课后习题答案
⽣物化学课后习题答案⽣物化学(第三版)课后习题详细解答第三章氨基酸提要α-氨基酸是蛋⽩质的构件分⼦,当⽤酸、碱或蛋⽩酶⽔解蛋⽩质时可获得它们。
蛋⽩质中的氨基酸都是L型的。
但碱⽔解得到的氨基酸是D型和L型的消旋混合物。
参与蛋⽩质组成的基本氨基酸只有20种。
此外还有若⼲种氨基酸在某些蛋⽩质中存在,但它们都是在蛋⽩质⽣物合成后由相应是基本氨基酸(残基)经化学修饰⽽成。
除参与蛋⽩质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ-氨基酸,有些是D型氨基酸。
氨基酸是两性电解质。
当pH接近1时,氨基酸的可解离基团全部质⼦化,当pH在13左右时,N+CHRCOO-)则全部去质⼦化。
在这中间的某⼀pH(因不同氨基酸⽽异),氨基酸以等电的兼性离⼦(H3状态存在。
某⼀氨基酸处于净电荷为零的兼性离⼦状态时的介质pH称为该氨基酸的等电点,⽤pI 表⽰。
与2,4-⼆硝基氟苯(DNFB)作⽤产⽣相应所有的α-氨基酸都能与茚三酮发⽣颜⾊反应。
α-NH2的DNP-氨基酸(Sanger反应);α-NH与苯⼄硫氰酸酯(PITC)作⽤形成相应氨基酸的苯胺基硫甲2酰衍⽣物( Edman反应)。
胱氨酸中的⼆硫键可⽤氧化剂(如过甲酸)或还原剂(如巯基⼄醇)断裂。
半胱氨酸的SH基在空⽓中氧化则成⼆硫键。
这⼏个反应在氨基酸荷蛋⽩质化学中占有重要地位。
除⽢氨酸外α-氨基酸的α-碳是⼀个⼿性碳原⼦,因此α-氨基酸具有光学活性。
⽐旋是α-氨基酸的物理常数之⼀,它是鉴别各种氨基酸的⼀种根据。
参与蛋⽩质组成的氨基酸中⾊氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋⽩质的依据。
核磁共振(NMR)波谱技术在氨基酸和蛋⽩质的化学表征⽅⾯起重要作⽤。
氨基酸分析分离⽅法主要是基于氨基酸的酸碱性质和极性⼤⼩。
常⽤⽅法有离⼦交换柱层析、⾼效液相层析(HPLC)等。
习题1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、⾕氨酰氨、⾕氨酸、苯丙氨酸、⾊氨酸和酪氨酸。
生物化学(第三版)课后习题解答
第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。
糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。
O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。
糖类按其聚合度分为单多数糖类具有(CH2糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。
同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。
糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。
单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。
因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。
任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。
单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。
许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。
这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。
成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。
在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。
生物化学(第三版)课后习题解答
第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。
糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。
多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。
糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。
同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。
糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。
单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。
因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。
任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。
单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。
许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。
这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。
成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。
在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。
生物化学王镜岩(第三版)上下册课后习题解答.doc
第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。
糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。
多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。
糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。
同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。
糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。
单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。
因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。
任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。
单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。
许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。
这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。
成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。
在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。
生物化学第三版习题答案
生物化学第三版习题答案生物化学是生命科学中的一个重要分支,它研究生物体内化学过程和物质的变化。
第三版的生物化学教材通常会包含许多习题,帮助学生巩固和深化对知识点的理解。
以下是一些习题及其答案的示例,供参考:习题1:酶的催化作用问题:简述酶的催化作用原理。
答案:酶是生物体内催化化学反应的蛋白质,它们能够显著降低反应的活化能,从而加速反应速率。
酶的催化作用原理主要基于其活性部位与底物的特异性结合,形成酶-底物复合物。
这种结合使得底物分子在酶的活性部位发生结构变形,更易于反应。
反应完成后,产物从酶上分离,酶恢复其原始状态,可以继续催化下一个底物分子。
习题2:DNA的复制问题:描述DNA复制的基本过程。
答案:DNA复制是一个半保留的过程,包括以下步骤:首先,DNA双链被解旋酶解旋成两条单链;接着,DNA聚合酶识别复制起点,并在引物RNA的帮助下开始合成新的互补链;随后,新的链沿着模板链延伸,形成新的DNA双螺旋。
最终,每个原始链都与新合成的链配对,形成两个完整的DNA分子。
习题3:氨基酸的结构和分类问题:列举氨基酸的几种基本结构特征,并简述其分类。
答案:氨基酸是蛋白质的基本组成单元,具有以下基本结构特征:一个α-羧基、一个α-氨基、一个氢原子和一个侧链(R基)。
根据侧链的化学性质,氨基酸可以分为20种标准氨基酸,主要分为四类:非极性疏水氨基酸、极性疏水氨基酸、酸性氨基酸和碱性氨基酸。
习题4:细胞呼吸问题:简述有氧呼吸和无氧呼吸的区别。
答案:有氧呼吸和无氧呼吸是细胞产生能量的两种方式。
有氧呼吸需要氧气作为最终电子受体,通过糖酵解、三羧酸循环(TCA循环)和电子传递链产生大量的ATP。
无氧呼吸,又称为发酵,是在没有氧气的情况下进行的,通过糖酵解产生少量的ATP,同时产生酒精或乳酸作为代谢终产物。
习题5:基因表达调控问题:解释基因表达调控的基本机制。
答案:基因表达调控是指细胞内控制基因转录为mRNA的过程,进而影响蛋白质的合成。
生物化学第三版课后习题答案
1.举例说明化学与生物化学之间的关系。
提示:生物化学是应用化学的理论和方法来研究生命现象,在分子水平上解释和阐明生命现象化学本质的一门学科.化学和生物化学关系密切,相互渗透、相互促进和相互融合。
一方面,生物化学的发展依赖于化学理论和技术的进步,另一方面,生物化学的发展又推动着化学学科的不断进步和创新。
举例:略。
2.试解释生物大分子和小分子化合物之间的相同和不同之处。
提示:生物大分子一般由结构比较简单的小分子,即结构单元分子组合而成,通常具有特定的空间结构。
常见的生物大分子包括蛋白质、核酸、脂类和糖类。
生物大分子与小分子化合物相同之处在丁:1)共价键是维系它们结构的最主要的键;2)有一定的立休形象和空间大小;3)化学和|物理性质主要决定于分子中存在的官能团。
生物大分子与小分子化合物不同之处在于:(1)生物大分子的分子量要比小分子化合物大得多,分子的粒径大小差异很大;(2)生物大分子的空间结构婴复杂得多,维系空间结构的力主要是各种非共价作用力;(3)生物大分子特征的空间结构使其具有小分子化合物所不具有的专性识别和结合位点,这些位点通过与相应的配体特异性结合,能形成超分子,这种特性是许多重要生理现象的分子基础。
3.生物大分子的手性特征有何意义?提示:生物大分子都是手性分子,这种结构特点在生物大分子的分子识别及其特殊的生理功能方面意义重大。
主要表现在:(1)分子识别是产生生理现象的重要基础,特异性识别对于产生特定生物效应出关重要;(2)生物大分了通过特征的三维手性空间环境能特异性识别前手性的小分子配体,产生专一性的相互作用。
4.指出取代物的构型:6.举例说明分子识别的概念及其意义。
提示::分子识别是指分子间发生特异性结合的相互作用,如tRNA分子与氨酰tRNA合成醉的相互作用,抗体与抗原之间的相互作用等。
分子识别是生命体产生各种生理现象的化学本质,是保证生命活动有序地进行的分子基础。
7.什么是超分子?说明拆分超分子的方法和原理。
生物化学 第二版 课后答案(张洪渊 著) 化学工业出版社
(3) 若该种支链淀粉的相对分子质量为 1.2×106, 则 1 分子支链淀粉中有多少个分支点残基? 6 葡萄糖残基: 1.2×10 /162=7407 分支点上残基:7407×5%=370 9、 请用两种方法分别区分一下各组糖类物质: (1) 葡萄糖和半乳糖:测旋光,乙酰化后 GC (2) 蔗糖和乳糖:Fehling 反应,盐酸水解后加间苯三酚 (3) 淀粉和糖原:碘液,溶解性 (4) 淀粉和纤维素:碘液,溶解性 (5) 香菇多糖和阿拉伯聚糖:盐酸水解后加间苯三酚,甲基间苯二酚 10、某种糖类物质可溶于水,但加入乙醇后又发生沉淀,菲林反应呈阴性。当加入浓盐酸 加热后,加碱可使 Cu2+还原为 Cu+。加酸、加入间苯二酚无颜色变化,但加入间苯三酚却 有黄色物质生成。试判断这是哪类糖类物质,并说明判断依据。 答:糖原。 (1): 可溶于水,但加入乙醇后又发生沉淀 (2): 还原性末端 1 个 (3):加浓盐酸水解后生成葡萄糖,可发生 Fehling 反应(加碱可使 Cu2+还原为 Cu+) 。 (4):加酸、加入间苯二酚无颜色变化:为醛糖。 (5): 加入间苯三酚却有黄色物质生成: 为己糖。 第三章 脂类 1、 判断对错,如果认为错误,请说明原因。 (1)混合甘油酯是指分子中除含有脂肪酸和甘油外,还含有其他成分的脂质。 答:错。分子中除含有脂肪酸和甘油外,还含有其他成分的脂质称为复脂。混合甘油酯是指 分子中与甘油成脂的脂肪酸的烃基有 2 个或者 3 个不同者。 (2)磷脂是生物膜的主要成分,它的两个脂肪酸基是处于膜的内部。 答:错。磷脂是生物膜的主要成分,但是它的两个脂肪酸基是处于膜的外部。 (3)7-脱氢胆固醇是维生素 D3 原,而麦角固醇是维生素 D2 原。 答:对。 (4)生物膜的内外两侧其膜脂质和膜蛋白分布都是不对称的。 答:对。 (5)膜脂的流动性并不影响膜蛋白的运动。 答:错。因为整个生物膜的流动性在很大程度上取决于膜脂的流动性,脂蛋白也不例外。 2、三酰甘油有没有构型?什么情况下有构型?什么情况下没有构型? 答:甘油本身并无不对称碳原子,但是它的三个羟基可被不同的脂肪酸酰化,则当甘油分子 两头的碳原子的羟基被相同脂肪酸酰化时, 则三酰甘油没有构型, 当甘油分子两头的碳原子 上的羟基被不同脂肪酸酰化时,则有构型。 3、 计算一软脂酰二硬脂酰甘油酯的皂化值。 M=862
生物化学下册课后习题答案
第19章代谢总论⒈怎样理解新陈代谢?答:新陈代谢是生物体内一切化学变化的总称,是生物体表现其生命活动的重要特征之一。
它是由多酶体系协同作用的化学反应网络。
新陈代谢包括分解代谢和合成代谢两个方面。
新陈代谢的功能可概括为五个方而:①从周围环境中获得营养物质。
②将外界引入的营养物质转变为自身需要的结构元件。
③将结构元件装配成自身的大分子。
④形成或分解生物体特殊功能所需的生物分子。
⑤提供机体生命活动所需的一切能量。
⒉能量代谢在新陈代谢中占何等地位?答:生物体的一切生命活动都需要能量。
生物体的生长、发育,包括核酸、蛋白质的生物合成,机体运动,包括肌肉的收缩以及生物膜的传递、运输功能等等,都需要消耗能量。
如果没有能量来源生命活动也就无法进行.生命也就停止。
⒊在能量储存和传递中,哪些物质起着重要作用?答:在能量储存和传递中,ATP(腺苷三磷酸)、GTP(鸟苷三磷酸)、UTP(尿苷三磷酸)以及CTP(胞苷三磷酸)等起着重要作用。
⒋新陈代谢有哪些调节机制?代谢调节有何生物意义?答:新陈代谢的调节可慨括地划分为三个不同水平:分子水平、细胞水平和整体水平。
分子水平的调节包括反应物和产物的调节(主要是浓度的调节和酶的调节)。
酶的调节是最基本的代谢调节,包括酶的数量调节以及酶活性的调节等。
酶的数量不只受到合成速率的调节,也受到降解速率的调节。
合成速率和降解速率都备有一系列的调节机制。
在酶的活性调节机制中,比较普遍的调节机制是可逆的变构调节和共价修饰两种形式。
细胞的特殊结构与酶结合在一起,使酶的作用具有严格的定位条理性,从而使代谢途径得到分隔控制。
多细胞生物还受到在整体水平上的调节。
这主要包括激素的调节和神经的调节。
高等真核生物由于分化出执行不同功能的各种器官,而使新陈代谢受到合理的分工安排。
人类还受到高级神经活动的调节。
除上述各方面的调节作用外,还有来自基因表达的调节作用。
代谢调节的生物学意义在于代谢调节使生物机体能够适应其内、外复杂的变化环境,从而得以生存。
生物化学 课本答案
第二章蛋白质一、课后习题1. 用对与不对回答下列问题。
如果不对,请说明原因。
(1)构成蛋白质的所有氨基酸都是L 型的。
(2)当谷氨酸在pH4.5 的醋酸盐缓冲液中进行电泳时,它将向正极移动。
(3)如果用末端测定法测不出某肽的末端,则此肽必定是个环肽。
(4)α-螺旋就是右手螺旋。
(5)β-折叠仅仅出现在纤维状蛋白质分子中。
2. 已知 Lys 的ε-氨基的pK’a 为10.5,问pH9.5 时,Lys 溶液中将有多少分数这种基团给出质子(即[-NH3+]和[-NH2]各占多少)?3. 在强酸性阳离子交换柱上 Asp、His、Gly 和Leu 等几种氨基酸的洗脱顺序如何?为什么?4. Gly、His、Glu 和Lys 分别在pH1.9、6.0 和7.6 三种缓冲液中的电泳行为如何?电泳完毕后它们的排序如何?5. 1.068g 的某种结晶α-氨基酸,其pK1’和pK2’值分别为2.4 和9.7,溶解于100ml 的0.1mol/LNaOH 溶液中时,其pH 为10.4。
计算该氨基酸的相对分子量,并提出可能的分子式。
6. 求 0.1mol/L 谷氨酸溶液在等电点时三种主要离子的浓度各为多少?7. 向 1L 1mol/L 的处于等电点的氨基酸溶液中加入0.3 molHCl,问所得溶液的pH 是多少?如果加入0.3molNaOH 以代替HCl 时,pH 又将如何?8. 现有一个六肽,根据下列条件,作出此六肽的氨基酸排列顺序。
(1) DNFB 反应,得到DNP-Val;(2)肼解后,再用DNFB 反应,得到DNP-Phe;(3)胰蛋白酶水解此六肽,得到三个片段,分别含有1 个、2 个和3 个氨基酸,后两个片段呈坂口反应阳性。
(4)溴化氢与此六肽反应,水解得到两个三肽,这两个三肽片断经DNFB 反应分别得到DNP-Val 和DNP-Ala。
9. 有一九肽,经酸水解测定知由4 个氨基酸组成。
用胰蛋白酶水解成为两个片段,其中一个片断在280nm 有强的光吸收,并且对Pauly 反应、坂口反应都呈阳性;另一个片段用CNBr 处理后释放一个氨基酸与茚三酮反应呈黄色。
王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真
这是《王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真题)详解》的读书笔记模板,可以 替换为自己的心得。
精彩摘录
这是《王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真题)详解》的读书笔记模板,可以 替换为自己的精彩内容摘录。
感谢观看
23.3名校考研真题 详解
24.2课后习题详解
24.1复习笔记
24.3名校考研真题 详解
25.2课后习题详解
25.1复习笔记
25.3名校考研真题 详解
26.2课后习题详解
26.1复习笔记
26.3名校考研真题 详解
27.2课后习题详解
27.1复习笔记
27.3名校考研真题 详解
28.2课后习题详解
28.1复习笔记
28.3名校考研真题 详解
29.2课后习题详解
29.1复习笔记
29.3名校考研真题 详解
30.2课后习题详解
30.1复习笔记
30.3名校考研真题 详解
31.2课后习题详解
31.1复习笔记
31.3名校考研真题 详解
32.2课后习题详解
32.1复习笔记
32.3名校考研真题 详解
33.2课后习题详解
目录分析
19.2课后习题详解
19.1复习笔记
19.3名校考研真题 详解
20.2课后习题详解
20.1复习笔记
20.3名校考研真题 详解
21.2课后习题详解
21.1复习笔记
21.3名校考研真题 详解
22.2课后习题详解
22.1复习笔记
22.3名校考研真题 详解
23.2课后习题详解
23.1复习笔记
38.1复习笔记
生物化学第三版课后习题答案
第一章1. 举例说明化学与生物化学之间的关系。
提示:生物化学是应用化学的理论和方法来研究生命现象,在分子水平上解释和阐明生命现象化学本质的一门学科.化学和生物化学关系密切,相互渗透、相互促进和相互融合。
一方面,生物化学的发展依赖于化学理论和技术的进步,另一方面,生物化学的发展又推动着化学学科的不断进步和创新。
举例:略。
2.试解释生物大分子和小分子化合物之间的相同和不同之处。
提示:生物大分子一般由结构比较简单的小分子,即结构单元分子组合而成,通常具有特定的空间结构。
常见的生物大分子包括蛋白质、核酸、脂类和糖类。
生物大分子与小分子化合物相同之处在丁: 1) 共价键是维系它们结构的最主要的键;2)有一定的立休形象和空间大小; 3)化学和|物理性质主要决定于分子中存在的官能团。
生物大分子与小分子化合物不同之处在于: (1) 生物大分子的分子量要比小分子化合物大得多,分子的粒径大小差异很大; (2) 生物大分子的空间结构婴复杂得多,维系空间结构的力主要是各种非共价作用力; (3) 生物大分子特征的空间结构使其具有小分子化合物所不具有的专性识别和结合位点,这些位点通过与相应的配体特异性结合,能形成超分子,这种特性是许多重要生理现象的分子基础。
3. 生物大分子的手性特征有何意义?提示:生物大分子都是手性分子,这种结构特点在生物大分子的分子识别及其特殊的生理功能方面意义重大。
主要表现在: (1) 分子识别是产生生理现象的重要基础,特异性识别对于产生特定生物效应出关重要; (2) 生物大分了通过特征的三维手性空间环境能特异性识别前手性的小分子配体,产生专一性的相互作用。
4.指出取代物的构型:6.举例说明分子识别的概念及其意义。
提示: :分子识别是指分子间发生特异性结合的相互作用,如tRNA分子与氨酰tRNA合成醉的相互作用,抗体与抗原之间的相互作用等。
分子识别是生命体产生各种生理现象的化学本质,是保证生命活动有序地进行的分子基础。
王镜岩生物化学第三版课后习题答案
王镜岩生物化学第三版课后习题答案生物化学(第三版)课后习题详细解答第三章氨基酸提要α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。
蛋白质中的氨基酸都是L型的。
但碱水解得到的氨基酸是D型和L型的消旋混合物。
参与蛋白质组成的基本氨基酸只有20种。
此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。
除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ-氨基酸,有些是D型氨基酸。
氨基酸是两性电解质。
当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,+-则全部去质子化。
在这中间的某一pH(因不同氨基酸而异),氨基酸以等电的兼性离子(H3NCHRCOO)状态存在。
某一氨基酸处于净电荷为零的兼性离子状态时的介质pH称为该氨基酸的等电点,用pI表示。
所有的α-氨基酸都能与茚三酮发生颜色反应。
α-NH2与2,4-二硝基氟苯(DNFB)作用产生相应的DNP-氨基酸(Sanger反应);α-NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物( Edman反应)。
胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。
半胱氨酸的SH基在空气中氧化则成二硫键。
这几个反应在氨基酸荷蛋白质化学中占有重要地位。
除甘氨酸外α-氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性。
比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。
参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。
核磁共振(NMR)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。
氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。
常用方法有离子交换柱层析、高效液相层析(HPLC)等。
习题1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。
生物化学第三版课后习题答案
第一章1. 举例说明化学与生物化学之间的关系。
提示:生物化学是应用化学的理论和方法来研究生命现象,在分子水平上解释和阐明生命现象化学本质的一门学科.化学和生物化学关系密切,相互渗透、相互促进和相互融合。
一方面,生物化学的发展依赖于化学理论和技术的进步,另一方面,生物化学的发展又推动着化学学科的不断进步和创新。
举例:略。
2.试解释生物大分子和小分子化合物之间的相同和不同之处。
提示:生物大分子一般由结构比较简单的小分子,即结构单元分子组合而成,通常具有特定的空间结构。
常见的生物大分子包括蛋白质、核酸、脂类和糖类。
生物大分子与小分子化合物相同之处在丁: 1) 共价键是维系它们结构的最主要的键;2)有一定的立休形象和空间大小; 3)化学和|物理性质主要决定于分子中存在的官能团。
生物大分子与小分子化合物不同之处在于: (1) 生物大分子的分子量要比小分子化合物大得多,分子的粒径大小差异很大; (2) 生物大分子的空间结构婴复杂得多,维系空间结构的力主要是各种非共价作用力; (3) 生物大分子特征的空间结构使其具有小分子化合物所不具有的专性识别和结合位点,这些位点通过与相应的配体特异性结合,能形成超分子,这种特性是许多重要生理现象的分子基础。
3. 生物大分子的手性特征有何意义?提示:生物大分子都是手性分子,这种结构特点在生物大分子的分子识别及其特殊的生理功能方面意义重大。
主要表现在: (1) 分子识别是产生生理现象的重要基础,特异性识别对于产生特定生物效应出关重要; (2) 生物大分了通过特征的三维手性空间环境能特异性识别前手性的小分子配体,产生专一性的相互作用。
4.指出取代物的构型:6.举例说明分子识别的概念及其意义。
提示: :分子识别是指分子间发生特异性结合的相互作用,如tRNA分子与氨酰tRNA合成醉的相互作用,抗体与抗原之间的相互作用等。
分子识别是生命体产生各种生理现象的化学本质,是保证生命活动有序地进行的分子基础。
王镜岩(第三版)生物化学下册课后习题答案
第34章DNA的复制和修复⒈生物的遗传信息如何由亲代传给子代?答:在细胞分裂间期,DNA分子边解旋边复制,分别以亲代DNA的两条母链为模板,以核中游离的脱氧核苷酸为原料,根据碱基互补配对原则,合成两条子链,它们分别与相应的模板链螺旋化就形成了两个与亲代DNA 一样的子代DNA,在生物传种接代的过程中,亲代将复制出的一份DNA通过配子传给子代,从而实现了亲子代间遗传信息的传递。
接下来,在子代个体发育的过程中,将利用DNA(gene)来指导自身蛋白质的合成,从而表现出与亲代相似的性状。
也有一些生物如某些病毒,是通过将亲代的RNA复制后传给子代的方式进行遗传信息的传递。
⒉何谓DNA的半保留复制?是否所有的DNA复制都以半保留的方式进行?(双链DNA通常都以半保留方式复制。
)答:DNA在复制时首先两条链之间的氢键断裂两条链分开,然后以每一条链分别做模板各自合成一条新的DNA链,这样新合成的子代DNA分子中一条链来自亲代DNA,另一条链是新合成的,这种复制方式为半保留复制(semiconservative replication)。
并非所有的DNA复制都以半保留的方式进行,但双链DNA通常都以半保留方式复制。
⒊若使15N标记的大肠杆菌在14N培养基中生长三代,提取DNA,并用平衡沉降法测定DNA 密度,其14N-DNA分子与14N-15N杂合DNA分子之比应为多少?答:这两者之比为1:3。
⒋比较DNA聚合酶Ⅰ、Ⅱ和Ⅲ性质的异同。
DNA聚合酶Ⅳ和Ⅴ的功能是什么?有何生物学意义?答:在E.coli中,共发现了3种DNA聚合酶,即DNA聚合酶Ⅰ、Ⅱ、Ⅲ。
DNA聚合酶Ⅰ是个多功能酶,具有5’--→3’聚合功能;3’--→5’外切功能以及3’--→5’外切功能。
DNA聚合酶Ⅱ与DNA聚合酶Ⅰ功能相似,但没有5’--→3’外切功能。
DNA聚合酶Ⅲ与DNA聚合酶Ⅱ功能相同,但其聚合活性比DNA聚合酶Ⅰ高1000倍,是E.coliDNA复制中的最主要酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19章代谢总论⒈怎样理解新陈代谢?答:新陈代谢是生物体内一切化学变化的总称,是生物体表现其生命活动的重要特征之一。
它是由多酶体系协同作用的化学反应网络。
新陈代谢包括分解代谢和合成代谢两个方面。
新陈代谢的功能可概括为五个方而:①从周围环境中获得营养物质。
②将外界引入的营养物质转变为自身需要的结构元件。
③将结构元件装配成自身的大分子。
④形成或分解生物体特殊功能所需的生物分子。
⑤提供机体生命活动所需的一切能量。
⒉能量代谢在新陈代谢中占何等地位?答:生物体的一切生命活动都需要能量。
生物体的生长、发育,包括核酸、蛋白质的生物合成,机体运动,包括肌肉的收缩以及生物膜的传递、运输功能等等,都需要消耗能量。
如果没有能量来源生命活动也就无法进行.生命也就停止。
⒊在能量储存和传递中,哪些物质起着重要作用?答:在能量储存和传递中,ATP(腺苷三磷酸)、GTP(鸟苷三磷酸)、UTP(尿苷三磷酸)以及CTP(胞苷三磷酸)等起着重要作用。
⒋新陈代谢有哪些调节机制?代谢调节有何生物意义?答:新陈代谢的调节可慨括地划分为三个不同水平:分子水平、细胞水平和整体水平。
分子水平的调节包括反应物和产物的调节(主要是浓度的调节和酶的调节)。
酶的调节是最基本的代谢调节,包括酶的数量调节以及酶活性的调节等。
酶的数量不只受到合成速率的调节,也受到降解速率的调节。
合成速率和降解速率都备有一系列的调节机制。
在酶的活性调节机制中,比较普遍的调节机制是可逆的变构调节和共价修饰两种形式。
细胞的特殊结构与酶结合在一起,使酶的作用具有严格的定位条理性,从而使代谢途径得到分隔控制。
多细胞生物还受到在整体水平上的调节。
这主要包括激素的调节和神经的调节。
高等真核生物由于分化出执行不同功能的各种器官,而使新陈代谢受到合理的分工安排。
人类还受到高级神经活动的调节。
除上述各方面的调节作用外,还有来自基因表达的调节作用。
代谢调节的生物学意义在于代谢调节使生物机体能够适应其内、外复杂的变化环境,从而得以生存。
⒌从“新陈代谢总论”中建立哪些基本概念?答:从“新陈代谢总论”中建立的基本概念主要有:代谢、分解代谢、合成代谢、递能作用、基团转移反应、氧化和还原反应、消除异构及重排反应、碳-碳键的形成与断裂反应等。
⒍概述代谢中的有机反应机制。
答:生物代谢中的反应大体可归纳为四类,即基团转移反应;氧化-还原反应;消除、异构化和重排反应;碳-碳键的形成或断裂反应。
这些反应的具体反应机制包括以下几种:酰基转移,磷酰基转移,葡糖基基转移;氧化-还原反应;消除反应,分子内氢原子的迁移(异构化反应),分子重排反应;羟醛综合反应,克莱森酯综合反应,β-酮酸的氧化脱羧反应。
⒎举列说明同位素示踪法和波谱法在生物化学研究中的重要作用。
答:同位素示踪法和波谱法生物化学中研究新陈代谢的两种重要方法。
同位素示踪法不改变被标记化合物的化学性质,已成为生物化学以及分子生物学的研完中一种重要的必不可少的常规先进技术。
如:1945年David Shemin和David Rittenberg 首先成功地用14C 和15N标记的乙酸和甘氨酸怔明了血红素分子中的全部碳原子和氮原子都来源于乙酸利甘氨酸;胆固醇分子中碳原子的来源也是用同样的同位空示踪法得到闸明的。
核磁共振波谱法对于样品不加任何破坏,因此,在生物体的研究得到广泛的应用。
例如在生物化学、生理学以及医学等方面都广泛位用核磁共振波谱技术对生活状态的人体进行研究,取得了重要的研究成果,其中最为人知的实验是1986年用核磁共振波谱法对人体前臂肌肉在运动前和运动后的比较研究。
第20章生物能学⒈就某方面而言,热力学对生物化学工作者更为重要,为什么?答:生物能学是深人理解生物化学特别是理解主物机体新陈代谢规律不可缺少的基本知识。
它是生物化学中涉及生活细胞转移和能量利用的基本间题。
生物能学完全建立在热力学的基础上,因此,从这个角度看,热力学对生物化学工作者更为重要。
⒉考虑下面提法是否正确?①在生物圈内,能量只是从光养生物到异养生物,而物质却能在这两类生物之间循环。
②生物机体可利用体内较热部位的热能传递到较冷的部位而做功。
③当一个系统的熵值降低到最低时,该系统处于热力学平衡状态。
④当ΔG0’值为0.0时,说明反应处于平衡状态。
⑤ATP水解成ADP的反应,ΔG0’约等于ΔG0。
答:①-是,②- 非,③-非,④- 非,⑤-非⒊怎样可判断一个化学反应能够自发进行?答:一个化学反应的自由能是否降低是判断它是否可以自发进行的标准。
只有自由能变化为负值的化学反应,才能自发进行。
⒋怎样判断一个化学反应进行的方向?当反应物和产物的起始浓度都为1mol时,请判断下列反应的进行方向。
(参看表20-3中的数据)。
①磷酸肌酸+ADP ←───→ATP+肌酸②磷酸烯醇式丙酮酸+ADP ←───→丙酮酸+ATP③葡萄糖6-磷酸+ADP ←───→ATP+葡萄糖答:一个化学反应是从总能量高的体系向总能量低的体系变化,即可根据化学反应式两边体系总能量的大小来判断其方向。
根据表20-3中的数据:①-向右,②-向右,③-向左。
⒌解释ATP的γ-磷酸基团转运到葡萄糖6-磷酸的磷酸脂键(ΔG0’=13.8kJ/mol)上,一般情况下,为什么在热力学上可行?逆反应是否可行?答:由于ATP的γ-磷酸基团的ΔG0’=32.2kJ/mol大于葡萄糖6-磷酸的磷酸脂键的ΔG0’=13.8kJ/mol,因此,一般情况下,ATP的γ-磷酸基团转运到葡萄糖6-磷酸的磷酸脂键上在热力学上可行的。
在某些情况下,当该反应的ΔG值为正值时,该反应的逆反应可行。
⒍从ATP的结构特点说明ATP在能量传递中的作用。
答:ATP也叫做腺苷三磷酸、三磷酸腺苷、腺三磷,是高能磷酸化合物的典型代表。
高能磷酸化合物的特点是:它的高能磷酸键(也即酸酐键,用“~”表示),水解时释放出的化学能是正常化学键释放化学能的2倍以上(一般在20.92 kJ/mol以上)。
ATP是由一分子腺嘌呤、一分子核糖和三个相连的磷酸基团构成的。
这三个磷酸基团从与分子中腺苷基团连接处算起,依次分别称为α、β、γ磷酸基团。
ATP的结构式是:分析ATP的结构式可以看出,腺嘌呤与核糖结合形成腺苷,腺苷通过核糖中的第5位羟基,与3个相连的磷酸基团结合,形成ATP。
ATP分子既可以水解一个磷酸基团(γ磷酸基团),而形成二磷酸腺苷(ADP)和磷酸(Pi);又可以同时水解两个磷酸基团(β磷酸基团和γ磷酸基团),而形成一磷酸腺苷(AMP)和焦磷酸(PPi;AMP可以在腺苷酸激酶的作用下,由ATP提供一个磷酸基团而形成ADP,ADP又可以迅速地接受另外的磷酸基团而形成ATP。
另外,ATP的ΔG0’值在所有含磷酸基团的化合物中处于中间位置。
这使ATP有可能在磷酸基团转移中作为中间传递体而起作用。
⒎ATP水解成ADP+Pi的ΔG0’是-30.5kJ/mol,①试计算此反应中的平衡常数。
②此反应在细胞内是否处于平衡状态?答:①K'eq=2.2×105 ;②否]⒏在细胞内是否ATP水解的ΔG0通常比ΔG0’更负?为什么?[是,ΔG'=ΔG0’+RTInK,ΔG'≈-41.84kJ/mol]⒐利用表20-3的数据试计算:ATP+丙酮酸←───→磷酸烯醇式丙酮酸+ADP的反应在25℃下,其ΔG0’和K'eq值。
若ATP与ADP之比为10时,求丙酮酸与磷酸烯醇式丙酮酸的平衡比。
答:ΔG0’=+31.38kJ/mol,K'eq=3.06×106,平衡比是3.82×104。
⒑假设有一个由A向B的转化反应(A─→B),它的ΔG0’=20kJ/mol请计算:①在达到平衡时[B]/[A]的比值。
②假设A和B参加的反应与ATP水解为ADP和Pi同时进行,总反应是:A+ATP+H2O ───→B+ADP+Pi请计算此反应达平衡时[B]/[A]的比值,假设ATP 、ADP和Pi都是1mol浓度,请问在什么时候反应才达到到平衡?③已知[ATP] 、[ADP]和[Pi]在生理条件下都远非1mol浓度。
当和浓度依次为[ATP] 、[ADP]和[Pi]8.05mmol,0.93mmol和8.05mmol时,求出一个与偶联反应的[B]/[A]比值。
答:①比值=3.1×10-4 ②[B]/[A]=69.4 ③[B]/[A]=7.5×104第21章生物膜与物质运输⒈试述物质的被动运输和主动运输的基本特点。
研究物质运输的意义是什么?答:主动运输是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向高浓度的一侧进行跨膜转运的方式,需要与某种释放能量的过程相偶联。
主动运输过程可分为由ATP直接提供能量和间接提供能量等基本类型。
被动运输包括简单扩散和载体介导的协助扩散,运输方向是由高浓度向低浓度,运输的动力来自物质的浓度梯度,不需要细胞提供代谢能量。
⒉什么是Na+泵和Ca+泵,其生理作用是什么?答:Na+/K+泵是动物细胞中由ATP驱动的将Na+ 输出到细胞外同时将K+输入细胞内的运输泵,又称Na+泵或Na+/K+交换泵。
实际上是一种Na+ /K+ ATPase。
Na+ /K+ ATPase是由两个大亚基(α亚基)和两个小亚基(β亚基)组成。
α亚基是跨膜蛋白,在膜的内侧有ATP结合位点,细胞外侧有乌本苷(ouabain)结合位点;在α亚基上有Na+和K+结合位点。
其生理意义: Na+/K+ 泵具有三个重要作用,一是维持了细胞Na+离子的平衡,抵消了Na+离子的渗透作用;二是在建立细胞质膜两侧Na+离子浓度梯度的同时,为葡萄糖协同运输泵提供了驱动力;三是Na+泵建立的细胞外电位,为神经和肌肉电脉冲传导提供了基础。
Ca2+-ATPase有10个跨膜结构域,在细胞膜内侧有两个大的细胞质环状结构,第一个环位于跨膜结构域2和3之间,第二个环位于跨膜结构域4和5之间。
在第一个环上有Ca2+离子结合位点;在第二个环上有激活位点,包括ATP的结合位点。
Ca2+-ATPase的氨基端和羧基端都在细胞膜的内侧,羧基端含有抑制区域。
在静息状态,羧基端的抑制区域同环2的激活位点结合,使泵失去功能,这就是自我抑制。
Ca2+-ATPase泵有两种激活机制,一种是受激活的Ca2+/钙调蛋白(CaM)复合物的激活,另一种是被蛋白激酶C激活。
当细胞内Ca2+浓度升高时,Ca2+同钙调蛋白结合,形成激活的Ca2+/钙调蛋白复合物,该复合物同抑制区结合,释放激活位点,泵开始工作。
当细胞内Ca2+浓度下降时,CaM同抑制区脱离,抑制区又同激活位点结合,使泵处于静息状态。
在另一种情况下,蛋白激酶C使抑制区磷酸化,从而失去抑制作用;当磷酸酶使抑制区脱磷酸,抑制区又同激活位点结合,起抑制作用。