音频信号处理技术
音频处理中的音频信号处理技巧

音频处理中的音频信号处理技巧音频信号处理是指对音频信号进行各种处理操作以改变它的声音特性或增强其质量。
在音频处理中,使用一些技巧可以帮助我们更好地处理音频信号,以达到更好的效果。
本文将介绍一些常用的音频信号处理技巧。
1. 噪音降低技术噪音是音频信号处理中常见的问题之一。
为了降低噪音对音频质量的影响,可以使用噪音降低技术。
其中,最常用的技术是噪音抑制和噪音消除。
噪音抑制通过对音频信号进行分析,将噪音部分与声音信号部分分离,然后抑制噪音。
噪音消除则是通过获取背景噪音的频谱特征,然后从原始音频信号中减去背景噪音的频谱特征,从而实现噪音的消除。
2. 音频增益控制技术音频增益控制是指在音频处理中调整音频信号的增益,用以控制音频的音量。
在音频增益控制中,常用的技术包括自动增益控制(AGC)和压缩。
自动增益控制可以根据音频信号的强度自动调整增益,保证音频信号在合适的范围内。
压缩则是将音频信号的动态范围进行缩小,提高音频的稳定性和可听性。
3. 音频均衡技术音频均衡是调整音频信号频谱分布的技术。
通过调整不同频段的增益,可以改变音频信号在不同频段上的音质特点。
常见的音频均衡器包括高通滤波器、低通滤波器、带通滤波器和带阻滤波器。
高通滤波器可以削弱低频部分,低通滤波器则可以削弱高频部分。
带通滤波器和带阻滤波器则可以调整特定频段的增益。
4. 音频混响技术音频混响是指在音频处理中为音频信号添加混响效果,使其听起来更加自然和立体感。
音频混响技术可以仿真不同环境下的回声效果,使音频信号在听觉上具有一定的空间感。
在音频混响技术中,常用的方法包括干湿信号混合、深度调节、后延时等。
5. 音频编码技术音频编码是将音频信号转换为数字形式的过程。
在音频处理中,常用的音频编码技术包括脉冲编码调制(PCM)、自适应差分脉冲编码调制(ADPCM)、有损编码(如MP3)和无损编码(如FLAC)。
音频编码技术可以实现对音频信号的压缩和传输,同时保证音质的损失尽量少。
音频信号处理技术在语音识别中的应用算法

音频信号处理技术在语音识别中的应用算法音频信号处理技术是将人耳无法感知的声音信号转化为数字信号,并对其进行分析和处理的过程。
在语音识别领域,音频信号处理技术起着至关重要的作用。
本文将介绍音频信号处理技术在语音识别中的应用算法。
一、特征提取算法特征提取算法是将音频信号转化为计算机能够处理的数字特征。
1. 短时能量(Short-Time Energy)算法:该算法通过将音频信号分割为短时间段的小片段,并计算每个片段内的能量大小来提取特征。
短时能量越大,表示该时间段内的声音越强烈。
2. 短时过零率(Short-Time Zero Crossing Rate)算法:该算法计算音频信号过零点的频率,过零率越高,表示音频信号的频率越高。
3. 梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients,MFCC)算法:该算法模拟了人耳对声音的感知机制,将音频信号转化为一组特征向量。
MFCC算法在语音识别中应用广泛,具有较好的鲁棒性和区分度。
二、语音分割算法语音分割算法主要是将语音信号从背景音乐或其他干扰音中分离出来。
1. 短时能量和过零率结合算法:该算法通过计算短时能量和过零率的变化来判断语音信号的开始和结束。
2. 声道消除算法:该算法通过建立模型,将语音信号从录音中的声道效应中分离出来。
3. 频域分析:该算法通过将语音信号在频域进行分析,根据频率和幅度的变化来进行语音分割。
三、语音增强算法语音增强算法主要是提高语音信号质量,减少噪声和干扰的影响。
1. 自适应滤波器:该算法通过对噪声进行建模,采用自适应滤波器去除语音信号中的噪声。
2. 光谱减法:该算法通过将语音信号和噪声信号在频域进行相减,以消除噪声的影响。
3. 噪声估计算法:该算法根据已知的背景噪声估计当前噪声的频谱,并对语音信号进行相应的处理。
四、语音识别算法语音识别算法是将处理后的语音信号转化为文字。
1. 隐马尔可夫模型(Hidden Markov Model,HMM):HMM是一种基于概率模型的语音识别算法,它将语音信号建模为由状态之间转化的马尔可夫链。
音响系统的音频信号传输和处理技术

音响系统的音频信号传输和处理技术在我们的日常生活中,音响系统扮演着重要的角色,无论是在家中享受音乐、观看电影,还是在大型活动现场感受震撼的音效,都离不开音响系统对音频信号的精准传输和处理。
那么,音响系统是如何实现音频信号的传输和处理的呢?这其中蕴含着一系列复杂而又精妙的技术。
音频信号的传输是整个音响系统的基础。
常见的传输方式有有线传输和无线传输。
有线传输中,最常见的是使用音频线,如 RCA 线、XLR 线等。
RCA 线通常用于连接消费级音响设备,价格相对较低,但传输距离较短,且容易受到干扰。
XLR 线则具有更好的抗干扰能力,常用于专业音响领域,能够传输更远的距离且保持信号的稳定性。
除了传统的音频线,还有一种常见的有线传输技术——光纤传输。
光纤传输利用光信号来传输音频数据,具有极高的带宽和极低的信号损耗,能够实现长距离、高质量的音频传输。
在一些对音质要求极高的场合,如大型音乐厅、录音棚等,光纤传输被广泛应用。
无线传输技术的发展也为音响系统带来了更多的便利。
蓝牙技术是我们最为熟悉的无线传输方式之一,它方便快捷,适用于短距离的音频传输,比如连接手机和蓝牙音箱。
但蓝牙传输的音质相对有限,且容易受到其他无线信号的干扰。
而 WiFi 无线传输技术则在音质和稳定性方面有了很大的提升。
一些高端的无线音响系统采用 WiFi 技术,可以实现无损音频的传输,让用户在摆脱线缆束缚的同时,依然能够享受到高品质的音乐。
音频信号的处理则是音响系统的核心环节。
这包括对音频信号的放大、均衡、滤波、混音等操作。
音频放大器是音响系统中不可或缺的部分。
它的作用是将输入的音频信号进行放大,以驱动扬声器发声。
放大器的种类繁多,有晶体管放大器、电子管放大器等。
晶体管放大器效率高、成本低,但在音质上可能相对较“硬”;电子管放大器则具有温暖、柔和的音色,但效率较低、成本较高。
均衡器用于调整音频信号中不同频率的成分。
通过调节均衡器,我们可以增强或减弱某些频段的音量,以达到改善音质、适应不同环境或个人喜好的目的。
音频信号分析与处理技术研究综述

音频信号分析与处理技术研究综述音频信号处理技术在数字媒体领域中扮演着至关重要的角色,它负责把无损格式的音频数据转换为可用的音频质量数据。
在音频信号领域中,人们需要通过对音频信号进行处理来获得更高质量的音乐、电影、广播、电视剧等音频媒体资源。
音频信号处理技术的研究已经逐渐成为一个非常流行的主题,并且在各种领域中得到广泛的应用。
本文将介绍音频信号处理技术的主要分析方法、处理技术以及在不同领域中的应用情况。
1. 音频信号的分析方法音频信号的分析方法主要有两种:时间域分析和频谱域分析。
1.1 时间域分析时间域分析是将音频信号转化为时域波形,以便观察其时间上的变化。
时间域信号分析方法包括时序分析、自相关函数分析、功率谱密度分析、采样频率分析等。
时序分析是通过将音频信号转换为波形图来获取信号的基本属性,如振幅、频率和相位等。
自相关函数分析可以用于估计信号平均功率,它还可以用于分析歌曲的周期性。
功率谱密度分析可以用来测量音频信号的频域性质,并帮助判定音频信号中是否包含噪声。
采样频率分析则是用于确定音频信号的采样频率,以及判断音频信号是否有折叠现象。
1.2 频谱域分析频谱域分析是将音频信号映射到频域上,以便观察其在频域上的变化,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)等。
离散傅里叶变换可以用于分析音频信号中的谐波成分、频率分布以及相位信息等。
快速傅里叶变换常用于音乐录制和压缩等领域。
频谱的分析可以帮助人们更好地理解音乐和声音的物理特性,以及进行音频信号的处理。
2. 音频信号的处理技术音频信号的处理技术主要分为两类:基于时域分析的处理技术和基于频域分析的处理技术。
2.1 基于时域分析的处理技术基于时域分析的处理技术包括音频信号的滤波、降噪、增益、混响消除等。
滤波是一种经常使用的技术,它能够去除一些信号中的噪声。
降噪技术主要是有损噪声消除和无损噪声消除,在音频信号中很常见,例如在视频会议上消除噪声。
增益技术可以帮助调整音频信号的音量,使其更合适地用于不同类型的场合。
音频处理的技巧

音频处理的技巧音频处理是指对音频进行加工、优化和改善的过程,旨在增强音频的质量和听觉体验。
以下是一些常用的音频处理技巧:1. 噪音消除:噪音是音频中最常见的问题之一,使用降噪滤波器可以有效地减少或消除背景噪音。
常见的降噪滤波算法有维纳滤波器和谱减法等。
2. 噪音门限:噪音门限是一种通过设置阈值来自动消除低于该阈值的噪音的方式。
可以根据音频信号的特征来设置适当的门限,以实现有效的噪音消除。
3. 倒置相位:当音频中存在相位问题时,可以通过对某些音频信号进行倒置相位来解决。
这通常发生在立体声声道之间的相位差异引起的相消干扰或者麦克风探头之间的相移。
4. 均衡和滤波:使用均衡器可以调整音频信号中不同频率段的音量平衡,以增强或减少特定频率的信号。
低通滤波器、高通滤波器和带通滤波器等滤波器可以有效地去除不需要的频率分量。
5. 动态范围压缩:动态范围压缩是一种用于控制音频信号动态范围的技术。
这对于处理音频中的强烈峰值或者动态范围较大的场景非常有用。
通过压缩峰值信号和提升低音量信号,可以使整个音频信号的音量范围更加平衡。
6. 混响效果:混响效果可以模拟不同环境中的音频反射和衰减,以增加音频的空间感。
可以通过添加合适的混响效果来改善音频的逼真度和立体感。
7. 声像定位:声像定位是指通过调整音频信号的声道平衡和相位差异来模拟声源在空间中的位置。
通过控制声道平衡,可以使音频在听众耳边产生逼真的定位效果。
8. 音量增益:音频增益是调整音频整体音量的技术。
可以通过提高或降低音频的增益来调整其整体音量水平,以保证音频在不同环境中的播放效果。
9. 跨频频谱编辑:跨频频谱编辑是一种用于消除频谱中切割或峰值的技术。
通过转换音频信号到频谱域进行编辑,可以有效地消除或减小某些频谱上的问题。
10. 时域处理:时域处理是指对音频信号进行时域变换和操作的技术。
时域处理可以用于修复音频中的时域问题,如时域失真、峰值截断等。
以上是一些常用的音频处理技巧,它们可以在音频生产、音乐制作和语音处理等领域中发挥重要作用,提升音频质量和听觉体验。
音频信号处理技术应用教程

音频信号处理技术应用教程音频信号处理技术是现代通信和娱乐领域的重要组成部分。
它涉及从音频输入源获取和处理音频信号,以提高音频信号的质量和效果。
本文将介绍音频信号处理技术的基本原理和常见应用,旨在为读者提供一个全面的音频信号处理技术应用教程。
一、音频信号处理技术的基本原理音频信号处理技术主要涉及对音频信号的采集、转换、处理和重现。
音频信号通常由连续的模拟信号转换为离散的数字信号,然后对该数字信号进行处理,并最终转换为人们可以听到的声音。
1. 音频信号采集音频信号采集是将声音转化为电信号的过程。
最常用的方法是使用麦克风将声音中的声波转换为电压信号。
麦克风会将声波转换为模拟信号,并通过模数转换器(ADC)将模拟信号转换为数字信号。
2. 音频信号转换由于音频信号在数字领域中更容易处理和存储,所以音频信号通常需要转换为数字信号。
这个过程通常使用模数转换器(ADC)将模拟信号转换为数字信号。
模数转换器将连续的模拟信号转换为离散的数字信号,使得音频信号可以在数字平台上进行处理。
3. 音频信号处理音频信号处理是对数字信号进行处理的过程。
常见的音频信号处理技术包括滤波、均衡、降噪、增益控制等。
滤波用于去除不需要的频率分量,以改善音频信号的质量。
均衡可以调整不同频率的音量平衡,以达到更好的听觉效果。
降噪通过消除或减少背景噪声来提高音频信号的清晰度。
增益控制用于调节音频信号的音量水平。
4. 音频信号重现音频信号重现是将数字信号转换回模拟信号的过程,以产生人们可以听到的声音。
这个过程通常使用数字模拟转换器(DAC)将数字信号转换为模拟信号。
模拟信号然后通过扬声器或耳机播放出来。
二、音频信号处理技术的应用1. 电话通信音频信号处理技术在电话通信中起着重要作用。
通过音频信号处理技术,我们可以提高电话通话中的声音质量,减少噪音和回声。
例如,通过降噪技术可以去除电话通话中的背景噪音,使通话更加清晰。
音频信号处理技术还可以用于语音识别和语音合成,实现自动语音服务和语音交互。
音频信号处理技术的基础知识教程

音频信号处理技术的基础知识教程音频信号处理技术是指对音频信号进行分析、增强、压缩、恢复等操作的技术。
它在音乐制作、语音识别、语音合成、音频传输等领域广泛应用。
本文将介绍音频信号处理技术的基础知识,包括音频信号的采样与量化、频域与时域表示、滤波与混响等内容。
一、音频信号的采样与量化音频信号是一种连续的模拟信号,为了在数字系统中进行处理,需要将其转换为离散的数字信号。
这个过程包括采样和量化两个步骤。
1. 采样:采样是指对模拟音频信号进行定时取样的过程。
采样定理规定了取样频率必须大于被采样信号中最高频率的两倍才能避免混叠失真。
常见的采样频率为44.1kHz和48kHz。
2. 量化:量化是指将取样到的连续数值映射为离散的数字量的过程。
量化分辨率决定了数字音频信号的动态范围,一般以位数表示,如16位或24位。
量化位数越高,动态范围越大,音频质量越好。
二、频域与时域表示音频信号可以通过频域和时域表示。
频域表示将信号表示为频率的函数,而时域表示将信号表示为时间的函数。
1. 频域表示:频域表示使用傅里叶变换将信号从时域转换为频域。
通过傅里叶变换,可以得到音频信号的频谱图,显示了信号中各个频率成分的强度。
常见的频域表示工具有快速傅里叶变换(FFT)和傅里叶级数展开。
2. 时域表示:时域表示直接展示音频信号在时间轴上的波形。
时域图像显示了音频信号的振幅随时间的变化。
常见的时域表示工具有波形图和时频图。
三、滤波与混响滤波和混响是音频信号处理中常用的两种技术,分别用于改变音频信号的频率响应和空间感。
1. 滤波:滤波是指通过改变音频信号的频率响应来改变音频信号的特性。
常见的滤波技术有低通滤波、高通滤波、带通滤波和带阻滤波。
滤波可以用于去除噪音、调整音频的音色和频率等。
2. 混响:混响是指将音频信号加入具有一定延迟、强度和频率响应的残余信号,以模拟出不同的空间感。
不同的混响参数可以模拟出各种各样的环境,如音乐厅、教堂和演播室等。
音频信号的采集与处理技术综述

音频信号的采集与处理技术综述音频信号的采集与处理技术在现代通信、音乐、语音识别和声音处理等领域有着广泛的应用。
本文将对音频信号的采集与处理技术进行综述,为读者介绍相关的原理、方法和应用。
一、音频信号的采集技术音频信号的采集是指将声音转化为数字形式,以便后续的处理和存储。
主要的音频信号采集技术包括模拟声音录制、数字声音录制和实时音频采集。
模拟声音录制是早期常用的技术,通过麦克风将声音转化为电信号,再经过放大、滤波等处理,最终得到模拟音频信号。
然而,由于模拟信号具有易受干扰、难以传输和存储等缺点,逐渐被数字声音录制技术所取代。
数字声音录制技术利用模数转换器(ADC)将模拟音频信号转化为数字形式,再进行压缩和编码,最终得到数字音频文件。
这种技术具有抗干扰性强、易于传输和存储的优点,广泛应用于音乐录制、广播电视和多媒体等领域。
实时音频采集技术是指能够实时地获取声音信号,并进行处理和分析。
这种技术常用于声音识别、语音合成和实时通信等场景,要求采样率高、延迟低,并能够处理多通道信号。
二、音频信号的处理技术音频信号的处理技术包括音频编码、音频增强和音频分析等方面。
这些技术能够对音频信号进行压缩、去噪、降噪和特征提取等操作,提高音频的质量和准确性。
音频编码技术是指将音频信号转化为数字数据的过程,常用的编码方法有PCM编码、MP3编码和AAC编码等。
PCM编码是一种无损编码方法,能够保持原始音频信号的完整性;而MP3和AAC编码则是有损压缩方法,能够在降低数据量的同时保持较高的音质。
音频增强技术用于提高音频信号的清晰度和可听性。
常见的音频增强方法包括降噪、回声消除和均衡器等。
降噪技术通过滤波和频域分析等方法,减少环境噪声对音频信号的影响;回声消除技术通过模型估计和滤波等方法,抑制声音的反射和回声;均衡器技术则用于调整音频信号的频率和音量,使其在不同场景下具有更好的效果。
音频分析技术用于提取音频信号的特征和信息。
常用的音频分析方法包括频谱分析、时域分析和时频分析等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上午7时36分
17
音频的格式
4. CD格式:音质最好的数字音频格式, CDA文件只含索引信息。 5. RealAudio格式:适用网上在线音乐欣 赏,可随带宽不同改变音质。 6. WMA格式:音质强于MP3,内置版权保 护技术,支持音频流技术。
上午7时36分
18
媒体的播放、转换与分享
媒体文件的播放
对原始声波采样
采样后得到的数据
上午7时36分
6
波形音频三个参数
量化位数:将采样数据按大小存储的过程。 一般有8、16、32位等,量化位数越大,声音的幅度分辨 率越高,还原时声音的品质越好,声音数据占用的存储空 间越大
上午7时36分
7
波形音频三个参数
声道数:数字音频声音质量的另一个因素。 一般有单声道 、双声道、多声道
Windows Media Player可以播放影音媒 体文件、影音CD、DVD、图片。 将CD音乐文件转换为WMA、MP3或WAV CD翻录音乐
声音格式的转换
上午7时36分
19
4.2.3 音频处理技术
音频处理:
录音 编辑 添加音效 格式转换
GoldWave:数字音乐编辑器
4.2
音频信号处理技术
课程内容: 11版第4章 4.2
上午7时36分
1
音频信号处理技术
1 . 音频的数字化与MIDI合成音乐
2 . 音频媒体的管理
3 . 音频处理技术(GoldWave) 4 . 语音合成与识别技术
上午7时36分 2
4.2.1 音频的数字化与MIDI合成音乐 多媒体计算机中产生声音的方式
27
二、语音识别技术
上午7时36分
习题与实践
实验16 多媒体技术体验
准备:可以事先拍摄数码照片带来,并带相 关驱动程序
准备:自己携带耳机话筒 自己携带音乐CD唱片 语音合成:Windows讲述人 语音识别:Windows语音识别
实验17 声音的处理
体验:
上午7时36分
28
波表合成器
计算机存储 声卡合成器
上午7时36分
混音器混合后由 扬声器输出
12
合成器
利用DSP或其他芯片产生音乐或声音的电子装置 FM合成器
采用频率调制的原理产生声音 FM合成器能发出128种乐器的声音 对真实乐器声采样,制波表保存,由DSP查表调用处 理
波表合成器
DSP(digital signal processor)是一种独特的微处理器,是 以数字信号来处理大量信息的器件。其工作原理是接收模拟 信号,转换为0或1的数字信号,再对数字信号进行修改、删 除、强化,并在其他系统芯片中把数字数据解译回模拟数据。
上午7时36分
声音效果与真实的乐器声几乎无差别 声卡带有波形表ROM的接口 或 本身带有波形表ROM ROM的容量越大,可存储的乐器音就越多
13ቤተ መጻሕፍቲ ባይዱ
MIDI音乐产生原理
MIDI标准:规定了电子乐器与计算机连接的电缆、 硬件标准和通信协议 乐谱的数字描述(MIDI指令信息) 由音符序列、定时和多达16个通道的演奏音符 定义组成 演奏音符定义由键号、通道号、音长、音量和 力度组成 建立MIDI文件:设备演奏时输入或软件编辑产生 MIDI文件特点:是一系列指令不是波形,文件小 MIDI设备端口 :MIDI In、MIDI Out、MIDI Thru 媒体播放器可直接播放 上午7时36分 14
波形音频的数字化
一、波形音频特征(三个参数)
采样频率 量化位数 声道数
上午7时36分
5
波形音频三个参数
采样频率:每秒从模拟声波中采集声音样本的个数。 频率越高,采集的样本数越多,声音质量越好,占用 存储空间越大。 人耳感受范围:0~20kHz 一般采用:11.025kHz、22.05kHz、44.1kHz
存储量计算: 采样频率×量化位数×声道数×时间/8 (字节)
举例:
采样频率44.1kHz,16位量化,双声道,一分钟的 音频所需要的存储量为: 44.1×1000×16×2×60/8=10584000(字节)
上午7时36分 8
Wave音频文件
标准数字音频,扩展名是.WAV
多数声卡能以16位、44.1kHz采样率 录制和播放 主要缺点:产生的文件太大,不适合 长时间记录 压缩方法:从PCM(均匀量化)到 ADPCM(自适应差分量化)
外部声音源录制和重放:Wave 音频(波形音乐) MIDI电子音频
上午7时36分
3
波形音频的数字化
Windows中最基本的波形声音格式: 扩展名是.WAV 的文件
麦克风/录音机 /CD激光唱盘
声卡A/D转换 (采样、量化)
计算机存储
声卡D/A转换
混音器混合后由 扬声器输出
上午7时36分 4
上午7时36分
20
GoldWave界面
上午7时36分
21
使用GoldWave录音
录制从麦克风输入的声音 录制计算机中其他播放器通过声卡播放 的声音
上午7时36分
22
声音的编辑
剪裁波形 删除波形 复制、粘贴波形 混音
上午7时36分
23
声音的特效处理
调整音量 调整播放时间和播放速度 添加回声 音乐淡入淡出效果 消除音乐中的静音段
上午7时36分 24
利用GoldWave转换音频格式
单个文件转换
文件/另存为 “保存声音为”对话框中选择保存类型 文件/批处理 “批处理”对话框添加文件 选中“转换文件格式为”复选框 选择“另存类型”
25
批量转换文件格式
上午7时36分
4.2.4
语音合成与识别
语音合成技术 - 赋计算机“讲话”能力 - 用语音输出结果 语音识别技术 使计算机具有“听懂”语音的能 力 用语音替代键盘输入
MIDI是乐器数字接口的缩写,文件扩展名 是 .MID
MIDI文件的内容是能使合成音乐芯片演奏乐 曲的代码 多媒体PC平台能够通过内部合成器或连接到 计算机MIDI端口的外部合成器播放MIDI文件
11
上午7时36分
MIDI合成音乐
产生:
电子乐器演奏时 的指令信息
合成器: FM合成器
声卡 Midi控制器
9
上午7时36分
Wave音频文件的制作工具
录音机:Wave文件录制、播放和进行一些简单 处理的基本工具 Adobe Audition Ulead Audio Editor
GoldWave
上午7时36分
10
MIDI合成音乐
MIDI
(Musical Instrument Digital Interface)
26
上午7时36分
语音合成与识别
一、语音合成技术
方法:语音合成方法、参数合成方法 目标:可懂、清晰、自然、具有表现力 应用:文语转换(TTS) ViaVoice中文连续语音识别系统 输入速度:150汉字/分 识别率:95% 发展方向: 自然话语识别与理解 解决语音识别中的一系列难题
4.2.2 音频媒体管理
Windows Media Player 媒体文件的导入 媒体文件的管理
上午7时36分
15
音频媒体管理
菜单栏 地址栏 工具栏 功能选项卡
导航窗格
播放列表
详细信息窗格
窗口切换按钮 播放控制区
上午7时36分 16
音频的格式
1. WAV格式:Windows标准波形文件,多 数音频编辑软件支持,文件较大。 2. MP3格式:高压缩比,文件较小,音质 接近CD。 3. MIDI文件:存储指令,文件短小,播 放效果因软硬件而异。