人教A版高中数学必修3第一章1.3 算法案例课件_4

合集下载

高中数学 1.3 第1课时 辗转相除法与更相减损术、秦九韶算法课件 新人教A版必修3

高中数学 1.3 第1课时 辗转相除法与更相减损术、秦九韶算法课件 新人教A版必修3
回 第______步. 0

②程序框图如图所示.
③程序:
INPUT m,n
DO
r=m MOD n
m=n
n=r
LOOP UNTIL _______
PRINT _______ r=0
END
m
(2)更相减损术.
算法步骤:
第一步,任意给定两个正整数,判断它们是否都是 ________.若是,用______约简;若不是,执行第二步.
[答案] 用2约简
[解析] 由于294和84都是偶数,先用2约简.
3.设计程序框图,用秦九韶算法求多项式的值,所选用的结 构是( )
A.顺序结构
B.条件结构
C.循环结构
D.以上都有
[答案] D
4.(2013~2014·云南省景洪一中月考)用秦九韶算法计算多 项式f(x)=3x6+2x5+4x4+5x3+7x2+8x+1在x=0.5时的值, 需做乘法和加法的次数分别是________.
序如下:
S=0 i=1 WHILE S<=10^6
i=i+1 S=S+1/i^2 WEND PRINT i END
新知导学 1.辗转相除法与更相减损术 (1)辗转相除法. ①算法步骤: 第一步,给定两个正整数m,n. 第二步,计算m除以n所得的余数r. 第三步,m=n,n=r. 第四步,若r=______,则m,n的最大公约数等于m;否则返
求值比较先进的算法,其实质是转化为求n个________多项
式的值,共进行________次乘法运算和____一__次_次加法运 算.其过程是:
n
nHale Waihona Puke 改写多项式为:f(x)=anxn+an-1xn-1+…+a1x+a0 =(anxn-1+an-1xn-2+…+a1)x+a0 =((anxn-2+an-1xn-3+…+a2)x+a1)x+a0=… =(…((anx+an-1)x+an-2)x+…+a1)x+a0. 设v1=__________, v2=v1x+ana-nx2+,an-1 v3=v2x+an-3, …,

1.3 算法案例 课件4

1.3 算法案例 课件4
1.3.3 进位制
人教A版高中数学必修三第一章
学习目标
1.了解各种进位制与十进制之间 转换的规律,会利用各种进位制与 十进制之间的联系进行各种进位制 之间的转换。 2.学习各种进位制转换成十进制的 计算方法,研究十进制转换为各种 进位制的除k去余法,并理解其中的 数学规律。
创设情景,揭示课题
我们常见的数字都是十进制的,但是并不是 生活中的每一种数字都是十进制的.比如时间 和角度的单位用六十进位制,电子计算机用的 是二进制.那么什么是进位制?不同的进位制之 间又又什么联系呢? 进位制是一种记数方式,用有限 的数字在不同的位置表示不同的数 值。可使用数字符号的个数称为基 数,基数为n,即可称n进位制,简 称n进制。现在最常用的是十进制, 通常使用10个阿拉伯数字0-9进行记 数。
例如十进制的133.59,写成133.59(10)
七进制的13,写成13(7);二进制的10,写成10(2)
一般地,若k是一个大于1的整数,那么以k 为基数的k进制可以表示为一串数字连写在一起
的形式:
anan1 a1a0(k ) (0 an k,0 an1,, a1, a0 k ).
例如133.59,它可用一个多项式来表示:
133.59=1*102+3*101+3*100 +5*10-1+9*10-2 式中 1 处在百位,第一个 3 所在十位,第二个 3 所在个位, 5 和9分别处在十分位和百分位。十进制数是逢十进一的。
为了区分不同的进位制,常在数的右下角标明基数,十进 制一般不标注基数.
余数
1 0 0 1 1 0 1
可以推广为把十进制数化为k进制数的算法,称为除k 取余法。
3、十进制转换为其它进制

人教版高中数学 A版 必修三 第一章 《1.3算法案例》教学课件

人教版高中数学 A版 必修三 第一章 《1.3算法案例》教学课件

D.8
解析 f(x)=(((((6x+5)x+4)x+3)x+2)x+1)x+7,
∴加法6次,乘法6次,
∴6+6=12次,故选C.
解析答案
规律与方法
1.辗转相除法,就是对于给定的两个正整数,用较大的数除以较小的数, 若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除 法,直到大数被小数除尽为止,这时的较小的数即为原来两个数的最 大公约数. 2.更相减损术,就是对于给定的两个正整数,用较大的数减去较小的数, 然后将差和较小的数构成新的一对数,继续上面的减法,直到差和较 小的数相等,此时相等的两数即为原来两个数的最大公约数.
1 2345
答案
4.把89化成五进制的末尾数是( D )
A.1
B.2
C.3
1 2345
D.4
答案
5.下列各数中最小的数是 ( D )
A.85(9) C.1 000(4)
B.210(6) D.111 111(2)
1 2345
答案
ቤተ መጻሕፍቲ ባይዱ 规律与方法
1.要把k进制数化为十进制数,首先把k进制数表示成不同位上数字与k的 幂的乘积之和,其次按照十进制的运算规则计算和. 2.十进制数化为k进制数(除k取余法)的步骤:
答案
2.更相减损术的运算步骤 第一步,任意给定两个正整数,判断它们是否都是偶数 .若是,用 2 约简; 若不是,执行 第二步 . 第二步,以较大 的数减去 较小的数,接着把所得的差与 较小 的数比较, 并以大数减小数,继续这个操作,直到所得的数 相等 为止,则这个数(等 数)或这个数与约简的数的乘积就是所求的最大公约数.
解析答案
返回
达标检测
1.7不可能是( A ) A.七进制数 C.十进制数

人教版高中数学(必修3)1.3《算法案例》

人教版高中数学(必修3)1.3《算法案例》

2333
问题情境
物不知数” 孙子问题(“物不知数”)
今有物不知数,三三数之剩二, 今有物不知数,三三数之剩二, 五五数之剩三,七七数之剩二, 五五数之剩三,七七数之剩二, 问物几何? 问物几何? 答曰:二十三. 答曰:二十三
——《孙子算经》 ——《孙子算经》
学生活动
韩信点兵、 韩信点兵、孙子问题相当于
你能根据辗转相除法的算法步骤画出它的 程序框图以及相应的程序语句吗? 程序框图以及相应的程序语句吗? 辗转相除法求两个数的最大公约数, 辗转相除法求两个数的最大公约数, 程序: 程序: INPUT m,n
输入: 输入:m,n 开始
r=1 其算法可以描述如下: 其算法可以描述如下:
r=m MOD n 输入两个正整数m和 ; ① 输入两个正整数 和n; WHILE r<>0
问题情境
韩信点兵 孙子问题
问题情境
韩信点兵
士兵排成3列纵队进行操练,结果有 人多余 人多余; 士兵排成 列纵队进行操练,结果有2人多余; 列纵队进行操练 若排成5列纵队进行操练,结果有 人多余 人多余; 若排成 列纵队进行操练,结果有3人多余; 列纵队进行操练 若排成7列纵队进行操练,结果有 人多余 人多余. 若排成 列纵队进行操练,结果有2人多余 列纵队进行操练
算法设计思想: 算法设计思想:
首先,让 开始检验条件, 首先 让m=2开始检验条件 若三个条件中有一个不满足 开始检验条件 若三个条件中有一个不满足, 递增1,一直到同时满足三个条件为止 则m递增 一直到同时满足三个条件为止 递增 一直到同时满足三个条件为止. 除余2, 除余 除余3, 除余 除余1,不符; 如m=8,被3除余 ,5除余 ,7除余 ,不符; , 除余 除余0,不符; 如m=9,被3除余 ,不符; , 除余 =10, 3除余 不符; 除余1, 如m=10,被3除余1,不符; 可验证得: 可验证得:m=23 韩信何以很快知道队伍的人数? 韩信何以很快知道队伍的人数?

高中数学第一章算法初步1.3.2进位制课件3新人教A版必修3

高中数学第一章算法初步1.3.2进位制课件3新人教A版必修3

解:(1)算法步骤:
第一步,输入a,k和n的值. 第二步,令b=0,i=1. 第三步,b=b+ai·ki-1,i=i+1. 第四步,判断i>n 是否成立.若是,则执行第五步;否
则,返回第三步.
第五步,输出b的值.
开始
(2)程序框图
输入a,k,n b=0 i=1 把a的右数第i位数字赋给t b=b+t· ki- 1 i=i+1 i>n? 是 输出b 结束 否
具体计算方法如下: 因为 89=2×44+1, 44=2×22+0, 22=2×11+0, 11=2×5+1, 5=2×2+1, 2=2×1+0, 1=2×0+1,
所以 89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1 =2×(2×(2×(2×(22+1)+1)+0)+0)+1 =… =1×26+0×25+1×24+1×23+0×22+0×21+1×20 =1011001(2)
1.通过阅读进位制的算法案例,体会进位制的算法思想. 2.学习各种进位制转换成十进制的计算方法, 研究十进制转换为各种进位制的除k去余法, 并理解其中的数学规律.(重点) 3.能运用几种进位制之间的转换,解决一些有关的问题. (难点)
【课堂探究1】进位制的概念 思考1:什么是进位制? 进位制是为了计数和运算方便而约定的记数系统, 如逢十进一,就是十进制;每七天为一周,就是七 进制;每十二个月为一年,就是十二进制;每六十 秒为一分钟,每六十分钟为一个小时,就是六十进 制等等.也就是说,“满几进一”就是几进制,几进 制的基数就是几.

人教a版必修3数学教学课件第1章算法初步第3节算法案例

人教a版必修3数学教学课件第1章算法初步第3节算法案例
多项式改写,依次计算一次多项式,由于后项计算用到前项的结果,
故应认真、细心,确保中间结果的准确性.若在多项式中有几项不
存在,可将这些项的系数看成0,即把这些项看成0·xn.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型三
【变式训练3】 用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1
当x=2时的值.
v3=-24×(-2)+2=50.故f(-2)=50.
错因分析:所求f(-2)的值是正确的,但是错解中没有抓住秦九韶算
法原理的关键,正确改写多项式,并使每一次计算只含有x的一次项.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
HONGNANJUJIAO
D典例透析
IANLITOUXI
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
【做一做2】 用秦九韶算法求f(x)=2x3+x-3当x=3时的值的过程
中,v2=
.
解析:f(x)=((2x+0)x+1)x-3,
v0=2;
减小数.
解:(1)用辗转相除法求840和1 785的最大公约数.
1 785=840×2+105,
840=105×8.
所以840和1 785的最大公约数是105.

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

解:用辗转相除法求最大公约数:612=468×1+144,468=144×3+36,144=36×4,即612
和468的最大公约数是36. 用更相减损术检验:612和468均为偶数,两次用2约简得153和117,153-117=36,11736=81,81-36=45,45-36=9,36-9=27,27-9=18,18-9=9,所以612和468的最大公约数为
转化为求n个一次多项式的值.
预习探究
知识点二 进位制
1.进位制:进位制是为了计数和运算方便而约定的记数系统,约定“满k进一”就 是 k进制 ,k进制的基数(大于1的整数)就是 k . 2.将k进制数化为十进制数的方法:先把k进制数写成各位上的数字与k的幂的乘积之和 的形式,再按照十进制数的运算规则计算出结果. 3.将十进制数化为k进制数的方法是 除k取余法 .即用k连续去除十进制数所得 的 商 ,直到商为零为止,然后把各步得到的余数 倒序 写出.所得到的就是相应的k 进制数. 4.k进制数之间的转化:首先转化为十进制数,再转化为 k进制数.
第一章 算法初步
1.3 算法案例 第2课时 秦九韶算法与进位制
预习探究
知识点一 秦九韶算法
1.秦九韶算法是我国南宋数学家秦九韶在他的著作《数书九章》中提出的一 个用于计算多项式值的方法. 2.秦九韶算法的方法: 把一个n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0 改写成下列的形式: f(x)=(anxn-1+an-1xn-2+…+a1)x+a0= ((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =…=

人教版高中数学必修三第一章第3节 算法案例 课件(共18张PPT)

人教版高中数学必修三第一章第3节 算法案例  课件(共18张PPT)

输入a,k,n
s1,输入a,b,n的值。
b=0
s2,赋值b=0,i=1。
i=1
s3,b=b+ai·ki-1,i=i+1。
s4,判断i>n是否成立。若 是,则执行s5;否则, 返回s3。
s5,输出b的值。
把a的右数第i位数字赋给t
b=b+t·ki-1
i=i+1 N
i>n? Y 输出b
结束
设计一个算法,把k进制数a(共有n 位数)转化成十进制数b。
例2:把89化为五进制的数. 解:以5作为除数,相应的运算式为:
89 = 5 17 + 4 = 5 (5 3 + 2) + 4 = 3 52 + 2 5 + 4 = 324(5)
5 89 5 17 53
0
余数
4 2 3
∴ 89=324(5).
例3:把89化为二进制的数.
分析:把89化为二进制的数,需想办法将 89先写成如下形式
k进制数转化为十进制数的方法
先把k进制的数表示成不同位上数字 与基数k的幂的乘积之和的形式,即
anan-1…a1a0(k) =an×kn+an-1×kn-1+…+a1×k1+a0×k0 . 再按照十进制数有n位数)转
化成十进制数b。
开始
算法步骤:
第3节 算法案例
进位制
学习目标:
• 1. 了解进位制的概念,学会表示进位制数
• 2. 理解并掌握各种进位制与十进制之间转换的规 律,会利用各种进位制与十进制之间的联系进行各 种进位制之间的转换.
• 3. 了解各种进位制与十进制之间互相转换的算法, 程序框图和程序

人教A版高中数学必修三课件:1.3《算法案例--辗转相除法与更相减损术》

人教A版高中数学必修三课件:1.3《算法案例--辗转相除法与更相减损术》

小结
比较辗转相除法与更相减损术的区别
(1)都是求最大公约数的方法,计算上辗转相除
法以除法为主,更相减损术以减法为主,计算次数
上辗转相除法计算次数相对较少,特别当两个数字
大小区别较大时计算次数的区别较明显。 (2)从结果体现形式来看,辗转相除法体现结果 是以相除余数为0则得到,而更相减损术则以减数与 差相等而得到
( 1) 5
25
5
35
7
所以,25和35的最大公约数为5
思考:计算8256和6105的最大公约数.
辗转相除法(欧几里得算法)
观察用辗转相除法求8251和6105的最大公约数的过程
第一步 用两数中较大的数除以较小的数,求得商和余数 8251=6105×1+2146
结论: 8251和6105的公约数就是6105和2146的公约数,求8251和 6105的最大公约数,只要求出6105和2146的公约数就可以了。
开始 输入m,n
r=m MOD n
m=n n=r
LOOP UNTIL r=0
PRINቤተ መጻሕፍቲ ባይዱ m END
r=0?
是 输出m 结束


练习:课本p45
1、(1)(4)
ks5u精品课件
二、《九章算术》——更相减损术 算理:可半者半之,不可半者,副置分母、子 之数,以少减多,更相减损,求其等也,以等 数约之。
第二步 对6105和2146重复第一步的做法 6105=2146×2+1813 同理6105和2146的最大公约数也是2146和1813的最大公约数。
完整的过程
8251=6105×1+2146 6105=2146×2+1813 2146=1813×1+333

高中数学人教A版必修3第一章1.3算法案例课件

高中数学人教A版必修3第一章1.3算法案例课件


9- 3= 6
6 - 3 = 3 减数与差相等
3×2=6
78与36的最大公约数为6.
更相减损术
问题6.根据更相减损术的过程,设计求两个正整数m,n最 大公约数的算法,需要用到什么逻辑结构?为什么?
第一步:任意给定两个正整 算法分析:
数,判断它们是否都是偶数。第一步,给定两个正整数m,n(m>n).
更相减损术
例2. 用更相减损术求78与36的最大公约数.
解: 78与36都是偶数
“可半”
78 ÷ 2 = 39 36 ÷ 2 = 18
“可半者半之”
除 完
39 - 18 = 21 大减小 21 - 18 = 3

18 - 3 = 15

15 - 3 = 12
“更相减损”(辗转相减)

12 - 3 = 9
2 18 30 3 9 15 35
18与30的最大公约数为2 3 6 .
问题1. 求8251与6105的最大公约数. 可以使用短除法吗?
困难:两数比较大、公约数不易视察。 (辗转相除法、更相减损术)
知问
思考1:辗转相除法与更相减损术可以用来解 决什么问题? 可以解决求两个正整数最大公约数的任何问题。
《九章算术》——更相减损术
“可半者半之,不可半者,副置分母、子之数,以少 减多,更相减损,求其等也,以等数约之。”
《九章算术》
刘徽
《九章算术》其作者已不可 考,现今流传的大多是在三 国时期刘徽为《九章》所作 的注本。它是中国古代第一 部数学专著,系统总结了战 国、秦、汉时期的数学成绩, 收录了246个数学问题及其 解法,是当时世界上最简练 有效的应用数学,它的出现 标志中国古代数学形成了完 整的体系。

人教a版必修三:《1.3算法案例(1)》ppt课件(322页)

人教a版必修三:《1.3算法案例(1)》ppt课件(322页)

明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
§1.3(一)
探究点二:更相减损术
思考 2 (1)用更相减损术可以求两个正整数 m,n 的最大公约数,那么用什么逻辑结 构来构造算法?其算法步骤如何设计?
答 (1)用循环结构设计算法,算法如下:
第一步,任意给定两个正整数m,n(m>n). 第二步,计算 m-n 所得的差 k. 第三步,比较n与k的大小,其中大者用m表示,小者用n表示. 第四步,若m=n,则m,n的最大公约数等于m;否则,返回第二步.
第一章 算法初步
§1.3 算法案例(一)
本节知识目录
§1.3(一)
明目标、知重点
算法 案例 (一)
填要点、记疑点
探究点一 探究点二 探究点三
辗转相除法 更相减损术 秦九韶算法的基本思想
探要点、究所然
当堂测、查疑缺
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
明目标、知重点
§1.3(一)
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
§1.3(一)
探究点二:更相减损术
(2)该算法的程序框图如何表示?该程序框图对应的程序如何表述?
答 程序框图: 程序:
INPUT m,n WHILE m< >n k=m-n IF n>k THEN m=n n=k ELSE m=k END IF WEND PRINT m END
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺

算法案例 辗转相除法与更相减损术秦九韶算法与进位制第一课时课件-数学高一必修3第一章算法初步1.3人教A版

算法案例 辗转相除法与更相减损术秦九韶算法与进位制第一课时课件-数学高一必修3第一章算法初步1.3人教A版

【问题导思】 1.如何求18与54的最大公约数? 【提示】 短除法.
2.要求6 750与3 492的最大公约数,上述法还好用吗?
【提示】
数值太大,短除法不方便用.
(1)更相减损之术(等值算法)
用两个数中较大的数减去较小的数,再用 差数 较小的数 大 数 到产生 减 和
构成新的一对数,对这一对数再用 小数 ,以同样的操作一直做下去,直 ,这个数就是最大公约数.
v0=an 则递推公式为 其中 vk= vk-1x+an-k
k=1,2,„,n.
(2)计算P(x0)的方法 先计算 最内层括号 ,然后 由内向外 常数项 直到 最外层括号 ,然后加上 逐层计算, .
知识3
进位制
进位制是一种记数方式,用有限的数字在不同的位置表示
不同的数值.使用数字符号的个数称为基数,基数为 n,即称为
1.用更相减损之术可求得78与36的最大公约数是( A.24 【解析】 B.18 C.12 D. 6
)
78-36=42,42-36=6,36-6=30,30-
6=24,24-6=18,18-6=12,12-6=6,∴6为78与36的
最大公约数.
【答案】 D
2.用秦九韶算法计算f(x)=6x5-4x4+x3-2x2+x3-2x2 -9x,需要加法(或减法)与乘法运算的次数分别为( A.5,4 【解析】 B.5,5 C.4,4 )
【解析】 (1)101 111 011(2)=1×28+0×27+1×26+1×25
+1×24+1×23+0×22+1×21+1×20=379(10).
(2)1231(5)=1×53+2×52+3×5+1=191(10),
∴1231(5)=362(7).

高中数学人教A版必修三第一章.3进位制-算法案例ppt课件

高中数学人教A版必修三第一章.3进位制-算法案例ppt课件
1.3算法案例
进位制
十进制数3721中的3表示3个千,7表示7个百,2表示2个 十,1表示1个一,从而它可以写成下面的形式:
3721=3×103+7×102+2×101+1×100.
同理: 3421(5)= 3×53+4×52+2×51+1×50.
每一位上的数都是整数.
按照十进制数的运算规则计算出结果, 结果就是十进制下该数的大小了.
89 余数
=81+18+6+1=106.
44
1
0
3
11
0
解:第一步:先把三进制数化为十进制数:
按照十进制数的运算规则计算出结果,
1
0
22
0
结果就是十进制下该数的大小了.
∴ 89=324(5)
2
1
=81+18+6+1=106. 第二步:再把十进制数化为二进制数:
106=1101010(2). ∴10221(3)=106=1101010(2).
课堂小结
1.几进制的基数就是几,基数都是大于1的数.
89=1011001(2)
11
0
17
4
∴ 89=324(5)
十进制数3721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一,从而它可以写成下面的形式:
把89化为五进制的数.
5 89 5 17 53
0
余数
4 2 3
∴ 89=324(5)
练习:把3282化为16进制的数.
10
11
12
13
14
15
ABຫໍສະໝຸດ CDEF
思考 你会把三进制数10221(3)化为二进制数吗?

高中数学人教A版必修三第一章1.3.3进位制-算法案例课件

高中数学人教A版必修三第一章1.3.3进位制-算法案例课件

把89化为五进制的数.
5 89 5 17 53
0
余数
4 2 3
∴ 89=324(5)
练习:把3282化为16进制的数.
10
11
12
13
14
15
A
B
C
D
E
F
思考 你会把三进制数10221(3)化为二进制数吗?
解:第一步:先把三进制数化为十进制数: 10221(3)=1×34+0×33+2×32+2×31+1×30
51
把89化为二进制的数.
2 89
2 44 2 22 2 11 25
22 21
0
余数
1 0 0 1 1 0 1
把算式中各步所得的余 数从下到上排列,得到
89=1011001(2) 可以用2连续去除89或所得 商(一直到商为0为止),然后 取余数---除2取余法.
这种方法也可以推广为把 十进制数化为k进制数的 算法,称为除k取余法.
=81+18+6+1=106. 第二步:再把十进制数化为二进制数:
106=1101010(2). ∴10221(3)=106=110就是几,基数都是大于1的数.
按照十进制数的运算规则计算出结果, 结果就是十进制下该数的大小了.
1.3算法案例
进位制
十进制数3721中的3表示3个千,7表示7个百,2表示2个 十,1表示1个一,从而它可以写成下面的形式:
3721=3×103+7×102+2×101+1×100.
同理: 3421(5)= 3×53+4×52+2×51+1×50.
每一位上的数都是整数.

1.3算法案例 课件-高一数学人教A版必修3

1.3算法案例 课件-高一数学人教A版必修3
f (x) 4x5 2x4 3.5x3 2.6x2 1.7x 0.8
用秦九韶算法求这个多项式当x=5时的值。
解:根据秦九韶算法,把多项式改写成如下 形式:
f (x) ((((4x 2)x 3.5)x 2.6)x 1.7)x 0.8
按照从内到外的顺序,依次计算一次多项式当 x=5时的值:
WHILE d<>n
IF d>n THEN m=d
ELSE m=n
n=d
END IF d=m-n WEND d=2^k*d
PRINT d
END
问题2:怎样求多项式 f (x) x5 x4 x3 x2 x 1当x=5 的值呢?
方法1:把5代入多项式,计算各项的值,然后把它们加 起来。这时共做了1+2+3+4=10次乘法运算,5 次加法运算。
例1:用更相减损术求98与63的最大公约数。
解:由于63不是偶数,把98和63以大数减小数, 并辗转相减得,如图所示:
98-63=35 63-35=28 35-28=7 28-7=21 21-7=14 14-7=7
所以,98和63的最大公约数等于7。
思考:把更相减损术与辗转相除法比较,你有什么
发现?你能根据更相减损术设计程序,求两个正数的 最大公约数吗?
v1 an x an1
然后由内向外逐层计算一次多项式的值,即
v2 v1 x an2 ,
v3 v2 x an3 ,
vn vn1 x a0 ,
这样,求n次多项式f(x)的值就转化为求n个一次多项 式的值。
上述方法称为秦九韶算法。直到今天, 这种算法仍是 多项式求值比较先进的算法。
例2、已知一个5次多项式为
⑤十进制化k进制

2014年人教A版必修三课件 1.3 算法案例

2014年人教A版必修三课件 1.3 算法案例
开始
输入正数m,n
m>n? 是 m=m-n 否 m=n? 是 输出m 结束
否 n=n-m
案例2 秦九韶算法 问题2. 下面是求多项式 f(x)=x5+x4+x3+x2+x+1 的 值的两种算法, 你认为哪种算法要快一些? 为什么? 算法 1: 直接将 x 的值代入多项式计算; 算法 2: 将多项式变形成 f(x)=((((x+1)x+1)x+1)x+1)x+1. 算法 1 要做 10 次乘法和 5 次加法. 算法 2 只做 4 次乘法和 5 次加法. 计算机做一次乘法用的时间比做一次加法所用 的时间长得多. 对于 n 次多项式的求值运算, 我国南宋时期的 秦九韶有如下的算法:
5. 什么是秦九韶算法? 它的特点是什么? 6. 你能写出秦九韶算法的程序吗?
Hale Waihona Puke 案例1 辗转相除法与更相减损术 问题1. 你能求两个数的最大公约数吗? 看下面 一列等式, 请问: 37 是 2146 与 1813 的公约数吗? 2146 1813 余 333, 2146 = 1813 1 +333, 有37的约数, 1813 333 余 148, 1813 = 333 5 +148, 有37的约数, 333 148 余 37, 333 = 148 2 +37, 有37的约数, 148 37 余 0. 有37的约数, 148 = 37 4. 求两个数的最大公约数的算法步骤: (1) 大数除以小数取余数; (2) 较小的数与余数又进行大数除以小数取余数; 如此重复进行, 直到余数为 0. 余数为 0 时的除数就是最大公约数. 这叫辗转相除法, 又叫欧几里得算法.
否则, 返回第二步进入循环.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i=n-1
WHILE i>=0 INPUT“ai=”;a
v=v*x+a
i=i-1
WEND
PRINT v
END
人教A版高中数学必修3第一章1.3 算法案例课件_4
• 程序计算
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
课堂小结:
1、秦九韶算法的方法和步骤 2、秦九韶算法的流程图及程序
人教A版高中数学必修3第一章1.3 算法案例课件_4
秦九韶算法是求一元多项式的值的一种方 法。
怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时 的值呢? 算法一:把5代入,计算各项的值,然后把它 们加起来。 算法二:先计算x2的值,然后依次计算x2·x、 ( x2·x)·x、( ( x2·x)·x)·x的值。
人教A版高中数学必修3第一章1.3 算法案例课件_4
开始 输入n,an,x的值
v=an i=n-1
程序语言
i=i-1
v=vx+ai
i≥0? Y
N
输出v
输入ai
结束
人教A版高中数学必修3第一章1.3 算法案例课件_4
INPUT “n=”;n INPUT “an=”;a INPUT “x=”;x v=a
作业:
1.书本45页 课后练习2 2.( 思考题) f(x)=2x6-5x5+ax3+3x2-6x
当x = 5时v4=608,求a的值
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
谢 谢 指 导!
人教A版高中数学必修3第一章1.3 算法案例课件_4
所以,当x=5时, 多项式的值是15170
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
练一练:用秦九韶算法求多项式 f(x)=2x6-5x5-4x3+3x2-6x当x=5时的值.
解:原多项式先化为:
f(x)=2x6-5x5 +0×x4-4x3+3x2-6x+0
秦九韶算法的程序设计
第一步:输入多项式次数n、最高次项的系数an和x的值 第二步:将v的值初始化为an,将i的值初始化为n-1 第三步:输入i次项的系数ai 第四步:v=vx+ai,i=i-1. 第五步:判断i是否大于或等于0,若是, 则返回第三步;否则,输出多项式的值v.
人教A版高中数学必修3第一章1.3 算法案例课件_4
所以,当x=5时,多项式的值是2677. 多项式的值.
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
《数书九章》——秦九韶算法
设 是一个n 次的一元多项式
对该多项式按下面的方式进行改写
人教A版高中数学必修3第一章1.3 算法案例课件_4
一共n-1个小括号
v2=v1x+an-2, v3=v2x+an-3, ……, vn=vn-1x+a0. 这样,求n次多项式f(x)的值就转化为求n个
一次多项式的值.这种算法称为秦九韶算法.
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
练一练:求当x = 5时多项式 f(x)=2x6-5x5-4x3+3x2-6x的值.
提取公因式
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
算法一:把5代入,计算各项的值,然后把它们 加起来。
f(x) =x5+x4+x3+x2+x+1 f(5) = 55+54+53+52+5+1
=5x5x5x5x5+5x5x5x5+5x5x5+5x5+5+1 =3125+625+125+25+5+1 =3906
秦九韶
(1208年-1261年)
南宋官员、数学家, 与李冶、杨辉、朱世杰 并称宋元数学四大家。
字道古,汉族,自称 鲁郡(山东曲阜)人,生于 普州安岳(今属四川)。
数学贡献:
《划时代巨著》,《大衍求一术》,
《任意次方程》,《一次方程组解法》
《三斜求积术》,《数书九章》
----------秦九韶
《相关算法》,《剩余定理》
列表 2 -5 0 -4 3 -6 0
x=5
10 25 125 605 3040 15170
V= 2 5 25 121 608 3034 15170
所以,当x=5时,多项式的值是15170.
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
总结:
秦九韶算法是求一元多项式的值的一 种方法.
它的特点是:把求一个n次多项式的值 转化为求n个一次多项式的值,通过这种转 化,把运算的次数由至多n(n+1)/2次乘法运 算和n次加法运算,减少为n次乘法运算和n 次加法运算,大大提高了运算效率.
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
解法一:首先将原多项式改写成如下形式 : f(x)=(((((2x-5)x-0)x-4)x+3)x-6)x+0
然后由内向外逐层计算一次多项式的值,即
v0=2 v1=v0x-5=2×5-5=5 v2=v1x-0=5×5-0=25 v3=v2x-4=25×5-4=121 v4=v3x+3=121×5+3=608 v5=v4x-6=608×5-6=3034 V6=v5x+0=3034×5+0=15170
比赛
(1)求多项式f(x)=x5+x4+x3+x2+x+1 当x=5时的值。 (1) 3906
(2)求多项式 f (x) = 2x5 – 5x4 – 4x3 + 3x2 – 6x + 7 当x = 5时的值。 (2) 2677
• 程序计算
1.3.2 算 法 案 例 (案例2) 秦 九 韶 算 法
人教A版高中数学必修3第一章1.3 算法案例课件_4
例1:求当x = 5时多项式 f (x) = 2x5 – 5x4 – 4x3 + 3x2 – 6x + 7的值.
解法二:列表
原多项式的系 数
2 -5 -4 3 -6 7
x=5
10 25 105 540 2670
V= 2 5 21 108 534 2677
省略了若干 项
人教A版高中数学必修3第一章1.3 算法案例课件_4
一般地,对于一个n次多项式 f(x)=anxn+an-1xn-1+an-2xn-2+……+a1x+a0. 我们可以改写成如下形式:
f(x)=((anx+an-1)x+an-2)x+…+a1)x+a0. 求多项式的值时,首先计算最内层括号内一 次多项式的值,即 v1=anx+an-1, 然后由内向外逐层计算一次多项式的值,即
4次的乘法运算,5次的加法运算
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
计算多项式
f(x)=x5+x4+x3+x2+x+1当x=5的值 法一:10次的乘法运算,5次的加法运算
法二:4次的乘法运算,5次的加法运算
显然,采用第二种算法,计算能够更快地得到结果。
10次的乘法运算,5次的加法运4
人教A版高中数学必修3第一章1.3 算法案例课件_4
算法二:先计算x2的值,然后依次计算 x2·x、( x2·x)·x、( ( x2·x)·x)·x 的值
f(5)=55+54+53+52+5+1 =5×(54+53+52+5+1) +1 =5×(5×(53+52+5 +1 )+1 )+1 =5×(5×(5×(52+5 +1)+1)+1) +1 =5×(5×( 5×(5×(5+1 )+1) +1)+1)+1

见!
然后由内向外逐层计算一次多项式的值,即
v0=2
v1=v0x-5=2×5-5=5 所以,当x=5时,
v2=v1x-4=5×5-4=21 多项式的值是2677.
v3=v2x+3=21×5+3=108 v4=v3x-6=108×5-6=534
5次乘法,5次加法
v5=v4x+7=534×5+7=2677
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
例1:求当x = 5时多项式 f (x) = 2x5 – 5x4 – 4x3 + 3x2 – 6x + 7的值.
解法一:首先将原多项式改写成如下形式 : f(x)=((((2x-5)x-4)x+3)x-6)x+7
相关文档
最新文档