纯水离子交换计算公式(内部资料)
阴阳离子交换计算
阴阳离子交换计算集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#第一步,计算原水的总离子浓度C,并转换成meq/L单位1.把原水中各种离子的含量输入RO计算软件,自动得出总的离子浓度。
如下:2.直接计算,公式如下:单一离子浓度的公式:离子浓度(meq/L)= [离子浓度(ppm或mg/L)÷原/分子量]×化合价如:Ca浓度(meq/L)= 70÷40×2 = ,Na浓度(meq/L)= 52÷23×1 =SO4浓度(meq/L)= 127÷96×2 = ,Cl浓度(meq/L)= 104÷×1 =阳离子的总浓度C A(meq/L= eq/m3)为各种阳离子浓度之和;阴离子的总浓度C C(meq/L= eq/m3)为各种阴离子浓度之和。
第二步,计算树脂的总交换当量Q一般,阳树脂的实际交换当量以900 meq/L,即900 eq/m3为准;阴树脂的实际交换当量以350 meq/L,即350 eq/m3为准。
根据树脂的体积即可计算出阳树脂的总交换当量Q A(eq)和阴树脂的总交换当量Q C (eq)。
第三步,计算树脂的再生周期T对阳树脂和阴树脂的再生周期分别计算:阳树脂再生周期:T A = Q A÷(C A× F)阴树脂再生周期:T C = Q C÷(C C× F)式中,T A和T C的单位为小时(h);Q A和Q C的单位为eq;C A和C C的单位为eq/m3;F为离子交换柱每小时的处理水量,单位为m3/h。
经过计算后,在T A和T C中选择一个小的数值作为树脂再生的周期,一般T C的数值比较小。
离子交换法方程式
离子交换法方程式
(原创实用版)
目录
1.离子交换法的定义和原理
2.离子交换法的应用领域
3.离子交换法的方程式及其解析
正文
一、离子交换法的定义和原理
离子交换法是一种常用的物质分离和纯化方法,其基本原理是利用离子交换剂与待处理溶液中的离子进行交换,从而达到分离和纯化的目的。
离子交换剂通常是一种具有固定电荷和不同交换基团的高分子物质,它可以与溶液中的离子发生可逆的吸附和解吸附反应。
二、离子交换法的应用领域
离子交换法广泛应用于化学、生物学、环境科学等领域,主要用途包括:水处理、离子分离和浓缩、离子交换色谱、电镀废水处理等。
三、离子交换法的方程式及其解析
离子交换法的基本方程式如下:
R-H+ + Na+ → R-Na+ + H+
其中,R-H+ 代表待处理的阳离子,Na+ 代表交换剂上的可交换阳离子,R-Na+ 代表交换后的产物。
从方程式中可以看出,离子交换法的过程是一个动态平衡过程,其交换速度和交换效率受到多种因素的影响,如交换剂的物理和化学性质、溶液的 pH 值、反应时间等。
第1页共1页。
离子交换设计计算书(有公式)
全自动软水器设计指导手册(附设计公式)目录一、总述 01. 锅炉水处理监督管理规则 02. 离子交换树脂部结构 03. 钠离子交换软化原理及特性: (1)4. 水质分析测试容 (1)•PH值(Potential of Hydrogen) (1)•总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (1)•铁含量(IRON) (1)•锰 (2)•硬度值(HARDNESS) (2)•碱度 (2)•克分子(mol) (2)•当量 (3)•克当量 (3)•硬度单位 (3)•我国江河湖泊水质组成 (5)二、全自动软水器 (5)三、影响软水器交换容量的因素 (7)1. 流速(gpm/ft,m/h) (7)2. 水与树脂的接触时间:(gpm/ft3) (7)3. 树脂层的高度 (8)4. 进水含盐量 (9)5. 温度 (11)6. 再生剂质量(NaCl) (11)7. 再生液流量 (12)8. 再生液浓度 (13)9. 再生剂用量 (14)10. 树脂 (14)四、自动软水器设计 (14)1. 软水器设备应遵循的标准 (14)2. 全自动软水器主要参数计算 (15)1) 反洗流速的计算: (15)2) 系统压降计算 (15)3. 软水器设计计算步骤 (15)计算示例 (17)一、总述1.锅炉水处理监督管理规则第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规则。
第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。
第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。
第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。
第十四条锅炉水处理设备出厂时,至少应提供下列资料:1.水处理设备图样(总图、管道系统图等);2.设计计算书;3.产品质量证明书;4.设备安装、使用说明书;5.注册登记证书复印件。
交换容量计算公式
交换容量计算公式
E=(NV)/W×固体含量 me/g式中:N——NaOH溶液的当量浓度,mol/L;V——NaOH标准溶液的用量,ml;W——样品湿重,g.
拓展资料:
离子交换容量:
离子交换容量是指离子交换树脂中可与离子交换的活性位点数,一般用质量单位(毫当量/克)或体积单位(毫当量/升)表示。
离子交换容量可以通过以下公式计算:离子交换容量 = (V2 - V1) × C × 1000 / W其中,V2 是用待测样品溶液反复冲洗树脂至 pH 值稳定时所用的空白对照的溶液体积(mL),V1 是用空白对照的溶液反复冲洗树脂至 pH 值稳定时所用的空白对照的溶液体积(mL),C 是用待测样品溶液浸泡树脂后剩余的 NaCl 溶液的浓度(mol/L),W 是用待测样品溶液浸泡后干燥的树脂质量(g)。
需要注意的是,这个公式是基于钠离子进行计算的,如果要计算其他离子的交换容量,需要将 C 的值换成相应离子的浓度。
ew离子交换当量
ew离子交换当量离子交换是一种广泛应用于水处理、化学工业和环境保护等领域的技术。
它通过特定离子交换剂与溶液中的离子进行选择性吸附,实现离子浓度的降低或离子种类的转换。
本文将从离子交换基本概念、离子交换当量的定义和计算方法、离子交换过程中的影响因素、离子交换应用领域和提高离子交换效果的策略等方面进行详细阐述。
一、离子交换基本概念离子交换是指在溶液中,离子通过交换剂上的可交换离子位点,从一个溶液相转移到另一个溶液相的过程。
这个过程通常发生在两个溶液相之间,其中一个溶液中含有待处理的离子,另一个溶液中含有可以与待处理离子发生交换的离子交换剂。
二、离子交换当量的定义和计算方法离子交换当量(Exchange Equivalence)是指在一定条件下,离子交换剂可以交换的离子的数量。
它是一个重要的性能指标,用于衡量离子交换剂的交换能力和效果。
离子交换当量的计算方法为:离子交换当量= (吸附离子的摩尔浓度× 交换剂的吸附量)/ 溶液的体积其中,吸附离子的摩尔浓度是指离子交换剂在吸附过程中所吸附的离子的摩尔数,交换剂的吸附量是指单位质量的交换剂所能吸附的离子数量,溶液的体积是指进行离子交换的溶液体积。
三、离子交换过程中的影响因素1.离子交换剂的性质:离子交换剂的种类、结构和活性位点对离子交换效果具有重要影响。
2.溶液条件:溶液的pH值、离子浓度和温度等条件会影响离子交换过程的动力学和热力学。
3.交换过程的动力学:包括交换速度、吸附和解离速度等,影响离子交换效果的速率和效率。
4.操作条件:包括流量、交换时间和交换剂量等,合理调整操作条件可以提高离子交换效果。
四、离子交换应用领域1.水处理:离子交换技术在水处理领域具有广泛应用,如去除水中的硬度离子、脱盐、除碱等。
2.化学工业:用于离子分离、提纯和浓缩等过程,如离子交换膜法电解、离子交换吸附等。
3.环境保护:应用于废水中有害离子的去除和污水处理,如重金属离子去除、有机物降解等。
水的净化 —— 离子交换法制备纯水 ( 3 学时)
水的净化——离子交换法制备纯水(3学时)一、实验目的1.了解蒸馏法和离子交换法制备纯水的基本原理和操作方法。
2.学习离子交换树脂的使用方法。
3.学习蒸馏装置的组装方法。
二、实验原理离子交换法制备纯水是利用离子交换树脂活性基团上具有离子交换能力的H+和OH-与水中阳、阴离子杂质进行交换,将水中阳、阴离子杂质截留在树脂上,进入水中的H+和OH-重新结合成水而达到纯化水的目的。
凡能与阳离子起交换作用的树脂称为阳离子交换树脂,与阴离子起交换作用的树脂称为阴离子交换树脂。
三、实验用品仪器:250ml锥形瓶3只、烧杯、铁架台、离子交换柱(3支,50ml)、铁架台、试管药品:铬黑T指示剂、AgNO3(0.1mol·L-1)、HNO3(2mol·L-1)、NH3-NH4Cl缓冲液、BaCl2(0.1mol·L-1)、717#强碱性阴离子交换树脂、732#强酸性阳离子交换树脂材料:pH试纸、脱脂棉(或玻璃纤维)、乳胶管、螺旋夹四、实验内容1、装柱用两只10mL小烧杯,分别量取再生过的阳离子交换树脂7mL(湿)或阴离子交换树脂约10mL(湿),按照装柱操作要求进行装柱。
第1支柱加入1/2柱容积的阳离子交换树脂,在第2支柱加入2/3柱容积的阴离子交换树脂,在第3支柱加入2/3柱容积的阴阳离子混合树脂。
装置完毕,按将三个柱进行串联,在串联时同样适用纯水并注意尽量排除连接管内的气泡,以免液柱阻力过大而交换不能畅通,各柱树脂层顶上也塞入少量脱脂棉,即得离子交换净水装置。
2、离子交换与水质检验依次使原料水流经阳离子交换柱、阴离子交换柱、混合离子交换柱。
并依次接收原料水、阳离子交换柱流出水、阴离子交换柱流出水、混合离子交换柱流出水样,进行以下项目检验。
(1)用电导率仪测定个样品的电导率。
(2)取各样品水2滴分别放入点滴板的圆穴内,检测钙离子、镁离子、硫酸根离子和氯离子。
结果填表格。
3、再生按基本操作中所述的方法再生阴离子、阳离子交换树脂。
离子交换法制备纯水ppt实用资料
用水洗至pH为3~4止,再用约60mL的(1+4)盐酸溶液以3~ 将20g新阴、阳树脂分别放于两个烧杯中用水反复漂洗,除去其中的色素、水溶性物质及灰尘。
用盐酸对阳离子交换树脂再生反应: 为了恢复其交换能力,必须用酸(如盐酸)和碱(如氢氧化钠)对阳、阴离子交换树脂进行再生。
4mL/min左右的流速进行动态转型,酸加完后用去离子水洗至pH约 接着浸泡24h,再反复用水洗至无明显混悬物时,将水倒尽。
先加水至阳离子交换柱中,控制流速为5mL/min,流出液再加入 将20g新阴、阳树脂分别放于两个烧杯中用水反复漂洗,除去其中的色素、水溶性物质及灰尘。
阴离子交换树脂加80g/L氢氧化钠溶液,待水替换出后,放置2~3h,用水洗至pH为9~10止,再用约60mL的80g/L氢氧化钠溶液以3~4mL/min左右的流速进行动态转型,酸加完后用 去离子水洗至pH约为8~9。
为了恢复其交换阴能力离,必须子用酸交(如盐换酸)和树碱(如脂氢氧加化钠)对8阳0、g阴离/子L交氢换树脂氧进行化再生钠。 溶液,待水替换出后,放置2~ 3h,用水洗至pH为9~10止,再用约60mL的80g/L氢氧化钠溶液以 3~4mL/min左右的流速进行动态转型,酸加完后用去离子水洗至 pH约为8~9。
离子交换器的设计计算公式
离子交换器的设计计算
1、交换器直径:
F=Q/T×N×V
F---交换器截面积(m2);Q---产水量(T/D);T---工作时间(H/D)N---交换器台数;V---交换流速(M/H).
2、交换器高度:
H=Hp+Hr+Hs+Ht(米)
Hp---交换器下部排水高度,一般为0.3—0.7m;
Hr---交换剂层高度,一般在1.0—2.0之间选择。
Hs---反洗膨胀高度。
Ht---顶部封头高度。
3、交换器连续工作时间:
t=Vr×Eg/q×(H1-H2) (小时)
Vr---交换剂体积;q---交换器流量;
Eg---交换剂的工作交换容量,一般阳树脂取1000mol/m3。
H1---原水中硬度,mmol/L. H2---出水残留硬度,mmol/L.
4、再生剂用量:
Gz=Vr×Eg×Bz/1000×ε(kg)
Gz---再生剂用量;Bz---再生剂实际耗率,g/mol.
ε---再生剂纯度,对NaCL,可取0.95。
常用再生剂的实际耗率
顺流再生逆流再生
再生剂:NaCL HCL NaCL HCL 耗率:120-150 60-90 70-90 30-60。
阴阳离子交换计算
第一步,计算原水的总离子浓度C,并转换成meq/L单位
1.把原水中各种离子的含量输入RO计算软件,自动得出总的离子浓度。
如下:
2.直接计算,公式如下:
单一离子浓度的公式:离子浓度(meq/L)= [离子浓度(ppm或mg/L)÷原/分子量]×化合价
如:Ca浓度(meq/L)= 70÷40×2 = 3.5,Na浓度(meq/L)= 52÷23×1 = 2.26
SO浓度(meq/L)= 127÷96×2 = 2.65,Cl浓度(meq/L)= 104÷35.5×1 = 42.93
meq/L= eq/m(阳离子的总浓度C A3)为各种阴3)为各种阳离子浓度之和;
离子浓度之和。
meq/L= eq/m 阴离子的总浓度C(C第二步,计算树脂的总交换当量Q
900 meq/L,即900 eq/m3,即3为准;一般,阳树脂的实际交换当量以
350 eq/m为准。
阴树脂的实际交换当量以350 meq/L)和阴树脂的总交换当量eq(根据树脂的体积即可计算出阳树脂的总交换当量Q A。
(eq)Q C T 第三步,计算树脂的再生周期对阳树脂和阴树脂的再生周期分别计算:)× F÷(C = Q阳树脂再生周期:T AAA F)(C × = Q阴树脂再生周期:T ÷CCC3;的单位为和Ceq/m eq和;的单位为小时(式中,T和Th)Q Q 的单位为;C CAACCA3/h。
F为离子交换柱每小时的处理水量,单位为m的数值一般中选择一个小的数值作为树脂再生的周期,和在经过计算后,TTT CCA.
比较小。
.。
离子交换计算方法
离子交换计算方法一:阳树脂001X7 堆密度0.85 mg/L 交换容量800mol/ m3阴树脂201X7 堆密度0.75 mg/L 交换容量270mol/ m3水质:RO产水`:电导≤30µs/cm 折算成Na+ 5.9ppm(mg/L) Cl- 9.1ppm(mg/L)Na+的原子量22.99 (mg/mmol)Cl-的原子量35.5 (mg/mmol)Na+ 含量 5.9ppm(mg/L)/ 22.99 (mg/mmol)= 0.256mmol/L= 256 mmol/ m3( 0.256 mol/ m3) Cl- 含量9.1ppm(mg/L)/ 35.45 (mg/mmol)= 0.256mmol/L= 256 mol/ m3( 0.256 mol/ m3) 阳床: 阳树脂001X7装填量1225kg =1440L=1.44m3阳床总交换容量1.44m3X800mol/ m3=1152 mol阳床理论产水量1152 mol÷0.256 mol/ m3=4500 m3阳床实际产水量4500 m3X50%=2250 m3 (树脂实际利用率≈50%)阳床运行时间2250 m3÷10 m3/h=225 h阴床: 阴树脂201X7装填量1070kg =1440L=1.44m3阴床总交换容量1.44m3X270mol/ m3=390 mol阴床理论产水量392 mol÷0.256 mol/ m3=1532 m3阴床实际产水量1532 m3X50%=766 m3 (树脂实际利用率≈50%)阴床运行时间766 m3÷10 m3/h=76 h离子交换计算方法二:阳床: 阳树脂001X7装填量1225kg =1440L=1.44m3水质:RO产水`:电导≤30µs/cm 折算成Ca+ + 5ppm(mg/L)CO-3 7ppm(mg/L)CaCO3 12ppm(mg/L)理论产水量=树脂体积(m3)X交换容量(kg CaCO3 / m3树脂)÷给水CaCO3含量(kg/ m3)X1000=1.44m3X40(kg CaCO3 / m3树脂)÷12ppm(mg/L)X1000=4800 m3阳床实际产水量4800 m3X50%=2400 m3阳床运行时间2400 m3÷10 m3/h=240 h阴床: 阴树脂201X7装填量1070kg =1440L=1.44m3理论产水量=树脂体积(m3)X交换容量(kg CaCO3 / m3树脂)÷给水CaCO3含量(kg/ m3)X1000=1.44m3X12.5(kg CaCO3 / m3树脂)÷12ppm(mg/L)X1000=1500 m3阴床实际产水量1500 m3X50%=750 m3阴床运行时间750 m3÷10 m3/h=75 h。
水处理工艺——离子交换处理
3. 离子交换树脂的特性
物理性能 : (1)外观。 (2)颗粒度。 化学性能: (1)交换反应的可逆性 (2)酸、碱性 (3)选择性。 (4)交换容量。 1)全交换容量。 2)工作交换容量。
(3)含水量。
(4)密度。 1)湿真密度。 2)湿视密度。 5)机械强度。 (6)耐热性
3.4 离子交换原理
HNO 3 HCI 1/2H2CO3
阳离子交换器的出水是酸性水。但当交换器运行失效时,其出水中就会有 其它阳离子的泄漏,而在诸多的阳离子中,首先漏出的阳离子是Na+,故 习惯上称之为漏钠。当出水中的Na+超过一个给定的极限值时,阳离子交换器被
判是漏Ca2+或Mg2+离子?这是因为水
CI CH2N (CH3)3 苯乙烯季胺盐阴树脂
2 离子交换树脂的命名
离子交换树脂产品型号是根据国家标准GBl631—79《离子交换树 脂产品分类、命名及型号》而制定的。 离子交换树脂的全名称由分类名称、骨架(或基团)名称、基本 名称依次排列组成。基本名称为离子交换树脂。大孔型树脂在全名称 前加“大孔”两字。分类属酸性的,在基本名称前加“阳”字;分类 属碱性的,在基本名称前加“阴”字。
离子交换树脂产品的型号以三位阿拉伯数字组成。第一位数字代
表产品分类,第二位数字代表产品骨架组成,第三位数字为顺序号, 用以区别功能基或交联剂的差异。代号数字的意义见表3.5.1和3.5.2 。
表3.5.1 分类代号
代号 功能基 0 强酸性 1 弱酸性 2 强碱性 3 弱碱性 4 螯合性 5 两性 6 氧化还原
二乙烯苯在高聚物中起的是空间架桥作用,使聚合物形成网状交联,聚合物 中二乙烯苯的含量愈多,白球的网状结构就愈坚固。我们通常把聚合物中二 乙烯苯的质量百分数叫做交联度。如交联度为7 ,就是指白球中二乙烯苯的 质量占7%。白球制备出来以后,再将白球通过磺化反应、氯甲基反应和胺化 反应,即可分别得到阴、阳离子交换树脂。下面就分别介绍。
水处理-离子交换分离
(ion exchange)
3.1 离子交换基本原理 3.2 离子交换剂 3.3 离子交换分离过程 3.4 离子交换应用
❖ 离子交换分离是利用离子交换剂与溶液中欲分 离的离子之间发生交换反应而实现离子交换反应: Resin-SO3H + Na+ = Resin-SO3Na + H+ Resin-SO3Na + H+ = Resin-SO3H + Na +
B A
A 外 B 内 A 内 B 外
应该用离子的活
度来表示,但在稀溶液中,离子的活度系数非常接近于1,
可近似的用浓度来代替。
2020/8/17
13
某些离子在阳离子树脂上的选择系数:
阳离子
Li+ H+ Na + NH4 + K+ Rb + Cs + Ag + Tl +
2020/8/17
UO2 2+
[H+]内=[Cl-]内+[R-] 将[H+]外[H+]内代入质量作用定律,得
[Cl-] 外2 =[Cl-]内*[[Cl-]内+[R-]] ❖ 由于膜内有较多的固定离子存在,因此[R-]很大,则
[Cl-] 外>> [Cl-]内, [H+]内>>[H+]外
2020/8/17
8
二、 离子交换平衡 ❖ 离子交换过程可看作是固相的交换树脂和液相中
交联度
8%
12%
1.00
1.00
1.27
1.47
1.98
2.37
2.55
3.34
离子交换法制备纯水
离子交换法制备纯水化学实验教学中心一、实验目的1. 了解离子交换法制备纯水基本原理2. 练习使用离子交换树脂的一般方法3. 学习使用电导率仪阳离子树脂: R-SO3-H+阴离子树脂: R≡N+OH-二、实验原理水中一般含有Ca2+、K+、Na+、Mg2+、SO42-、CO32-、Cl-、HCO3-等离子1. 什么是阳离子树脂?什么是阴离子树脂?2. 水中一般含有什么离子?2R-SO3-H++ Ca2+(R-SO3-)2Ca2++ 2 H+2R≡N+OH-+ SO42-(R≡N+)2SO42-+ 2OH-R-SO3-H++Na+R-SO3-Na++ H+R≡N+OH-+ Cl-R≡N+Cl-+ OH-3. 水中离子与树脂发生怎样交换?实验中注意的问题1. 离子交换柱不应有气泡,为什么?2. 柱中液面一定高于树脂床面,为什么?3. 控制水的流出速度小于每秒1滴,为什么?4. 注意电导率的量程选择5. 检验离子时注意酸度的控制,为什么?6. 检验离子时注意试管的清洁交换柱的制备:1. 交换柱下部空气的排出取一离子交换柱,洗净、检验是否漏水,不漏水后,用蒸馏水漂洗2-3次,放入蒸馏水约为柱的1/3,排气泡2.装柱将树脂与水一起倒入交换柱,同时打开下方玻璃活塞,让水缓慢流出,速度控制在不使树脂床露出水面,使树脂自然均匀下沉,填充至树脂床上部的水高约为4-6cm。
电导率仪的使用1. 接通电源,打开开关。
2. 将功能旋钮调至校正,温度补偿旋钮至25℃,数值。
调节常数校正旋钮,使数值显示为J3. 测量时,将电极浸入待测溶液,将功能键达到“测量”档,选择适宜量程,读数,记录。
注意单位:如 1.091 mS/cm。
离子交换柱设计计算公式
离子交换柱设计计算公式离子交换柱设计计算公式(1)计算交换柱处理负荷 G=Q(C—Cp)G—处理负荷 mol/hQ—处理水量 m3/hC—进水浓度mol/m3Cp—出水浓度mol/m3(2)计算所需树脂的总体积▽=GT/EO▽=树脂总体积m3T=树脂再生周期hEO=工作交换容量mol/m3(3)设计离子交换柱的直径D=√(4Q/πV)D—离子交换柱直径mV—处理液在柱内流速m/h(4)计算离子交换柱高度h=4▽/(D2π)3.3.1h—树脂层高度mH—离子交换柱高度m H=h(1+α)α—树脂清洗时膨胀率可按40%-50%考虑(5)离子交换再生液的计算再生剂的用量M=q0E0▽M—再生剂的用量gQ0—再生剂耗量g/mol▽—饱和树脂的体积m3再生液的体积▽I=M/Ci▽I—在一定浓度下的再生液的体积LCi—再生液中所含再生剂的浓度g/l整个处理过程发生的化学反应(Na型阳离子交换柱)去除 2R—COONa+M2+←→(R—COO)2M+2Na+式中 M2=Ni2+,Cu2+,Zn2+,Pb2+,Co2+等再生(R—COO)2M+2HCl←→2R—COOH+MCl2转型 R—COOH+NaOH←→R—COONa+H2O采用弱酸双阳柱全饱和流程离子交换柱应去除的金属离子的物质的量,考虑到出水中金属离子的含量比较少(Cp≈0)Ni2+(220mg/L)物质的量浓度为C (1/2Ni2+)=7.48mmol/L Cu2+ (80mg/L)物质的量浓度为C (1/2Cu2+)=2.52mmol/LCo2+ (20mg/L)物质的量浓度为C (1/2Co2+)=0.59mmol/LFe3+ (10mg/L) 物质的量浓度为C (1/3Fe3+)=0.19mmol/LPb2+ (10mg/L)物质的量浓度为C (1/2Pb2+)=.1.035mmol/L Zn2+ (20mg/L) 物质的量浓度为C (1/2Zn2+)=.0.62mmol/L 合计 12.435mmol/L每日应去除金属离子负荷为G=Q(C—Cp)=700m3/d×(12.435—0)mmol/L=8704.5mol/d3.3.2计算Na型阳离子交换树脂交换塔所需树脂的体积,该弱酸阳树脂工作交换容量E0=1500mol/m3,决定树脂再生周期T=2d,所需树脂的体积▽=GT/E0=(8704.5mol/d×2d)/1500mol/m3=11.606m3计算交换塔尺寸设交换塔直径D=1800mm(1.8m) 则树脂层厚度为h=4▽/(D2π)=(11.606m3×4)/(π×1.82)=4.6ma—考虑反冲洗时树脂的膨胀率α=50℅ 所以交换塔高H=h(1+α)=4.6×(1+50℅)=6.84m采用2柱串联,则每柱的树脂深度为6.84/2=3.42m3.3.3计算交换塔阳树脂再生时的耗酸量,查表得HCL的再生剂耗量为 q0=50g/mol再生一次所需的酸量(M)为:M=q0E0▽=50g/mol×1500mol/m3×11.606m3=870450g表见标注1如配成5%浓度的盐酸,查表得每升含盐酸质量51.2g,即浓度Chcl=51.2g/L.故所需5%的盐酸再生液体积:▽HCL=M/CHCL=870450g/(51.2g/l)=17000L再生周期为12h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全自动软水器设计指导手册(附设计公式)目录一、总述 (1)1. 锅炉水处理监督管理规则 (1)2. 离子交换树脂内部结构 (1)3. 钠离子交换软化原理及特性: (2)4. 水质分析测试内容 (2)•PH值(Potential of Hydrogen) (2)•总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (2)•铁含量(IRON) (2)•锰.........................................................•硬度值(HARDNESS) (3)•碱度 (3)•克分子(mol) (3)•当量 (4)•克当量 (4)•硬度单位 (4)•我国江河湖泊水质组成 (6)二、全自动软水器 (6)三、影响软水器交换容量的因素 (8)1. 流速(gpm/ft,m/h) (8)2. 水与树脂的接触时间:(gpm/ft3) (8)3. 树脂层的高度 (9)4. 进水含盐量 (10)5. 温度 (12)6. 再生剂质量(NaCl) (12)7. 再生液流量 (13)8. 再生液浓度 (14)9. 再生剂用量 (15)10. 树脂 (15)四、自动软水器设计 (15)1. 软水器设备应遵循的标准 (15)2. 全自动软水器主要参数计算 (16)1) 反洗流速的计算: (16)2) 系统压降计算 (16)3. 软水器设计计算步骤 (16)计算示例 (18)一、总述1.锅炉水处理监督管理规则第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规则。
第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。
第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。
第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。
第十四条锅炉水处理设备出厂时,至少应提供下列资料:1.水处理设备图样(总图、管道系统图等);2.设计计算书;3.产品质量证明书;4.设备安装、使用说明书;5.注册登记证书复印件。
第三十六条对违反本规则的单位和个人,有下列情况之一者,安全监察机构有权给予通报批评、限期改进,暂扣直至吊销资格(对持证的单位和个人)的处理。
2.离子交换树脂内部结构离子交换树脂的内部结构可以分为三个部分:1)高分子骨架由交联的高分子聚合物组成,如交联的聚苯烯、聚丙烯酸等;2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的离子官能团[如-SO3Na、-COOH、-N(CH3)3Cl]等,或带有极性的非离子型官能团[如-N(CH3)2、-N(CH3)H等];3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶孔)和高分子结构之间的孔(毛细孔)。
离子交换树脂的内部结构如下图中的左图所示,离子交换基团的结构如下图的右图所示。
顺流再生:交换流速20-30m/h,反洗流速12~15m/h,吸盐流速4-6m/h(逆1.4-2m/h)3.钠离子交换软化原理及特性:钠离子交换软化处理的原理是:原水通过钠型阳离子交换树脂,使水中的硬度成份Ca2+、Mg2+与树脂中的Na+相交换从而吸附水中的Ca2+、Mg2+使水得到软化。
如以Raa代表钠型树脂,其交换、再生过程如下:2RNa+Ca2+=R2Ca+2Na+R 2Ca+2NaCl =2RNa+CaCl2除去水中的硬度,碱度不变,TDS变化不大,氯根有所增加4.水质分析测试内容主要包括: PH,TDS,总硬度和铁含量及类型•PH值(Potential of Hydrogen)PH是氢离子浓度的负对数,表示溶液是酸性还是碱性。
PH以0到14的尺标度量,以7.0为中点或中和点。
PH值尺标的酸性是PH7.0的1000倍;反之,PH10.0的碱性是PH7.0的1000倍。
•总溶解固体(TDS --TOTAL DISSOLVED SOLIDS)溶解于水中的所有矿物质总体称作总溶解固体(TDS)。
TDS可通过加各种阳离子或各种阴离子求得(阳离子和阴离子配对数)。
例如:钙=21GPG(359.1mg/l) 氯=16GPG(237.6mg/l)镁=9GPG(153.9mg/l) 硫酸根=4GPG(68.4mg/l)钠=13GPG(222.3mg/l) 碳酸根=23GPG(393.3mg/l)总阳离子=43GPG(735.3mg/l) 总阴离子=43GPG(735.3mg/l)总溶解固体(TDS)=43GPG(735.3mg/l)注意:TDS,总阳离子数和总阴离子数必须相等。
溶解固体总量的90%以上是以下六种矿物质:阳离子:Ca2+,Mg2+,Na+阴离子:Cl-,SO42-,CO3-注:Ca2+和Mg2+是两种硬性矿物质的主要离子。
GPG---格令/ 加仑•铁含量(IRON)铁约占地壳的5%,也是最常见的水问题之一。
当铁暴露于空气、氯气中或受热时,从相对无害的二价状态转变到令人讨厌的三价状态:FeO+2H2CO3→Fe(HCO3)2+H2O4Fe(HCO3)2+O2+2H2O →4Fe(OH)3+8CO2当铁与某些嗜铁细菌一起存在时,问题变得更为严重,细菌消耗铁以维持生命,最终死亡,留下淤渣可堵塞水管和阀门。
三种主要嗜铁细菌:Gallionella (盖氏铁柄杆菌属)Crenothrix (铁细菌属)Leptothrix (汗毛菌属)锰是一种稀有的金属,它的化学、物理性能均与铁非常相似。
锰通过与铁类似的反应进入水中,并以类似的方式被氧化:MnO + 2H2CO3 →Mn(HCO3)2 + H2OMn2++O2 + 2H2O →2MnO2 + 4H+二氧化锰(MnO2)在低达0.05 PPM(0.05mg/L)的水平上就会引起黑色污污。
情况既然如此,可以想象2PPM(2mg/L)的浓度将会怎样。
•硬度值(HARDNESS)1) 水在大气中凝聚,溶解空气中的二氧化碳,形成弱酸H2O+CO2→H2CO32)该酸随雨落地,流过土壤到达岩床,溶解石灰、中和,同时变硬H2CO3+CaCO3→Ca(HCO3)2H2+MgCO3→Mg(HCO3)23) 钙,镁形成硬性水垢CaCl2氯化钙MgCl2氯化镁CaSO4硫酸钙MgSO4硫酸镁4) 硬性物质引起的问题是多重的,最常见的是硬垢,反应水“硬化”现象的方程式如下:Ca(HCO3)232O+CO2•碱度水的碱度是指水中能够接受[H+]离子与强酸进行中和反应的物质含量。
碱度是表示水中CO32-,HCO3-,OH-及其它一些弱酸盐类的总和。
在水中碳酸氢盐与氢氧化物不能同时存在:HCO3-+OH-=CO32-+H2O因此,水中的碱度以五种形式存在:1)HCO3-2)CO32-3)OH-4)HCO3-+CO32-5)CO32-+OH-碱度对锅炉运行影响碱度对锅炉的腐蚀,主要是苛性脆化腐蚀,是由水中NaOH造成。
苛性脆化腐蚀会使金属晶粒间发生裂纹。
其后果轻者使锅炉不能使用,重者发生锅炉爆炸,造成严重后果。
NaHCO3→NaOH + CO2Na2CO3 + H2O → 2NaOH + CO2•克分子(mol)定义:一定重量的物质,在数值上等于他的分子量,单位用克表示.这个量就称为一个克分子。
如水的分子量为18,而18克水就是1克分子水。
1克分子的水含有的分子数为:6.02X1023国际上规定:物质体系所包含的结构粒子(如原子、分子、离子、电子、光子等)数目与12克碳(C12)中的原子数目相等,则这体系的量为摩尔,符号mol。
定义:当量表示元素相互化合时它们之间的重量关系。
各种元素相互化合时,其重量比等于他们的当量比。
元素的当量=原子量/化合价化合物的当量=化合物的分子量/正(或负)价总数如: 钙的当量=原子量/化合价=40.078/2=20.039•克当量定义:一定量的物质在数值上等于它的当量,单位以克表示,这个量就称为该物质的1 个克当量。
如:钙的当量为20.039,而20.039克的钙就等于1克当量•硬度单位1升水中含有的钙、镁离子的总毫克分子数(mmol/L)。
1升水中含有的钙、镁离子的总毫克当量数(meq/L)。
1升水中含有的1/2钙、1/2镁离子的总毫克分子数。
即:以氢离子为基本单位的物质的量浓度(氢摩尔浓度)(在数值上½钙、½镁离子的总毫克分子数等于钙、镁离子的总毫克当量数)以CaCO3摩尔质量来表示的1升水中含有钙、镁离子的摩尔总数。
表示方法为ppm(以CaCO3计)如: CaCO3的分子量为100其可接受或提供1mol[H+]的摩尔质量为50。
硬度为2[H+]mmol/L浓度,可表示为2×50=100ppm(以CaCO3计) 例:水质分析结果为Ca2+=42.4mg/L,Mg2+=25.5mg/L用上面4种方试表示其硬度(1)42.4/40.07+25.5/24.3=1.058+1.049=2.107mmol/L(2)42.4/20.03+25.5/12.15=4.22meq/L(3)4.22mmol/L(½Ca2+ ½Mg2+)(4)4.22×50=211ppm(以CaCO3计)1升水中含有的钙、镁离子总量等于17.1ppm(以CaCO3计)定义为一个格令/加仑(gr/gallon)。
Cv 和 Kv是什么?•Cv 是温度为60华氏度时, 流体通过一阀门时压力损失1 psi状态下的流量(单位为gpm ). •Kv 是温度为20摄氏度时, 流体通过一阀门时压力损失 1 Bar状态下的流量(单位为m3/hr ).•以上系数所涵盖的系统不受气蚀的影响.•数据来源为: 在实验室状态下, 在不同的流量情况下进行多次实验获得,同时记录下不同流量下的压力损失.• Cv和Kv的相互转换: Cv = 1.16 Kv Kv = 0.853 Cv• 主要用作计算阀门在不同流量状态下的压力损失.DP = 2⎪⎭⎫ ⎝⎛Cv gpm (单位psi) DP =23m ⎪⎪⎪⎭⎫⎝⎛Kv hr (单位为Bar) • Cv =DPgpmKv =DPhr m3• 事例 1: 一阀门 Cv = 6.5 ,压力损失为1 psi 时的流量为 6.5 gpm. 当流量为25 gpm 时,压力损失为: DP = (25/6.5)² = 14.8 psi • 事例2: 两软水器在流量为15 gpm 时,将产生的压力损失为 3 psi. 计算流量为25 gpm 时的压差DP 为多少?• Syst. Cv = (gpm/√DP) = (15/√3) = (15/1.732) = 8.66 • At 25 gpm, DP = (gpm/Cv)2 = (25/8.66)2 = 8.3 psi工作能力的表达: 10 吨 软化器意思: 一软化器的产水量为10 m³/hr = 10 x (4.4) = 44 gpm 线性流速的表达: 10 gpm/ft² (x) 2.33 = 23.3 m/h ,中国采用的线性流速为 20 到 30 m/h (4.3 to 8.6 gpm/ft²)体积流速的表达: 7.481 gpm/ft³ = 1 BV/min加盐量: 15 lbs/ft³ (x) 16 = 240 grams/liter of resin 树脂量: 1 ft³ (x) 28.3 = 28.3 liters of resin 树脂的交换能力: 30 Kgr/ft³ (x) 2.29 = 68.7 grams CaCO3/liter of resin 总硬度: 171 ppm = 171 mg/l = 171 grams/m³ = 10 grains/gallon在中国锅炉锅炉给水应用中,可以接受的硬度泄露: 0.03 Meq/l 或 0.03 Meq/l (x) 50 = 1.5 mg/l(以CaCO 3计)水压: 30 psig (x) 0.00689 = 0.207 Mega Pascals事例: TH = 100 mg/l, 去除的硬度容量 = 68.7 grams = 68700 mg 软水量 = (68700 mg)/(100 mg/l) = 687 L 或 (68.7 g)/(100 g/ m³) = 0.687 m³ •NaCl •日晒盐 48 - 50% void volume 69 lbs/cu.ft. •矿盐41% void volume76 lbs/cu.ft.•Rust Rem. Pellets 48 - 52% void volume 70 lbs/cu.ft. •NaCl 和 KCl 数据 (At 20ºC or 68ºF) •1 加仑水溶解盐量 : 3 lbs. of NaCl •I 加仑 NaCl 饱和溶液中 : 2.6 lbs. of NaCl •1 加仑水的溶解盐量 : 2.8 lbs. Of KCl •1加仑KCl 饱和溶液中 :2.5 lbs. of KCl2+18.92+ 1.83+K+17.9以上资料摘自“工业水处理技术”二、全自动软水器全自动软水器就是将软水器运行及再生的每一个步骤实现自动控制,并采用时间,流量或感应器等方式来启动再生。