遗传算法matlab代码
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
function youhuafun
D=code;
N=50; % Tunable
maxgen=50; % Tunable
crossrate=0.5; %Tunable
muterate=0.08; %Tunable
generation=1;
num = length(D);
fatherrand=randint(num,N,3);
score = zeros(maxgen,N);
while generation<=maxgen
ind=randperm(N-2)+2; % 随机配对交叉
A=fatherrand(:,ind(1:(N-2)/2));
B=fatherrand(:,ind((N-2)/2+1:end));
% 多点交叉
rnd=rand(num,(N-2)/2);
ind=rnd tmp=A(ind);
A(ind)=B(ind);
B(ind)=tmp;
% % 两点交叉
% for kk=1:(N-2)/2
% rndtmp=randint(1,1,num)+1;
% tmp=A(1:rndtmp,kk);
% A(1:rndtmp,kk)=B(1:rndtmp,kk);
% B(1:rndtmp,kk)=tmp;
% end
fatherrand=[fatherrand(:,1:2),A,B];
% 变异
rnd=rand(num,N);
ind=rnd [m,n]=size(ind);
tmp=randint(m,n,2)+1;
tmp(:,1:2)=0;
fatherrand=tmp+fatherrand;
fatherrand=mod(fatherrand,3);
% fatherrand(ind)=tmp;
%评价、选择
scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数
score(generation,:)=scoreN;
[scoreSort,scoreind]=sort(scoreN);
sumscore=cumsum(scoreSort);
sumscore=sumscore./sumscore(end);
childind(1:2)=scoreind(end-1:end);
for k=3:N
tmprnd=rand;
tmpind=tmprnd difind=[0,diff(tmpind)];
if ~any(difind)
difind(1)=1;
end
childind(k)=scoreind(logical(difind));
end
fatherrand=fatherrand(:,childind);
generation=generation+1;
end
% score
maxV=max(score,[],2);
minV=11*300-maxV;
plot(minV,'*');title('各代的目标函数值');
F4=D(:,4);
FF4=F4-fatherrand(:,1);
FF4=max(FF4,1);
D(:,5)=FF4;
save DData D
function D=code
load youhua.mat
% properties F2 and F3
F1=A(:,1);
F2=A(:,2);
F3=A(:,3);
if (max(F2)>1450)||(min(F2)<=900)
error('DATA property F2 exceed it''s range (900,1450]') end
% get group property F1 of data, according to F2 value F4=zeros(size(F1));
for ite=11:-1:1
index=find(F2<=900+ite*50);
F4(index)=ite;
end
D=[F1,F2,F3,F4];
function ScoreN=scorefun(fatherrand,D)
F3=D(:,3);
F4=D(:,4);
N=size(fatherrand,2);
FF4=F4*ones(1,N);
FF4rnd=FF4-fatherrand;
FF4rnd=max(FF4rnd,1);
ScoreN=ones(1,N)*300*11;
% 这里有待优化
for k=1:N
FF4k=FF4rnd(:,k);
for ite=1:11
F0index=find(FF4k==ite);
if ~isempty(F0index)
tmpMat=F3(F0index);
tmpSco=sum(tmpMat);
ScoreBin(ite)=mod(tmpSco,300);
end
end
Scorek(k)=sum(ScoreBin);
end
ScoreN=ScoreN-Scorek;
遗传算法实例:
% 下面举例说明遗传算法%
% 求下列函数的最大值%
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01 。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其中b 是[0,1023] 中的一个二值数。% % %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%
% 编程
%-----------------------------------------------
% 2.1初始化(编码)
% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为{0,1} 行数为popsize,列数为chromlength的矩阵,% roud对矩阵的每个单元进行圆整。这样产生的初始种群。
% 2.2 计算目标函数值
% 2.2.1 将二进制数转化为十进制数(1)
%遗传算法子程序
%Name: decodebinary.m
%产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列数
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和
% 2.2.2 将二进制编码转化为十进制数(2)
% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
% (对于多个变量而言,如有两个变量,采用20为表示,每个变量为10,则第一个变量从1开始,另一个变量从11开始。本例为1),
% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name: decodechrom.m
%将二进制编码转换成十进制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);
% 2.2.3 计算目标函数值
% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序
%Name: calobjvalue.m
%实现目标函数的计算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数
x=temp1*10/1023; %将二值域中的数转化为变量域的数objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值
% 2.3 计算个体的适应值
%遗传算法子程序
%Name:calfitvalue.m
%计算个体的适应值
function fitvalue=calfitvalue(objvalue)