有机磷农药降解菌的筛选及其降解能力的研究

有机磷农药降解菌的筛选及其降解能力的研究
有机磷农药降解菌的筛选及其降解能力的研究

土样中淀粉降解细菌的筛选综述

土样中淀粉降解细菌的筛选(设计性实验) 一、实验目的 1.掌握土壤样品中微生物菌种分离和筛选技术的实验设计方案。 2.掌握富集、平板稀释涂布法、分离筛选产淀粉酶菌株的基本原理。 3.初步掌握从土壤样品中分离筛选产淀粉酶菌株的基本技术。 二、实验原理 在自然条件下,产淀粉酶的细菌和其它各种细菌混杂生活在土壤中,要想分离出来必须建立相应的“筛子”。淀粉酶能使淀粉分解成葡萄糖,而淀粉与碘液发生反应形成蓝色化合物。葡萄糖不与碘液发生反应形成蓝色化合物,结果可使淀粉酶产生菌周围形成透明圈,从而筛选出淀粉酶产生菌。 微生物酶产生菌的筛选具体分为增殖培养、初筛和复筛过程。增殖培养是通过控制培养基的营养成分和/或培养条件使样品中的目的菌得以大量繁殖,而非目的菌的生长受到抑制或繁殖减缓,从而提高样品中目的菌的数量和比例。初筛是对所得的纯种进行检测。由于淀粉酶是胞外酶,在分离培养基中加适量可溶淀粉通过平板透明圈法来检测淀粉酶产生菌。筛选透明圈比值大的菌株接种到培养基中进行培养,再进行复筛。复筛的目的是淘汰底产菌。 三、实验材料 1、培养基:蛋白胨, NaCl,可溶性淀粉,琼脂,蒸馏水。 2、玻璃仪器: 培养皿10副,试管10支,三角瓶 6个,移液管 10支(1mL7支,10mL 3支),100mL量筒2个,玻璃棒,玻璃珠。 3、其它:酒精灯,硅胶塞,包装绳,包装纸,PH试纸,接种环,电子天平,称量纸,高压蒸汽灭菌锅,摇床,角匙,记号笔等。 四、方法与步骤 1、土壤样品: 食品厂、粮食加工厂、饭店等日常接触淀粉较多的肥沃土壤。 2、培养基的制备 (1)液体培养基:称取蛋白胨1.0 g、NaCl 0.5 g、可溶性淀粉0.2 g溶于装有100 mL蒸馏水的三角瓶中,调pH为7.2至7.4,分装为2个三角瓶,50mL/个,包扎,121℃高压蒸汽灭菌20分钟。 (2)固体淀粉培养基:称取蛋白胨1.5g, NaCl 0.75g,可溶性淀粉0.3g ,溶于

农药残留及微生物在农药降解中的应用与展望

收稿日期:2003-12-11 文章编号:1005-6114(2004)01-0031-05 农药残留及微生物在农药 降解中的应用与展望 张韩杰,闫艳春 (山东农业大学生命科学学院,271018) 摘 要:农药在人类防治农作物病虫害、草害等诸方面起到了巨大的贡献,但是因之而来的农药残留问题则对 环境和人类健康带来了严重的危害。为解决这一问题,人们进行了大量的研究,其中微生物的降解作用已引起人们的广泛关注。综述了农药残留及微生物在其中的应用及发展情况。 关键词:农药;残留;降解;微生物中图分类号:$481.1+8 文献标识码:B 农药是人们主动投放于环境中数量大、毒性广 的一类化学物质。[12]在过去几十年中,有机氯、有机 磷等农药的开发与应用曾为人类在农、林业防治病虫害,提高农作物产量中起到了不可磨灭的作用。但对那些性质比较稳定、难于分解消失有毒农药的长期、大量使用,已造成严重的全球性环境污染和生态破坏。近年来,由于人们对环境和生态平衡的日益重视,相继提出了“软农药”(so ft p estici des ) 和“抑菌剂”(f un g istatic ) 等概念[9],生物农药也引起了人们的广泛兴趣,但就目前的科技水平来看,化学农药在很长的一段时间内还是不可替代的,因此解决环境中存在的农药残留问题已经成为世界各国的研究热点。微生物在其中的作用已引起广泛关注,我国科研工作者针对这一问题进行了大量探索。随着生物技术的迅猛发展,应用微生物进行生物修复已成为环境修复的一个重要内容,本文拟对我国农药残留情况以及微生物在农药降解中的应用作一综述。1农药残留及其危害1.1 农药残留 农药作为目前农业增产的主要依靠,在农业中具有广泛的应用。目前我国农药的施用方法仍以药 液喷洒和粉剂喷洒为主。研究表明[6]:施用农药 后,仅有1%!2%的药作用于防治对象本体,有 10%!20%附着在作物本体上,其他80!90%的农 药主要散落在农作物的周边环境,如农田、土壤或漂浮于大气,与尘埃吸附形成气溶胶。试用后的农药经过一段时间的降解、代谢等作用后,其含量会降低到一定的水平,通常,我们把残存在环境中和生物体内的微量农药称作残留农药,它包括农药原体残留量及其具有比原体毒性更高或相当毒性的降解物的残留量。农药残留不仅造成环境污染、妨碍生物生长,而且直接或间接地危害人体健康,这已引起世界各国的广泛关注。 自泰勒等人发现DDT 的高效杀虫能力以来,不同种类的农药相继得到了开发和应用。仅杀虫剂类目前就有4类:有机氯类、有机磷类、拟除虫菊酯类和氨基甲酸酯类。有机氯类农药是高残留、生物富集性很强的一类农药,目前已被禁止生产,但由于已被广泛大量地使用了多年,因此在环境仍有残留,对环境和人的威胁还很大。有机磷类、拟除虫菊酯类和氨基甲酸酯类农药尽管残留期较短,但仍有一定时间的残留期,加之被广泛使用,仍对土壤、大气和水源等造成了不同程度的污染。我国科研工作者对于农药的残留情况进行了大量的研究。谢恩平 等[18]对氨基甲酸酯类农药(克百威、丙硫克百威和 丁硫克百威)在环境中的残留进行了检测,并探讨了 残留性的影响因素;张莹、杨大进等 [24]对我国食品中有机氯农药的残留水平进行了细致的分析;覃泰 群等[10]对拟除虫菊酯类农药进行了残留分析;杨大 ? 13?湖北植保2004年第1期

微生物降解有机磷农药酶促机制

1微生物降解有机磷农药 有机磷农药(organophosphorus pesticides,OPs)是农药中很重要的一类,具有高效的杀虫能力,为增加粮食生产、防治疾病传播作出了巨大贡献。但是,有机磷农药的生产、运输和大量使用对生态环境中其他非靶标生物乃至土壤、水、大气整个生态系统产生的负面影响日益严重,尤其是果蔬等农产品中的农药残留通过食物链在生物体内富集对人类造成严重危害更不容忽视。 有机磷农药污染降解技术可分为热降解、光降解、化学降解和生物降解。生物降解(biodegra-dation)是通过生物的作用将农药分解为无毒或低毒小分子化合物,并最终降解为水、CO2和矿物质的过程。相对于物理、化学降解技术,生物降解具有高效、彻底、无二次污染的优势,20世纪40年代后已经成为研究热点。作物本身、微生物都能够降解有机磷农药残留,但植物的降解很缓慢,周期很长,微生物由于其强大的代谢多样性,在有机磷农药残留降解中具有更大的优势。 2有机磷农药降解酶 微生物对于农药的降解可分为酶促和非酶促反应。所谓酶促反应是指微生物以胞内酶或分泌的胞外酶直接作用于农药,经过一系列生理生化反应,最终将农药完全降解或分解成分子量较小的无毒或毒性较小的化合物的过程。而非酶促形式指的是微生物通过代谢改变农药的环境离子浓度、pH等物理、化学性质,从而间接促使降解农药的过程。酶促反应是微生物降解农药的主要形式,微生物本身含降解农药的酶系基因,或本身虽无该酶系基因,但是经诱导或环境存在选择压,基因发生重组或改变产生了新的降解酶系。 20世纪80年代,Munnecke等发现有机磷农药降解酶比产生这类酶的微生物菌体更能忍受异常环境条件,如来源于假单胞菌的降解酶在10%的无机盐、1%的有机溶剂、50℃下都能保持高活性,而该酶的产生菌在同样的条件下却不能生长,而且,酶的降解效果远远胜于微生物本身,特别是对低浓度的农药更有效。因此,人们的思路从应用微生物菌体净化农药污染转向利用有机磷农药降解酶。因此,有机磷农药降解酶目前已被公认为是消除农药残留的最有潜力的新方法。常见的有机磷农药降解酶(Organophosphorus hydrolase)主要是水解酶类,包括磷酸酶、对硫磷水解酶、酯酶、硫基酰胺酶、裂解酶等,它们主要通过裂解P-O键、C-P 键、P-S键降解有机磷农药。由于各种有机磷农药都有类似的结构,只是取代基不同,所以一种有机磷农药降解酶往往可降解多种有机磷农药。 第1个有机磷农药降解酶是1974年Munneck 等[1]从假单胞杆菌中检测出磷酸酯酶的活性,发现其对对硫磷具有降解作用,同时对甲基对硫磷、二嗪农、毒死蜱等7种有机磷农药均能有效降解,在22℃时降解效率比化学降解快1000~ 2450倍,且该酶不为农药及农药制剂中溶剂所抑制,对环境条件有较宽的忍受范围。1979年,Brown等就对来源于黄杆菌(ATCC27551)的有机磷农药降解酶进行了部分纯化并对酶的性质进行了初步研究,发现酶反应的最适pH范围为8~10;酶的活性不受金属离子的影响,被非离子去污剂抑制。1989年,Mulbry等从3株革兰氏阴性菌中提取到3个对硫磷水解酶,分别测定了分子量,并对酶学性质做了研究。这3个酶分子量不同,对不同底物的作用也不同。同年,Dumas等纯化得到来源 微生物降解有机磷农药酶促机制 刘建利(北方民族大学生物科学与工程学院宁夏银川750021) 摘要有机磷农药污染严重,微生物有机磷农药是治理有机磷农药残留的新技术,综述有机磷农药降解酶的研究现状、酶促作用机理、基因工程等方面的研究现状。 关键词有机磷农药酶促机制 中国图书分类号:X172文献标识码:A *基金项目:宁夏自然科学基金(NZ0690)

微生物降解农药,保护环境

保护环境,微生物降解农药之路 07材化一梁文豪2007274129 摘要:本文根据《环境化学》中介绍微生物降解农药的科学原理,综述了环境中降解农药的微生物种类,微生物降解农药的机理等,分析了利用微生物降解农药是消除农业发展中农药污染的一个行之有效的重要方法。 关键词:微生物农药农药降解 1.农药污染的危害 在农业生产中,人们在田间经常喷洒化学农药以防治作物病虫害的发生,由于某些农药及其代谢物的理化性质稳定,在土壤中的积累而引起了环境污染问题。土壤环境是受农药污染重要场所。农药在土壤中长期残留累积的结果,致使农作物及畜产品中出现微量的残留农药,污染了食品,危害人类的人体健康。 目前,全球生产和使用的农药已达1 300多种,其中广泛使用的约为250多种。我国已迈人世界农药生产大国。1990年农药产量为22.66万t,1994年农药产量为26.6万t,约占世界农药总产量的1/10。现在,我国每年大约要施用80-100多万t的化学农药,有机磷杀虫剂占40%,高毒农药占37.4%,有的化学性质稳定,存留时间长。这些农药无论以何种方式施用,均会在土壤残留,而且在我国农药的有效利用率低,据测定仅为20%~30%(发达国家的农药利用率达60%-70%)。若按单位面积平均施药量计算,我国农药用量是美国的2倍多。据初步统计,全国至少有l300-1600万hm2耕地受到农药污染。大量的农药流失到土壤中,造成土壤环境的严重污染,影响了农业的可持续发展。 据世界卫生组织报道,发展中国家的农民由于缺乏科学知识和安全措施,每年有200万人农药中毒,其中有4万人死亡,平均每10分钟有28人中毒,每17分钟有1人死亡!而这还不包括因农药污染而导致死胎、致癌、流产的受害者。 2.农药污染概述 农药污染已成为国家发展中一个不能轻视的问题。那究竟什么是农药污染呢? 农药污染(pesticide pollution)指农药或其有害代谢物、降解物对环境和生物产生的污染。农药施用后,一部分附着于植物体上,或渗入株体内残留下来,使粮食、蔬菜、水果等受到污染;另一部分散落在土壤上(有时则是直接施于土壤中)或蒸发、散逸到空气中,或随雨水及农田排水流入河湖,污染水体和水生生物。农产品的残留农药通过饲料,污染禽畜产品。农药残留通过大气、水体、土壤、食品,最终进入人体,引起各种慢性或急性病害。农药及其在自然环境中的降解产物,污染大气、水体和土壤,破坏生态系统,引起人和动植物急性或慢性中毒的现象。多数农药对人和动物有毒害,大量接触以及误食后会造成急性中毒和死亡。 找出一条解决农药污染的方法,非常必要。 3.微生物降解农药概述 农药在土壤中的降解,包括光化学降解、化学降解与微生物降解等。其中,微生物对农药的降解是土壤中农药最主要也是最彻底的净化!当前农业上使用的主要为机化合物农

微生物对有机物的降解作用

微生物对有机物的降解作用 摘要:本文介绍了有机物的性质、污染状况及处理方法;以多环芳烃和农药为例阐述了微生物降解有机物的机理及影响因素;综述了国内外研究较多的几种生物难降解污染物微生物处理技术的进展,并对今后的几个研究发展方向进行了展望。 关键词:微生物有机物降解作用 1 引言 有机污染物是指以碳水化合物、蛋白质、氨基酸以及脂肪等形式存在的天然有机物质及某些其他可生物降解的人工合成有机物质为组成的污染物,主要包括酚类化合物、芳香族化合物、氯代脂肪族化合物和腈类化合物等。 目前,由于大量工业废水和生活污水未达标排放,以及广大农村地区大量使用化肥和农药等农用化学物质,使我国水体和土壤受到不同程度的污染,严重的破坏了地球的生态平衡。七大水系的411个地表水监测断面中,水质为Ⅰ~Ⅲ类、Ⅳ~Ⅴ类和劣Ⅴ类的断面比例分别为41%、32%和27%。其中,珠江、长江水质较好,辽河、淮河、黄河、松花江水质较差,海河污染严重。而农业土壤中15 种多环芳烃(PAHs)总量的平均值为4.3mg/kg,且主要以4环以上具有致癌作用的污染物为主,占总含量的约85 %,仅有6%的采样点尚处于安全级。而工业区附近的土壤污染远远高于农业土壤:多氯联苯、多环芳烃、塑料增塑剂等,这些高致癌的物质可以很容易在重工业区周围的土壤中被检测到,而且超过国家标准多倍。 处理有机物的一般方法可分为三大类[1]:物理方法:主要有吸收法、洗脱法、萃取法、蒸馏法和汽提法等;化学方法:如光催

化氧化法、超临界水氧化法、湿式氧化法、以及声化学氧化法等,这一方法应用较多;生物方法:包括植物修复,动物修复和微生物降解三类技术。与其他处理方法相比,微生物降解有机物具有无可比拟优势: (1)微生物可将有机物彻底分解成CO2和H2O,永久的消除污染物,无二次污染; (2)降解过程迅速,费用低,为传统物理、化学方法费用的30%~50%; (3)降解过程低碳节能,符合现在节能减排的环保理念。 2 微生物降解有机物的机理及影响因素 2.1 微生物降解有机物的机理 用于降解有机物的微生物主要有细菌和真菌,降解的方式主要包括堆肥法、生物反应处理和厌氧处理等,但每一过程都是利用微生物的代谢活动把有机污染物转化为易降解的物质甚至矿化[2]。以多环芳烃(PAHs)[3~4]和农药[5]的降解为例来说明。 2.1.1 微生物对多环芳烃(PAHs)的降解 微生物之所以能降解多环芳烃依赖于它们对多环芳烃的代谢。微生物通过两种方式对PAHs进行代谢:1 ) 以PAHs作为唯一的碳源和能源:2 ) 把PAHs与其它有机质进行共代谢降解。研究表明许多微生物能以低分子量的PAHs (双环或三环) 作为唯一的碳源和能源,并将其完全矿化。而四环或多环的PAHs的可溶性差,比较稳定,难以降解,一般要通过共代谢方式降解。研究又表明,微生物在有氧和无氧条件下都能对多环芳烃进行降解。(1)共代谢降解 高分子量的多环芳烃的生物降解一般均以共代谢方式开始。共代谢作用可以提高微生物降解多环芳烃的效率,改变微生物碳源和能源的底物结构,增大微生物对碳源和能源的选择范围,从而达到难降解的多环芳烃最终被微生物利用并降解的目的。 在有其他碳源和能源存在的条件下,微生物酶活性增强,降解非生长基质的效率提高,也称为共代谢作用。烃类的降解的初始

卡拉胶降解菌的筛选

卡拉胶降解菌的筛选 摘要:利用梯度稀释平板涂布的方法将经过富集的卡拉胶降解菌样品在涂布于 平板上,以卡拉胶为唯一碳源,在适宜的环境下培养,得到单个菌落,达到卡 拉胶降解菌的初步筛选的目的。 关键字:卡拉胶降解菌、初筛 前言:卡拉胶(Carrageenan)又名角叉菜胶、鹿角藻胶,是从红藻中提取的一种高分子亲水性多糖。根据其乳糖残基上硫酸酯基团的不同,可分为K一型、c-型、A一型、弘一型等7种最小重复结构单位。A一卡拉胶是一种高硫酸酯化的天然多糖资源,其降解产物A一卡拉胶寡糖的活性研究已得到充分的开展,如抗凝血、抗病毒、抗肿瘤等[1]。国内外的研究者从提取、结构、活性等方面对卡拉胶进 行了研究[2]。而不同的卡拉胶具有不同的凝固性和表面活性,可用于凝固剂黏 合剂、稳定剂、乳化剂、悬浮剂等,广泛用于食品工业。[3] 正文: 一.器材:试管16支,玻璃涂棒一根,1ml移液管3支,酒精灯一个,培养皿24个,试管架,1个锥形瓶,烘箱,高压杀菌锅 二.试剂:K2HPO4·3H2O,MgSO4·7H2O,FePO4·4H2O,CaCl2, H2O,NaNO3,NaCl卡拉胶,海水 三.步骤: 1.卡拉胶降解菌的初筛: (1)无机盐母液配制: K2HPO4·3H2O: 2.2g , MgSO4·7H2O: 1.25g ,FePO4·4H2O: 0.025 g , CaCl2: 0.25g 然后溶于水中,共配制250ml; [4] (2)培养基溶液配:NaNO3:0.7g , NaCl:5.25g ,卡拉胶:4.2g , 溶于海水中,共配制350ml,并添加无机盐母液:35ml[5]

有机氯农药微生物降解技术研究进展 (完整版)

海南大学本科生 课程论文 题目:有机氯农药微生物降解技术研究进展作者:张晓琳 所在学院:环境与植物保护学院 专业年级:07环境科学 学号:B0713059 指导教师:苏增建 职称:讲师 2010年1月

有机氯农药微生物降解技术研究进展 张晓琳 (海南大学儋州校区环境与植物保护学院 07环境科学2班 海南儋州 571737) 摘要:有机氯农药的大量使用已造成严重的全球性环境污染和生态危机,目前微生物降解有机氯农药技术引起人们的广泛关注。综述了有机氯农药在环境中的危害,微生物对有机氯农药降解的方式和途径,指出了有机氯农药微生物降解技术存在的问题及今后的研究方向。 关键词:有机氯农药微生物降解存在问题展望 1.有机氯农药简介 有机氯农药属于持久性有机污染物( Persistent Organic Pollutants, POPs) ,在2001年签署的《斯德哥尔摩宣言》中,首批控制的12种持久性有机污染物种有9种是有机氯农药。氯代有机化合物是一类污染面广、毒性较大、不易降解的化合物, 在美国EPA所列129种优先污染物中占25种之多[1]。有机氯农药主要包括六六六(六氯环己烷) 、滴滴涕、氯丹、六氯代苯、狄氏剂、异狄氏剂、毒杀芬、艾氏剂、七氯、环氧七氯、α - 硫丹、β - 硫丹等. 而六六六和滴滴涕则是有机氯农药的典型代表,二者使用早,使用时间长,用量大,土壤环境中的残留量高,容易通过生物富集作用对环境和人类造成危害.有机氯农药具有致癌、致畸、致突变作用,易导致生物体内分泌紊乱、生殖及免疫功能失调、发育紊乱等严重疾病[2]。 2.有机氯农药在环境中的危害 有机氯农药是高残留农药,虽经长时间的降解,环境中有机氯农药的残留仍十分可观,并且通过食物链的富集会对人体健康产生威胁。 2.1 有机氯农药对大气环境的危害 大气中有机氯农药的主要来自于:有机氯农药施用过程中的挥发飘移、施用

有机磷农药的微生物降解研究进展

有机磷农药的微生物降解研究进展 摘要:有机磷农药的广泛和大量使用给环境带来了越来越多的危害,作为有机 磷农药的主要降解方式之一,微生物降解发挥着重要的作用。从有机磷农药降解微生物的种类、降解机理和途径、影响微生物降解有机磷农药的因子、微生物降解有机磷农药的途径,并探讨有机磷农药微生物降解的发展趋势和研究展望。 关键词:微生物降解有机磷农药研究展望 前言:农药是确定农业稳定,丰产或者不缺产的重要生产资料。但农药一方面 残留在农产品中,对人体有害?另一方面,在环境中不断积累,带来了日益严重的环境与生态问题。农药的负面效应很多,但总体来说仍是功大于过,而且在未来农业可持续发展战略中,农药将继续挥作用。因此现在摆在我们面前的问题是如何尽可能降低农药的负面效应【1】。有机磷农药的降解主要有生物降解、光化学降解、化学降解等方式,其中生物降解的作用占重要地位。生物降解特别是微生物降解被认为是一种有效的措施,利用微生物或微生物产品来降解污染物的生物修复方法具有无毒、无残留、无二次污染等优点,是消除和解毒高浓度的农药残留的一种安全、有效、廉价的方法。自20世纪60年代有机氯农药在世界范围内受到限制,随之是有机磷农药的发展,到目前有机磷农药已成为应用广泛、品种最多的农药。有机磷农药容易降解,对环境的污染及对生态系统的危害和残留没有有机氯农药那么普遍和突出,且具有药效高、品种多、防治范围广、成本低、选择作高、药害小、在环境中降解快、残毒低等优点。它的降解一直是国内外学者研究的热门方向。 1、有机磷农药的生产和使用现状 随着科技的发展和进步,对农药的需求在一定程度上有所减少,但有机磷等农药在农业上的生产与应用仍占据重要地位。目前,包括杀虫剂、除草剂、杀菌剂在内,世界上的有机磷农药已达150 多种,中国使用的有机磷农药有30 余种。按照毒性大小常分为 3 大类:1.剧毒类,如甲拌磷、内吸对硫磷、保棉丰、氧化乐果等;2.高毒类,如甲基对硫磷、二甲硫吸磷、敌敌畏、亚胺磷等;3.低毒类,如敌百虫、乐果、氯硫磷、乙基稻丰散等。一些有机磷杀虫剂如甲胺磷、对硫磷、久效磷等剧毒杀虫剂在国际上已是禁用产品或限制的品种【2】。 2、有机磷降解微生物的种类 目前,人们已分离出多种能降解有机磷农药的微生物菌群,其中包括细菌、放线菌、真菌和一些藻类。由于细菌具有生化多适应性及易诱发突变菌株等优势,故其在微生物降解中占有重要地位【3】。至今,已分离到的细菌主要有:假单胞菌属(Pseu-domonas)、芽孢杆菌属(Baccillus)、黄杆菌属(Flavobacterium)、不动杆菌属(Acinetobacter)、节杆菌属(Arthrobacter sp.)、沙雷氏菌属(Serratia sp.)等。金彬明等从被有机磷污染的海水样中分离筛选出一株蜡样芽孢杆菌(Bacillus cereus)菌株,在28℃下对甲胺磷(5 mg/L)的降解率达48.9%。解秀平等从污水曝气池中分离得到一株能以甲基对硫磷及其降解中间产物对硝基苯酚为唯一碳源的节杆菌属(Arthrobacter sp.)菌株,在 5 h 内对50 mg/L 的

有机氯农药的微生物降解

研究生课程论文封面 课程名称:现代地理学理论前沿开课时间:2013 -2014 第二学期 学院地理与环境科学学院学科专业地理环境与污染控制学号2013210585 姓名邹艳艳 学位类别全日制硕士 任课教师丁林贤 交稿日期2014 年6月28日 成绩 评阅日期 评阅教师 签名

有机氯农药的微生物降解 摘要:本文综述了有机氯农药的来源,危害,降解解功能微生物的种类以及典型有机氯农药的降解途径以及影响微生物降解效果因素等,在各种能够降解有机氯农药菌的微生物中,假单胞菌属(Pseudomoruas)是最活跃、农药适应能力最强的菌株,与有机氯农药微生物降解过程的酶:主要要有脱氯化氢酶、水解酶和脱氢酶三种,它们通过共代谢,中间协同代谢或矿化等作用完成降解过程。由于有机氯农药的持久性和广泛污染性,研究出新的能够降解有机氯农药的微生物及菌酶以及降解机理及中问产物的类型是未来农药降解的主要研究重点。 关键词:有机氯农药;微生物降解;酶;机理 前言:农药是重要的农用物资,在世界农业生产中扮演着重要角色,对防治病、虫、草、鼠害、保证农业高产稳产有着非常重要的作用。有机氯农药(OrganochlorinePesticides,OCPs),也被称为典型的持久性有机污染物,由于其突出的持久性、生物积累性和生物毒性等特征而受到全世界的广泛关注[1[[2]是20世纪80年代前应用的最主要和最有效的农药品种之一,由于其具有价格低廉,高效广谱等特点,在世界范围内得到了广泛应用,可以通过食物链富集,逐级上去,最终在哺乳动物,特别是人体脂肪组织中蓄积,对人类的健康构成威胁,所以,自20世纪70年代末世界范围内就陆续禁止生产和使用高残尉毒的有孰氯农药[4-5]。研究发现.北京地区总OCPs类物质平均含量高达77.7ug/kg超出了土壤环境质量一级标准(GBl5618-1995)50ug/kg。浙江省平均值为34.41ug/kg,其中最高值超过了土壤环境质量二级标准500ug/kg[6]。此外,甚至南极地区也发现了0.12-2.8ug/kg的DDT残留,常年不化的冰层也检出了0.04ng/kg的DDT。 降解有机氯的方法有很多种,如化学法、物理法和生物法。其中物理法和化学法,如焚烧、电化学法等都普遍存在着处理成本高,易造成二次污染,去除效果差等缺点,而生物法则主要利用微生物对OCPs的特异性降解机理进行降解,该法处理效果明显,在降解残留农药过程中发挥着重要作用,成为目前治理残留农药污染的主要手段之一。 一:有机氯农药的化学结构

实验三高效苯酚降解菌的筛选及其性能测定课件.doc

实验三高效苯酚降解菌的筛选及其性能测定 一、实验目的 1、掌握微生物分离纯化的基本操作; 2、掌握用选择性培养基从环境中分离苯酚降解菌的原理和方法; 3、掌握微生物对酚降解能力的测定方法; 4、掌握4-氨基安替比林法测定苯酚含量的方法。 二、实验原理 在工业废水的生物处理中,对污染成分单一的有毒废水,可以选育特定的高效菌株进行处理。这些高效菌株以有机污染物作为其生长所需的能源、碳源或氮源,从而使有机污染物得以降解,具有处理效率高、耐受毒性强等优点。 苯酚是一种在自然条件下难降解的有机物,其长期残留于空气、水体、土壤中,会造成严重的环境污染,对人体、动物有较高毒性。本实验通过筛选苯酚降 解菌来处理含酚废水,将苯酚降解为为二氧化碳和水,消除对环境的污染。 + COOHCH2CH2COOH CH3COOH C O2+H2O 从环境中采样后,在以苯酚为唯一碳源的培养基中,经富集培养、分离纯化、降解实验和性能测定,可筛选出高效酚降解菌。 三、实验器材与试剂 1、样品 实验土样采自校园污水处理厂。 2、器材 恒温培养箱、恒温摇床、分光光度计、比色皿、试管、250mL三角瓶、100mL 容量瓶、培养皿、涂布玻棒、量筒、天平、灭菌锅、酒精灯、接种环、棉花、棉 线、牛皮纸、pH 试纸。 3、试剂 葡萄糖、牛肉膏、蛋白胨、苯酚、四硼酸钠(Na2B4O7)、4-氨基安替比林、过硫酸铵((NH4)2S2O8)、K2HPO4、KH2PO4、MgSO4、琼脂。

苯酚标准溶液:称取分析纯苯酚 1.0g,溶于蒸馏水中,稀释至1000mL,摇 匀。此溶液溶度为1000mg/L。测定标准曲线时将苯酚浓度稀释至100mg/L。 Na2B4O7 饱和溶液:称取N a2B4O7 40g,溶于1L 蒸馏水中,冷却后使用,此 溶液的pH值为10.1。 3% 4-氨基安替比林溶液:称取分析纯4-氨基安替比林3g,溶于蒸馏水中, 并稀释至100mL,置于棕色瓶中,冰箱保存,可用两周。 2% (NH4)2S2O8 溶液:称取分析出(NH4)2S2O8 2g,溶于蒸馏水中,并稀 释至100mL,置于棕色瓶中,冰箱保存,可用两周。 4、培养基 富集培养基:蛋白胨0.5g,K2HPO4 0.1g,MgSO4 0.05g,水1000mL,调节pH 7.2-7.4,高压蒸汽灭菌,冷却后视需要添加适量的苯酚。 基础培养基:K2HPO4 0.6g,KH2PO4 0.4g,NH4NO3 0.5g,MgSO4 0.2g,CaC2l 0.025g,水1000mL,调节pH 7.0-7.5,高压蒸汽灭菌,冷却后视需要添加适量的苯酚。 四、实验步骤 (一)富集培养和驯化 采集活性污泥或土样,接种于装有100mL 富集培养基和玻璃珠并加有适量 苯酚(50mg/L)的三角瓶中,30℃振荡培养。待菌生长后,用无菌移液管吸取 1mL 转至另一个装有100mL 富集培养基和玻璃珠并加有适量苯酚的三角瓶中, 如此连续转接2-3 次,每次所加的苯酚量适当增加,最后可得酚降解菌占绝对优 势的混合培养物。 (二)平板分离和纯化 1、用无菌移液管吸取经富集培养的混合液10mL,注入90mL无菌水中,充 分混匀,并继续稀释到适当浓度。 2、取适当浓度的稀释菌液,加一滴于固体平板(由富集培养基加入2%的琼 脂组成,倒平板时添加适量的苯酚,浓度达到200 mg/L。)中央,用无菌玻璃涂 棒把滴加在平板上的菌液涂平,盖好皿盖,每个稀释度做2-3 个重复。 3、室温放置一段时间,待接种菌液被培养基吸收后,倒置于30℃恒温箱中 培养2-3d。 4、挑选不同菌落形态,在含适量苯酚的固体平板上划线纯化。平板倒置于

微生物降解农药

微生物降解农药 现今农业发展过程中应用最普遍,种类最多的农药是有机磷农药,虽然原有的降解有机磷农药的化学、物理方法亦收到良好效果,但随着生物技术的卓越发展,微生物对降解农药尤其是有机磷农药发挥着日益重大的作用。针对有机磷农药的微生物降解问题提出看法,希望促进农业的现代化发展。 当前,我们主要是从被污染的环境介质(例如:被污染的泥土、土壤)中来获取高效降解菌。现在人们已经分离出的对有机磷农药降解有良好效果的微生物菌群主要有真菌、细菌、放线菌及一些藻类。 真菌基于其较高的降解能力,人们十分关注,主要有:木霉属、曲霉属、酵母菌及青霉属等。颜世雷等有关人员经过长时间的摇床驯化培养从被污染的土壤里筛选得到2株曲霉菌株,其能够在高浓度氧化乐果环境下生长。当温度高达28℃时,其降解氧化乐果的比率高达70.38%及61.28%。 因为细菌具有容易引发突变菌株和生化多适应性的优点,故在微生物降解过程中它具有极高的地位。目前已经分离出的细菌有:芽

孢杆菌属、假单胞菌属、黄杆菌属、节杆菌属、不动杆菌属、沙雷氏菌属等。例如:以解秀平为代表的有关人员从污水曝气池里分离出一株可以以甲基对硫磷以及其在降解过程中产生的对硝基苯酚是仅有 的碳源的节杆菌属,其在5h内降解50mg/L的甲基对硫磷以及对硝基苯酚的比率达到85%与98%。而以金彬明为代表的有关人员主要是从受有机磷污浊后的海水样中筛选、分离出一株蜡样芽孢杆菌菌株,其在温度高达28摄氏度的情况下降解甲胺磷的比率高达48.9%。 微生物本身的降解能力是限制有机磷农药微生物降解的因素 中最重要的因素,不同种类的微生物,其代谢活动各具特色,适应性也千差万别,而且同类型的不同菌株对相同的有机底物的反应也各不相同。加之,微生物具有较强的适应环境的能力,很容易驯化,经过一阶段的适应新生化合物可以促使微生物产生与之对应的酶系降解它,且还可以借助于基因突变来构建新酶系降解它。传统主要是采用单一的微生物菌株的纯培养来降解农药的微生物,但是这一方式不如混合培养合理,前者一般情况下没有生物降解需要的整个酶的遗传合成信息,其在降解难度较高的化合物中没有充足的训话时间,继而无法进化出整个代谢途径,相反,后者则更能抵御微生物降解时产生的毒物质。

氯氰菊酯降解菌的分离鉴定及其降解特性研究(一)

氯氰菊酯降解菌的分离鉴定及其降解特性研究(一) 【摘要】目的分离得到能高效降解氯氰菊酯的菌株。方法采用选择性培养基从农药厂的污泥中进行富集和分离筛选高效菌株,并且用16SrDNA序列分析法和其生理生化特征对其进行鉴定。结果该菌株鉴定为克雷伯氏菌属(Klebsiellasp.),命名为(登录号为AY989899),菌株能以氯氰菊酯为唯一碳源进行生长,降解氯氰菊酯的最适温度是35℃,最佳pH是7.0。结论菌株是一株能高效降解氯氰菊酯的菌株。 【关键词】氯氰菊酯;克雷伯氏菌;生物降解 gradingstrainfromthesamplesandidentifyingthestrainbyusingthe16SrDNAsequenceanalysisanditst growwithcypermethrinassolesourceofcarbon.TheoptimaltemperatureandpHofcypermethrindegra dationbytheorganismwere35℃and7.0.Conclusion methrin. Keywords:cypermethrin;;biodegradation 随着20世纪80年代无机盐农药和有机氯农药的相继禁用,菊酯类农药已发展为我国现阶段使用最广泛的农药之一,由于具有广谱、内吸、触杀等高效杀虫特性,因此广受农业生产者欢迎。但是,大量使用引起的农药残留不仅造成环境与食品的污染,而且影响农产品的质量及人们的身体健康。农药残留及其废水的降解主要有微生物降解、化学降解和光降解等方式。与其他的降解方式相比,微生物降解具有操作简单、降解彻底、无二次污染等优点。因此利用微生物技术处理农药残留,并对受污染的土壤与水体进行生物修复是一种行之有效的方法。目前对有机磷和有机氯等农药的微生物降解的研究比较多,而关于菊酯类农药的降解研究较少。本文从农药厂的污泥中采集土壤样品,筛选分离到一株能高效降解氯氰菊酯的菌株(),并对其进行筛选、鉴定及降解性能的初步研究〔〕。 1材料与方法 1.1培养基 富集培养基(1L):蛋白胨10g、NaCl2.0g、KH2PO41.5g、葡萄糖1.0g、dH2O1000mL,pH值7.0;经115℃,灭菌20min。基本培养基(1L):NH4Cl1.0g,KH2PO40.5g,K2HPO41.5g,MgSO40.2g,NaCl0.5g,加入氯氰菊酯作为唯一碳源,浓度视需要添加。LB液体培养基(1L):蛋白胨10g,酵母提取物5g,NaCl5g,pH值7.0(固体加2%的琼脂粉)。 1.2实验试剂 氯氰菊酯(质量分数95%)原药和标准品(质量分数99.9%,色谱纯)购自成都化学试剂公司;TaqDNA聚合酶与各种限制性内切酶均购自大连宝生物;3SDNAGelPurificationkitV3.1购自上海申能博彩生物科技有限公司;PCR引物由上海博亚合成;载体试剂盒购自大连宝生物。 1.3降解菌株的富集和分离 将采集的农药污染土样配制成15%的悬浮液,以5%的接种量接到含25mg/L氯氰菊酯的富集培养基中,并加适量玻璃珠,37℃、160r/min振荡培养。待菌长出后,取1mL菌液接入同样培养基中37℃培养,传代过程中氯氰菊酯的浓度逐步增高至300mg/L,大约2d传代1次。将富集的农药降解菌菌液用无菌水作10倍梯度(10-1、10-2、10-3、10-4、10-5、10-6)稀释,分别取0.2mL悬液涂布在含有50mg/L氯氰菊酯的无机盐固体培养基上,37℃培养;当平板出现菌落时,将单菌落在无机盐农药平板上划线分离、纯化菌株。将生长快、菌落规则、传代稳定的单菌落斜面保存。将初筛纯化的斜面单菌落接入含有50mg/L氯氰菊酯的无机盐液体培养基,37℃、160r/min培养2d,测定其降解率。

微生物降解农药

摘要:综述了在环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物 降解研究方面的新技术和新方法。文章认为,在农药的微生物降解研究中,应重视自然状态下微生物对农药的降解过程,分离构建应由天然的微生物构成的复合系,利用微生物复合系进行堆肥或把堆肥应用于被污 染的环境是消除农药污染的一个有效方法。关键词:微生物生物降解农药降解农药 20世纪60年代出现的第一次“绿色革命”为人类的粮食安全做出了重大贡献,其中作为主要技术之一的农药为粮食的增产起 到了重要的保障作用。因为农药具有成本低、见效快、省时省力等优点,因而在世界各国的农业生产中被广泛使用,但农药的过分使用产生了严重的负面影响。仅1985年,世界的农药产量为200多万t[1];在我国,仅1990年的农药产量就为22.66万t[2],其中甲胺磷一种农药的用量就达6万t[3]。化学

农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加[3~6]。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。 这些农药残留广泛分布于土壤、水体、大气及农产品中,难以利用大规模的工程措施消除污染。实际上,在自然界主要依靠微生物缓慢地进行降解,这是依靠自然力量、

多环芳烃高效降解菌的筛选.

多环芳烃高效降解菌的筛选 2011-01-18 摘要:以多环芳烃芘和苯并(a)芘为供试物,对多株土著菌和引进菌同时进行筛选试验.结果表明,引进菌经过驯化后对芘和苯并(a)芘都具有一定的降解能力,降解率在30%~80%,通过SPSS数理统计分析软件对数据进行处理后得出,引进细菌B61、B67、M-B和引进真菌Y219、Y220、M-Y作为固定化包埋的`菌种;土著菌对芘和苯并(a)芘的降解率可达40%~95%,经过筛选后确定,土著细菌B02、B07、B09和土著真菌F02、F05、F06作为固定化包埋的菌种.通过试验对上述各菌进行了生长曲线的测定,细菌和酵母菌的对数生长期是5~20 h,真菌的对数生长期是10~55 h,这为固定化微生物提供了一定的前提条件.作者:王 新李培军巩宗强张辉 V.A.Ver khozina WANG Xin LI Pei-jun GONG Zong-qiang ZHANG Hui V.A.Ver khozina 作者单位:王新,WANG Xin(中国科学院沈阳应用生态研究所,辽宁,沈阳,110016;沈阳工业大学理学院,辽宁,沈阳,110023) 李培军,巩宗强,张辉,LI Pei-jun,GONG Zong-qiang,ZHANG Hui(中国科学院沈阳应用生态研究所,辽宁,沈阳,110016) V.A.Ver khozina,V.A.Ver khozina(俄罗斯科学院西伯利亚分院闽诺格拉多夫地质研究所,伊尔库茨克,664033) 期刊:农业环境科学学报 ISTICPKU Journal:JOURNAL OF AGRO-ENVIRONMENT SCIENCE 年,卷(期):2007, 26(z1) 分类号:X172 关键词:土著菌引进菌筛选对数生长期

有机磷农药的残留危害及其微生物降解

环境与健康期末论文 教师:蔡兰坤 学院:资源与环境学院学号:B2014009 班级:环境122 姓名:严义昌

有机磷农药的残留危害及其微生物降解 严义昌资环学院环境122学号:B2014009 (华东理工大学资源与环境学院,上海201424) 摘要:有机磷农药因为自身的优良特性开始逐步取代对环境危害更大的有机氯农药,它的大量使用在提高了作物产量的同时也对动物和人体产生了许多负面效应,造成了全球性的环境污染和生态破坏.而有机磷农药残留问题已经直接威胁到人类的生存和可持续发展.微生物因为众多的种类和新城代谢的多样性在有机磷农药降解中表现出独特的优势.对降解有机磷农药的微生物种类,有机磷降解菌的获得和鉴定,有机磷的降解机理,有机磷农药降解菌的广谱性和目前存在的问题以及未来的研究方向做出论述. 关键词:有机磷农药;微生物降解;降解机理;降解菌广谱性 20世纪60年代以来,由于有机氯农药难以被动植物降解而且在生物体内降解速度慢,致使许多国家开始限制和禁止使用有机氯农药.有机磷农药作为有机氯农药的替代品,因为具有品种多,成本低,药效好,应用范围广,对自然环境的污染以及对生态系统的危害和残留没有有机氯农药那么普遍和突出等优点迅速发展起来,从20世纪70年代起,有机磷杀虫剂的使用量逐年上升.正是因为有机磷农药在我国大量、频繁和反复地使用,导致其过量残留.残存于作物、土壤或水体中的有机磷农药,经物理迁移或化学转化,最终通过食物链的传递和富集作用影响人类及其他有益生物体[1].世界上有机磷农药种类超过150种,中国生产和使用的有机磷农药有将近40种,其中常用的有敌百虫、乐果、敌敌畏、马拉硫磷、对硫磷、辛硫磷等.有机磷农药的结构区别很大,毒性也大不一样,其中对硫磷类农药的毒性最大. 1有机磷农药的毒性效应 有机磷农药引起的中毒主要为急性中毒,以神经症状为主.轻度中毒时表现为头痛、头晕、恶心、呕吐、疲倦、食欲不振等症状,血液胆碱酯酶活力下降到70%-50%;中度中毒时除上述症状加重外,还会出现肌肉震颤、瞳孔缩小、胸闷、轻度呼吸困难、流涎、流汗、腹痛、腹泻、血压和体温升高等症状,血液胆碱酯酶活力下降到50%-30%;重度中毒除上述症状和特征外,并伴有心率加快、血压升高、瞳孔高度缩小、肌肉震颤明显、呼吸困难、昏迷、循环衰竭等,少数人出现脑水肿,血液胆碱酯酶活力下降到30%以下.同时研究表明有机磷农药具有遗传毒性,可导致基因内部DNA的改变,并引起一定的表型变化. 除了急性毒性外,也发现了有机磷农药的慢性毒性作用,不过其慢性中毒症状无明确的特异性,仅以神经衰弱综合征为主,如头痛、头晕、食欲不振、记忆力减退等. 有机磷农药作为潜在的化学致癌物还可能参与癌症的发生.经流行病学调查发现,非霍奇金淋巴瘤(NHL)、白血病、前列腺癌的发生同接触有机磷农药混合物密切相关.1995年在对美国某农产进行调查时,发现该农场工人NHL的发病率高于没有接触有机磷农药人群. 有机磷农药具有遗传毒性,可导致基因内部DNA的改变,并引起一定的表型变化.有研究表明,暴露在不同浓度的甲基对硫磷、甲基吡啶磷、敌敌畏条件下,可以导致黑腹果蝇三期幼虫两个遗传标记点的交叉杂合,在表型上观察到果蝇翅膀大小和形状的突变.早有报道久效磷具有遗传毒性,可导致生物机体的一系列生化指标如血浆蛋白含量、肝脏的DNA和RNA含量等改变.敌百虫、敌敌畏和乙酰甲胺磷可以显著诱发中国仓鼠(Phodopus griseus)

聚乙烯以及PAEs降解菌筛选方法

一、P AEs(邻苯二酸甲酯)降解菌的筛选 1.样品来源 南极样品,连云港海域水样泥样,最好为工业废水排污口附近海域水样。 2.特殊药品 PAEs是邻苯二甲酸与一些醇类形成的酯的统称。 其中DMP、DMI、DMT、MMI等较为常见[1]。根据情况选择底物。至少包含3种 同的底物[1, 2]。 3.培养基 基础无机盐(MSM)培养基(g/L): K2PHO4 5.8, KH2PO4 4.5, (NH4)2SO4 2.0,MgCl2 0.16,CaCl2 0.02, Na2MoO4 0.0024, FeCl3 0.0018, MnCl2 0.0015 pH=7按照200mg/L加 入PAEs(邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲 酸二正辛酯各50mg/L。如果药品种类有变化则按总量200mg/L平均加入。) 4.降解菌株的驯化与分离纯化方法 4.1从4个样品中分别取0.5g于PAEs-MSM液体培养基中。 4.225℃下振荡培养7d。 4.3将有浑浊样品逐步转接至PAEs浓度分别240mg/L、280mg/L、320mg/的培养基 中培养,每次转接在25℃下培养7天。 4.4纯化时,用接种针蘸取少量菌液,在PAEs平板上分离纯化。 5.降解菌降解能力的测定 根据文献,一般使用HPLC法对PAEs的降解菌降解产物进行分析[3]。 但是如果菌株可以在PAEs为唯一碳氮源的PAEs-MSM培养基中生长,则可以认为 菌株具有降解PAEs的能力。 二、聚乙烯降解菌的筛选 1.样品来源 南极土样,连云港海域泥样、水样,最好为近海潮间带塑料堆积处泥样。 2.特殊药品 分子量为2000和5000的无任何添加物的纯聚乙烯粉末 3.材料预处理 将聚乙烯粉末放在无菌操作台紫外灯下紫外杀菌3h。并用接种环挑取少量灭菌的粉 末分别接入牛肉膏蛋白胨培养基、马丁氏培养基和高氏一号培养基。在37℃和28℃ 下培养72h。如粉末周围均没有发现菌落生长,则粉末已彻底灭菌。 4.培养基(g/L) 高氏一号培养基:可溶性淀粉20,KNO3 1,NaCl 0.5,K2HPO4 0.5,FeSO4 0.01,琼脂粉20,pH 7.2 马丁氏培养基:葡萄糖10,蛋白胨5,KH2PO41, MgSO40.5 1/3000孟加拉红 100mL,琼脂18 自然pH 牛肉膏蛋白胨培养基:牛肉膏3,蛋白胨10,NaCl 5,琼脂18,pH 7.2 无碳氮源琼脂固体培养基:K2HPO4 0.7,KH2PO4 0.7, MgSO4 0.7g, NH4NO3 1, NaCl 0.005, FeSO4 0.002, ZnSO4 0.002 MnSO4 0.001 琼脂18,自然pH 培养基A:3cm*3cm膜片一张,蛋白胨10,石蜡油0.1mL,K2HPO40.7,KH2PO4 0.7, MgSO4 0.7g, NH4NO3 1, NaCl 0.005, FeSO4 0.002, ZnSO4 0.002 MnSO4 0.001, 培养基B牛肉膏3,3cm*3cm膜片一张,石蜡油0.1mL蛋白胨10,琼脂18, K2HPO4 0.7,KH2PO4 0.7, MgSO4 0.7g, NH4NO3 1, NaCl 0.005, FeSO4 0.002, ZnSO4 0.002 MnSO4 0.001

相关文档
最新文档