2018年中考数学计算题专项训练
2018年中考数学真题知识分类练习试卷:代数式(含答案)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
2018年中考数学真题知识分类练习试卷:代数式(有答案)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
2018年中考数学真题(附答案解析)
2018年初中毕业生升学考试数学真题一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是( ) A .2-B .12-C .12D .22.下列图形中一定是轴对称图形的是A.B.C.D.3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .185.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( ) A. 3cm B. 4cm C. 4.5cmD. 5cm6.下列命题正确的是A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.估计()1230246-⋅的值应在( ) A. 1和2之间 B.2和3之间 C.3和4之间 D.4和5之间8.按如图所示的运算程序,能使输出的结果为12的是( )40°直角三角形四边形平行四边形矩形A.3,3==y xB.2,4-=-=y xC.4,2==y xD.2,4==y x9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( ) A .4B .23C .3D .2.510.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角58AED ∠=︒,升旗台底部到教学楼底部的距离7DE =米,升旗台坡面CD 的坡度1:0.75i =,坡长2CD =米,若旗杆底部到坡面CD 的水平距离1BC =米,则旗杆AB 的高度约为( )(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.6︒≈) A .12.6米 B .13.1米 C .14.7米 D .16.3米11.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .512.若数a 使关于x 的不等式组112352x xx x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a ay y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .3- B .2- C .1 D .2二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:02(3)π-+-=______________.14.如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是___________(结果保留π).15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 。
2018年全国中考数学真题汇编全集(共21套)
2018年中考数学真题汇编:实数与代数式(解答题21题) 解答题1.计算:.【答案】原式=1-2+2=02.(1)计算:(2)化简:.【答案】(1)解:原式=1+2× -(2- )-4=1+ -2+ -4=(2)解:原式= ==3.(1)计算:(2)化简:【答案】(1)=4- +1=5-(2)=m2+4m+4+8-4=m2+124.(1).(2)化简.【答案】(1)原式(2)解:原式5.(1)计算:(2)解分式方程:【答案】(1)原式= ×3 - × +2- + ,= - +2- + ,=2.(2)方程两边同时乘以x-2得:x-1+2(x-2)=-3,去括号得:x-1+2x-4=-3,移项得:x+2x=-3+1+4,合并同类项得:3x=2,系数化为1得:x= .检验:将x= 代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:x= .6.(1)计算:2(-1)+|-3|-(-1)0;(2)化简并求值,其中a=1,b=2。
【答案】(1)原式=4 -2+3-1=4(2)原式= =a-b当a=1,b=2时,原式=1-2=-17.(1)计算:(2)解方程:x2-2x-1=0【答案】(1)解:原式= - -1+3=2(2)解:∵a=1,b=-2,c=-1∴∆=b2-4ac=4+4=8,∴x=x=∴x1= ,x2=8.计算:+-4sin45°+.【答案】原式=9.计算:【答案】原式=2-3+8-1=610.计算:【答案】解:原式= = 11.计算:.【答案】解:原式=4+1-6=-112.计算或化简.(1);(2).【答案】(1)解:()-1+| −2|+tan60°=2+(2- )+=2+2- +=4(2)解:(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+1813.计算:【答案】解:=1+2+=1+2+4=7.14.计算:(π-2)°+4cos30°--(-)-2.【答案】解:原式= ,=-3.15.(1)计算:;(2)化简:.【答案】(1)解:原式=(2)解:原式=16.计算:.【答案】解:原式=2-2× + +1,=2- + +1,=3.17.(1)计算:. (2)解方程:.【答案】(1)解:原式=2 -2 -1+3=2;(2)解:a=1,b=-2,c=-1,△=b2-4ac=4+4=8>0,方程有两个不相等的实数根,x= ,则x1=1+ ,x2=1- .18.计算:【答案】解:原式=4-1+2- +2× ,=4-1+2- + ,=5.19.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:________;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1)(2)解:猜想:,证明:左边= = = =1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,20.对于任意实数、,定义关于“ ”的一种运算如下:.例如. (1)求的值;(2)若,且,求的值.【答案】(1)解:(2)解:由题意得∴.21.对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.解决问题:(1)填空:________,如果,则的取值范围为________;(2)如果,求的值;(3)如果,求的值.【答案】(1);(2)解:①当2≤x+2时,即x≥0时,2(x+2)=x+4,解之:x=0②当x+2<2<x+4时,即-2<x<0,2×2=x+4解之:x=0(舍去)③当x+4≤2,即x≤-2时,2(x+4)=2解之:x=-3故x=0或x=-3(3)解:①当9=x2,且3x-2≥9时。
全国各地2018年中考数学真题汇编 整式(31题)
2018年中考数学真题汇编:整式(31题)一、选择题1. (2018四川内江)下列计算正确的是()A. B.C. D.【答案】D2.(2018广东深圳)下列运算正确的是( )A. B.C. D.【答案】B3.(2018浙江义乌)下面是一位同学做的四道题:①.② .③.④ .其中做对的一道题的序号是()A. ①B . ② C.③ D.④【答案】C4.下列运算正确的是()A. B.C. D.【答案】A5.下列运算正确的是()。
A. B.C.D.【答案】C6.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()B. 2C. 3D. 4【答案】B7.下列运算正确的是()A. B.C.D.【答案】C8.计算的结果是()A. B.C.D.【答案】B9.下列运算正确的是()A. B.C. D.【答案】C10.计算的结果是()A. B.C.D.【答案】C11.下列计算正确的是()A. B. C.D.【答案】D12.下列计算结果等于的是()C.D.【答案】D13.下列运算正确的是()A.B.C.D.【答案】C14.下列运算正确的是()A. B.C. D.【答案】D15.下列计算正确的是()。
A.(x+y)2=x2+y2B.(-xy2)3=-x3y6C.x6÷x3=x2D.=2【答案】D16.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,④a3·a4=a12。
其中做对的一道题的序号是()A. ①B . ② C.③ D.④【答案】C17.下列计算正确的是()B.a3·a2=a6C.a6÷a2=a3D.(a3)2=a5【答案】A18.计算结果正确的是()A. B.C.D.【答案】B19.下列计算正确的是( )A. B. C.D.【答案】C20.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为()A.2aB.2bC.2a-2bD.-2b【答案】B二、填空题(共6题;共6分)21.计算:________.【答案】-4x722.计算的结果等于________.23.已知x,y满足方程组,则x2-4y2的值为________。
中考计算题数学试题专项训练【含答案】
中考数学计算题大全解析1.计算:(1);(-2)2-364+(-3)0-(13)-2(2).a 2-9a 2+6a +9÷a -3a 【来源】2018年江苏省南通市中考数学试卷(1)-8;(2)aa +3【分析】(1)先对零指数幂、乘方、立方根、负指数幂分别进行计算,然后根据实数的运算法则,求得计算结果;(2)用平方差公式和完全平方公式,除法化为乘法,化简分式.【详解】解:(1)原式;=4-4+1-9=-8(2)原式.=(a +3)(a -3)(a +3)2·a a -3=a a +3本题考查的知识点是实数的计算和分式的化简,解题关键是熟记有理数的运算法则.2.(1)计算:8-(3.14-π)°-4cos 45°(2)化简:x2x -1÷xx 2-1-x【来源】四川省甘孜州2018年中考数学试题(1)-1;(2)x 2【分析】(1)原式第一项化为最简二次根式,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,计算即可得到结果.(2)先把除法转化为乘法,同时把分子分解因式,然后约分,再相乘,最后合并同类项即可.【详解】(1)原式=-1-4×2222=-1-2222=-1;(2)原式=-xx2x -1⋅(x +1)(x -1)x=x (x +1)-x =x 2.此题考查了实数和分式的运算,熟练掌握运算法则是解本题的关键.3.(1)解不等式组:{x -23<12x +16>14(2)化简:(﹣2)•.x 2+1x xx 2-1【来源】2018年山东省青岛市中考数学试卷(1)﹣1<x <5;(2).x -1x +1【分析】(1)先求出各不等式的解集,再求出其公共解集即可.(2)根据分式的混合运算顺序和运算法则计算可得.【详解】(1)解不等式<1,得:x <5,解不等式2x+16>14,得:x >﹣1,则不等式组的解集为﹣1<x <5;(2)原式=(﹣)•=•=.本题主要考查分式的混合运算和解一元一次不等式组,解题的关键是掌握解一元一次不等式组的步骤和分式混合运算顺序和运算法则.4.先化简,再求值:,其中.x2x +1-x +1x =12-(12)-1-|1-3|【来源】内蒙古赤峰市2018年中考数学试卷,1x +133【分析】先根据分式混合运算顺序和运算法则化简原式,再利用二次根式性质、负整数指数幂及绝对值性质计算出x 的值,最后代入计算可得.【详解】原式(x ﹣1)=x2x +1-=x2x +1-x 2-1x +1.=1x +1∵x =22﹣(1)=21,∴原式.3-3-3-2-3+1=3-=13-1+1=13=33本题考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.5.先化简,再求值.(其中x=1,y=2)x 2-y2x 2-2xy +y2⋅xyx 2+xy +xx -y 【来源】2018年四川省遂宁市中考数学试卷-3.【分析】根据分式的运算法则即可求出答案【详解】当,时,x =1y =2原式=(x +y)(x -y)(x -y)2·xy x(x +y)+xx -y=y x -y +xx -y =x +y x -y =-3本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.计算:.(13)-1+(8-1)0+2sin 45°+|2-2|【来源】2018年四川省遂宁市中考数学试卷6.【分析】利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案【详解】原式=3+1+2×22+2-2=4+2+2-2.=6此题主要考查了实数运算,正确化简各数是解题关键7.计算:(1)32﹣﹣|﹣2|×2﹣19(2)(a+1)2+2(1﹣a)【来源】2018年海南省中考数学试卷(1)5;(2)a 2+3.【分析】此题涉及的知识点是实数的混合运算,先计算乘法,再计算减法就可以得到结果,其中要注意幂的乘方,根号,绝对值的计算。
2018年中考数学计算题
2018年中考数学计算题一.实数运算1.计算:0(1)412-+-2.020131sin 6053(4015)(1)()31π-︒+--+-+-3.计算:2sin300+(-1)2-22-4.020132012)2(232)3+2•32-----()(.5. 3-3)2+0(3)π+27+32- 6.0182()2--7. 计算:3-+(-2)2-(5+1)0 8.()()220133121932-⎪⎭⎫⎝⎛-+------9.计算:()13201341832)1(-⎪⎭⎫⎝⎛+⨯-+---π011821()2π--+11.计算:(-2)2+|3+2sin60°1212.8+ |- 2 | - 4sin 45°- (31)-113. 计算:269(1)--14.())031319-++31.(π-3.14)0+(12)-1+|-22|-8。
32.03)2013(830tan 33π---︒⋅+-33. 计算:01)3(8)41(45cos 2-----︒-π.1.(-2)2+|-3|+2sin60°-12.2.计算:(一20)×(一12 )+9 +2 000.3.10)41(45cos 22)31(-+︒--+-4. 计算:()212182sin 45-︒-+-⨯+;5.计算:3221)13(3101-+--⎪⎭⎫ ⎝⎛-.6.计算:10382cos60(2)π-+︒--7. 计算:()()2920.1--+-;8. 计算:3422(75)-÷-⨯-+9.计算:102sin 60+2201313----s i n 30°−2-1+()21-1π+11..12. 计算:|-8|+(13)-1-4sin45°-(2013-2012)0.13. 计算:.14. 计算:()1120138|322cos 452-⎛⎫--+︒ ⎪⎝⎭.15. 计算:01112(20132)()2sin 603-︒-+--16.计算:)2013(60tan 223)31(272π-+--+--18. 计算:20135(1)2sin 3025-+-+︒-.二.因式分解类1.因式分解:24xy x -= .2.分解因式: (a+2)(a-2)+3a=_________.3. 分解因式:a ab ab 442+-=________4.因式分解:2442x y x y -= 。
2018年中考数学计算题
一.实数运算1.5.27.9.11.计算:(2+|+2sin612.4sin45°-113.计17.18.计算:19.20.21.计算: 2+|-3|+tan45°23.25(-1(2sin30°60°;29. 12.31.(π-3.14)0+(12)-1+|-22|-8。
33. 计 1.(-2)2+|-3|+2s2.计算:(一20)×(一1)000.4. 5.6.计算:10382cos60(2)π-+︒--7. 计算:()()20920.1--+-;8. 计算:3422(75)-÷-⨯-+9.计算:102sin 60+2201313----s i n 30°−2-1+()21-1π+11..12. 计算:|-8|+(13)-1-4sin45°-(2013-2012)0.13. 计算:.14. 计算:()1120138|32|2cos 452-⎛⎫⨯---+︒ ⎪⎝⎭.15. 计算:01112(20132)()2sin 603-︒-+---16.计算:)2013(60tan 223)31(272π-+--+--18. 计算:20135(1)2sin 3025-+-+︒-.二.因式分解类1.= .2.分解因式: (a+2)(a-3. ________4.因式分解:= 。
5.分解因式:x2-9=________7.分解因式:2x2-4x= .8.分解因式a3-ab2= .9.分解因式:。
10.分解因式:2a2﹣8= .11.分解因式:2m3-8m= .12.= .13.分解因式:4x2-8x+4=.14.分解因式:x2y﹣4y= .16.分解因式:= .17.218.分解因式:x2﹣4= .20.21.分解因式:a2-2a=.22.。
1.分解因式:x2y-y=2.分解因式:-3x2+2x= .3.因式分解:m3-4m4.分解因式:5x2-20=______________.5.分解因式:a2b-4b2= .6.7.分解因式x2-4= .8.9.因式分解:x2-9y2=10.因式分解:x2+2x+1= 11.分解因式:3a2-12ab+12b2=__________.12.因式分解:m2-5m= .13._____________.14.分解因式4x-x3= ______________________.15.=.16.= .17.因式分解:a2+2a+1=.19.20.分解因式:ab2-4a= .22.分解因式:4(x-1)=_________.23.分解因式:= .24.分解因式:x2-64=________.25.= .26.分解因式: am2-4an2= .28.分解因式:x2-9=______.29.因式分解:mx2−my2.二化简或化简求值12.化1.2.先化简,再求值:(a-b)2+a(2b-a).其中3.化简:(1+a )(1-a )+a (a-3)3.(1)计算:|﹣4|﹣+(﹣2)0;4. 先化简,再求值:33()()(48)2x y x y x y xy xy +---÷,其中31,3x y =-=6.化简:2)1)(1(x x x --+ 1.化简:(a - b)2 +a(2b -a).8. 先化简,再求值:(1+a )(1-a )+a (a -2),其中a =212. 已知0142=--x x ,求代数式22))(()32(y y x y x x --+--的值.化简:a (b+1)﹣ab ﹣1.8.化简:(a 2-a )÷2211a a a -+-.1.先化简,再求值其中2.,其中m是方程x2+3x-1=0的根.3.x满足x2+x-2=0.4.5.0,1,2,三个数中选一个合适的,代入求值.6.a ,b 满足7.x 是不等式.9.先化简, 再求值其中 m = 2.13.化简:14. 先x =3.16.17. 先化简,再求值:18.19. 1.化简:(a 2-a )÷a 2-2a +1a -1.20. 先x =421. 先化简,再求值:11112-÷⎪⎭⎫ ⎝⎛+-x x x ,其中x =23-.2.先化简,再求值:xx x x x +÷++--224)1111(,其中x=-2. 3. 化简:2222112x x x x x x x x +-+÷++-+ 4.化简b a a b a b b a +÷⎪⎭⎫ ⎝⎛---221.5.(1)计算:|-2|-9+(-2013)0;(2)计算:1)111(2-÷-+x x x6.先化简,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.2. 先化简,再求值:244412222+-÷⎪⎭⎫⎝⎛++--+-a a a a a a a a ,其中a 2 1.3.x2.其中a2.4.13a+5.6.1.2. 先化简,再求值:⎪⎪⎭⎫ ⎝⎛--÷-a a b ab a b a 2222,其中21+=a ,21-=b .4. 先化简,再求值:21(1)121a a a a -÷+++,其中31a =-5. 先化简,再求值:21211x x x x -+⎛⎫-÷ ⎪⎝⎭, 其实x =2.6.先化简,再求值:24()44a a a a -÷+--,其中a=3+2.7.先化简:,再求值,其中a=.8.1适的数作为a的值代入求值.9.四.方程类1.7.1.解方程组:⎩⎨⎧x +y =1, ①2x -y =5. ② 2.4.6.8.解方程1.11. 解方程:=﹣5.五.不等式组类1.解不等式组⎩⎨⎧>-+≥+,33)3(2,12x x x 并将解集在数轴上表示出来.2.解不等式组:()213,10.x x x ->⎧⎪⎨<-⎪⎩ 8.解不等式组:()21213x x x -≥⎧⎪⎨-<+⎪⎩5. (1)计算:2-1-3tan30°+(2-1)0+12+cos60°(2)解不等式3-1511242x x x x <+⎧⎪⎨--⎪⎩()≥,并指出它的所有的非负整数解13.. 18.解不等式组19..3.9.10.解,并把解集在数轴上表示出来.13.。
2018年中考数学真题知识分类练习试卷:代数式(含答案)
代数式
一、单选题
1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()
A.1
B.2
C.3
D.4
【来源】山东省滨州市2018年中考数学试题
【答案】B
2.计算的结果是()
A. B. C. D.
【来源】江苏省南京市2018年中考数学试卷
【答案】B
【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.
详解:
=
=
故选:B.
点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.
3.下列计算结果等于的是()
A. B. C. D.
【来源】2018年甘肃省武威市(凉州区)中考数学试题
【答案】D
4.下列运算正确的是()
A. B.
C. D.
【来源】湖南省娄底市2018年中考数学试题
【答案】D
【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.
【详解】A.,故A选项错误,不符合题意;
B.,故B选项错误,不符合题意;。
全国2018年中考数学真题分类汇编 滚动小专题(一)数与式的计算求值题(答案不全)
类型1 实数的运算类型2 整式的运算类型3 分式的运算类型1 实数的运算(2018广安)(2018徐州)(2018资阳)(2018铜仁)(2018云南)(2018曲靖)(2018毕节)21.(本题8分)计算:()31330tan 3123101-+--︒+-⎪⎭⎫⎝⎛--π(2018东营)计算:12018o 0)21()1(3tan30)12(32---+-++-.解:原式=2-1333-13-2+⨯+ =32-2. (2018通辽)(2018沈阳)(2018桂林)19.(本题满分6分)计算:10)21(45cos 6318-+︒--+)(.(2018陕西)计算:(-3)×(-6)+|2-1|+(5-2π)0解:原式=32+2-1+1=4 2.(2018齐齐哈尔)(2018乌鲁木齐)(2018张家界)15. ()13-+()21---︒60sin 4+12.解:原式= 3223211+⨯-+ ……………………4分 =2 ……………………5分(说明:第一步计算每对一项得1分) (2018怀化)(2018海南)(2018遵义)(2018大庆)(2018广西六市同城)(2018遂宁)计算:.(2018十堰)17.计算:12--(2018深圳)17.计算:()1012sin 4520182π-⎛⎫-+-+- ⎪⎝⎭(2018玉林)(2018北京)(2018安顺)19.计算:()22018112tan 60 3.142π-⎛⎫-+︒--+ ⎪⎝⎭.解:原式12144=-++=.(2018淮安)计算:02sin 45(1)π︒+--. 解:1.(2018黄石)17、(本小题7分)计算:()22cos 602ππ-+-+︒+(2018新疆建设兵团)(2018郴州)17. 计算()2018112sin 4521--+--.(2018呼和浩特)(2018黔东南、黔南、黔西南)21.(1)计算:(10122cos6020186-⎛⎫--︒+- ⎪⎝⎭.(2018兰州)(2018凉山州)(2018菏泽)15.计算:220181122sin 602-⎛⎫-+- ⎪⎝⎭.(2018孝感)17.计算2(3)44cos30-+-+.解:原式944=++13=+13=.(2018咸宁)计算:2-38-123+.(2018盐城)17.计算:011()2π--(2018德阳)(2018邵阳)19.计算:(-1)2+( π -3.14)0-|2-2|. 解:(-1 )2+(π-3.14 )0-|2-2|=1+1-(2-2)………………………………………………………………………5分=2-2+2 ……………………………………………………………………7分=2. …………………………………………………………………………8分(2018南通)19.(111220133tan 303-⎛⎫+--+︒ ⎪⎝⎭.(2018泰州)17.(1)计算:212cos3022π-⎛⎫+-- ⎪⎝⎭°(2018宿迁)20. 计算:200(2)(2sin 60π---++.(2018株洲)19、计算:10323tan 452--+-. 解:原式=132123⨯-+ =2-3 =-1(2018扬州)19.计算或化简.(1)11()2tan 602-+.解:(1)原式43322=--+= .(2018永州)19. 计算:12601-+.(2018苏州)(2018湘西)(2018湘潭)17.(6分)计算:|﹣5|+(﹣1)2﹣()﹣1﹣.解:原式=5+1﹣3﹣2=1.(2018温州)(2018台州)17.计算:2(1)(3)--⨯-.(20180111)2sin 45()4--︒-(2018绍兴)17.(1)计算:0112tan 60122)()3--+.解:原式132=+=.(2018连云港)计算:20(2)2018-+-(2018无锡)(2018长沙)(2018湖州)(2018达州)17.计算:02201860sin 4|122|)21()1(+---+--.(2018岳阳)17.计算:2(1)2sin 45(2018)π--+-+. (2018娄底)(2018常德)17.计算:021)|1()2π---. 解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.(2018嘉兴、舟山)(1)计算:0)13(3)18(2---+-.(2018安徽)15.计算:28)2(50⨯+--解:原式=1+2+4=7.(2018宜宾)17. (1)计算: sin30°+(2018-3)0-2–1+|-4|.解:原式=+1﹣+4=5.(2018眉山)19.(本小题满分6分)计算:(π-2)°+4cos30°-12-(-21)-2.解:1442=+⨯-原式 3=-(2018泸州)17.计算:011()|4|2π-+--. (2018衢州)17.计算:()03221π---(2018金华、丽水)17.(本题6分)+0(2018)--4sin45°+2-.解:(2018自贡)19.(本题满分8分)计算:112cos 452-⎛⎫+- ⎪⎝⎭.(2018枣庄)19.计算:2202)211(2760sin |23|-+---+-. 解:原式=2﹣+﹣3﹣+=﹣.(2018甘肃)(2018内江)17.()0221( 3.14().2π-+---⨯解:原式=2﹣+12﹣1×4=+8.(2018绵阳)19.(1)计算:343-260sin 34-2731++︒.解:原式= ×3 - × +2- + ,= - +2- + ,=2.(2018南充)17.0111sin 4522-⎛⎫⎛⎫-++ ⎪ ⎪ ⎪⎝⎭⎝⎭.(2018成都)类型2 整式的运算 (2018温州)(2018海南)计算:(2018乌鲁木齐)(2018宜昌)16.先化简,再求值:()()()122x x x x +++-,其中4x =.解:原式224x x x =++-4x =+当4x =时,原式44=+=(2018济宁)(2018咸宁)化简:()()().123---+a a a a(2018襄阳)17.先化简,再求值:(x +y )(x -y )+y (x +2y )-(x -y )2,其中x y =2(2018巴中)24. 20y +=,求代数式2()()()2x y x y x y x ⎡⎤-++-÷⎣⎦的值.(2018扬州)19.计算或化简. (2)2(23)(23)(23)x x x +-+-.解:原式81294129422+=+-++=x x x x(2018淄博)18.先化简,再求值:()()2212a a b a a +-++,其中1,1a b ==.(2018江西)13.(1)计算:2(1)(1)(2)a a a +---. 原式 ===(2018河北)20. 嘉淇准备完成题目:化简:(2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?(2018邵阳)先化简,再求值:( a -2b )( a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.解:( a -2b )( a +2b )-(a -2b )2+8b 2=a 2-(2b )2-(a 2-4ab +4b 2)+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2=4a b . ……………………………………………………………………………6分 将a =-2,b =12 代入得:原式=4×(-2)×12=-4. (8)(2018无锡)(2018长沙)(2018大庆)(2018衡阳)先化简,再求值:(2)(2)(1)x x x x +-+-,其中1x =-.(2018吉林)(2018宁波)19.先化简,再求值:2(1)(3)x x x -+-,其中12x =-. 解:原式=x 2﹣2x+1+3x ﹣x 2=x+1, 当x=﹣时,原式=﹣+1=.(2018重庆A 卷)21.计算: (1)()()()b a b a b a a -+-+2 【答案】 22b ab +【解析】 解: 原式=()2222b a ab a --+ =22b ab +(2018重庆B 卷)21.计算: ()()()()21 2x y x y x y +-+-类型3 分式的运算(2018深圳)18.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中,2x = 解:原式21(1)(1)11(1)1x x x x x x x -++-=⋅=-++ 把2x =代入得:原式13=.(2018河南)16.(8分)先化简,再求值:)÷,其中x =.(2018通辽)(2018眉山)20.(本小题满分6分)先化简,再求值:(x 1-x -1x 2-x +)÷12x x x -2x 22++,其中x 满足x 2-2x -2=0.解:2(1)(1)(2)(1)=(1)(21)x x x x x x x x x +---++-原式221(1)=(1)(21)x x x x x x -++-21=x x +2220x x --=(2018临沂)20.计算:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭. (2018陕西)化简:⎝⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a 解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -1(2018盐城)19.先化简,再求值:21(1)11xx x -÷+-,其中1x =.(2018荆州)先化简,后求值:2211121a a a a a -⎛⎫-÷ ⎪+++⎝⎭,其中1a =. (2018湘潭)18.(6分)先化简,再求值:(1+)÷.其中x=3.解:(1+)÷=×=x+2.当x=3时,原式=3+2=5.(2018昆明)(2018聊城)18.先化简,再求值:211()122a a a a a a a a --÷-+++,其中12a =-.(2018达州)18.化简代数式:1)113(2-÷+--x xx x x x ,再从不等式组⎩⎨⎧+>+≥--131061)1(2x x x x 的解集中取一个合适的整数值代入,求出代数式的值. (2018福建)(2018白银)19.计算:22(1)b a a b a b÷---. 解:原式=()()b a a b a b a b a b -+÷+-- 2分=()()b a b a b +-﹒a bb- 3分1a b=+. 4分 (2018曲靖)(2018广州)19.已知()()229633a T a a a a -=+++.(1)化简T ;(2)若正方形ABCD 的边长为a ,且它的面积为9,求T 的值.(2018烟台)(2018淮安)18.先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3. 解:化简结果为12a -,计算结果为﹣2. (2018青岛)化简:22121x xx x ⎛⎫+-⋅ ⎪-⎝⎭.(2018宜宾)17. (2)化简:(1-2x –1)÷x –3x 2–1. 解:原式=•=x+1.(2018哈尔滨)(2018常德)19.先化简,再求值:22161()3969x x x x +++--+,其中12x =. 解:原式=[+]×(x ﹣3)2=×(x ﹣3)2=x ﹣3,把x=代入得:原式=﹣3=﹣.(2018徐州)计算:(2018娄底)20.先化简,再求值: 2211()1121xx x x x +?+-++,其中x =.(2018十堰)18.化简:222111121a a a a a a --÷-+++.(2018泰安)2443(1)11m m m m m -+÷----,其中2m =.(2018长春)(2018重庆A 卷)21.计算:(2)3442322-+-÷⎪⎭⎫ ⎝⎛++-+x x x x x x【答案】22-+x x 【解析】 解: 原式=()()44333222+--⋅--+++x x x x x x x=()()()223322--⋅--+x x x x x=22-+x x(2018黔东南、黔南、黔西南)(2)先化简2221169x x x x x -⎛⎫-⋅ ⎪--+⎝⎭,再在1、2、3中选取一个适当的数代入求值. (2018恩施)17.先化简,再求值:2213212111x x x x x +⎛⎫⋅+÷ ⎪++--⎝⎭,其中1x =.(2018重庆B 卷)21.计算:()2418162 111a a a a a a --+⎛⎫--÷⎪++⎝⎭(2018成都)(2018株洲)20、(本题满分6分)先化简,再求值:22211(1)1x x x y x y++--+其中2,x y ==解:原式=()yx x x yx 2211-+⋅+ =yx y x x 22-+ =yx =2.(2018山西)(2018滨州)21. 先化简,再求值:()22222222x x yxy x y x xy y x y +⨯÷++-,其中101,2s i n 4582x y π-⎛⎫=-=- ⎪⎝⎭. 解:原式=xy (x+y )••=x ﹣y ,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.(2018毕节)22.(本题8分)先化简,再求值:44214222++÷⎪⎭⎫ ⎝⎛---a a a a a a其中a 是方程062=-+a a 的解。
2018年中考数学计算题专项训练
2018年中考数学计算题专项训练2018年中考数学计算题专项训练一、集训一(代数计算)1.计算:1) sin45° - 1/2 + 3/82) 错误,未找到引用源。
3) 2 × (-5) + 23 - 3 ÷ 4 + 22 + (-1)4 + (5-2) - |-3|6) -2 + (-2) + 2sin30°8) (-1) - 16 + (-2)2 ÷ 39) (3) - () + tan45°10) - - (-2011) + 4 ÷ (-2)2.计算:(-2/3) + (-1/3) × (-1 - tan45°) - 33.计算:(1/3) + (-2) - 1/[(2010 - 2012) + (-1) - 1/(-1 - 1/1001 - 12 + 33 × tan30°)]4.计算:18 - [(cos60°) - 1 ÷ 2 - 4sin30° + 2 - 2]5.计算:(cos60°) ÷ (-1)二、集训二(分式化简)1.化简:2(tan30° - 1)2 - 1 ÷ 22.化简:(2x-1) ÷ (2x-4x-2)3.计算:(a+b) + b(a-b)4.化简:(a-1) ÷ (5x+1) ÷ (a+1)5.化简:[(1+a2+2a+1)/(a-5)] × [(1-5a)/(3a-2)]6.化简:[1/(x-2) - 2] + [1/(x+1)]7.化简:(1+1/x) ÷ (x-1)8.化简:(1+1/x) ÷ x9.化简并求值:(m2-2m+1)/(m-1) ÷ [(m-1)/(m+1)(m2-1)]。
其中m=310.化简并求值:[(2x-1)/(x-1)] ÷ [(x+2)/(x2-16)]。
2018中考数学计算题专项训练
2024年中考数学计算题专项训练一、选择填空1.下列运算错误的是( ) A .B .C .D .2.下列计算正确的是( ) A . ﹣|﹣3|=﹣3 B . 30=0C . 3﹣1=﹣3D . =±33.下列各式化简结果为无理数的是( ) A .B .C .D .4.已知分式的值为零,那么x 的值是 _________5.函数y=1-x 3x +中自变量x 的取值范围是 _________ 二、代数计算 1. 3082145+-Sin 2 .3.计算2×(-5)+23-3÷12 4. -22+(-1)4+(5-2)0-|-3|;5. ( 3 )0- ( 12)-2 + tan45° 6计算:345tan 32312110-︒-⨯⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--7. ()()()︒⨯-+-+-+⎪⎭⎫ ⎝⎛-30tan 331212012201031100128. 计算:()()112230sin 4260cos 18-+︒-÷︒---9、计算:02338(2sin 452005)(tan 602)3---︒-+︒-10.计算:1201002(60)(1)|28|(301)21cos tan -÷-+--⨯--三、分式化简求值(留意:此类要求的题目,假如没有化简,干脆代入求值一分不得!)1.()()()()a -b a 2-b -a b a -b a 2++,其中a 、b 是方程01-x 2x 2=+的两根。
2、3. 11()a a a a --÷4.2111x x x -⎛⎫+÷ ⎪⎝⎭5、化简求值(1)⎝⎛⎭⎫1+ 1 x -2÷ x 2-2x +1x 2-4,其中x =-5.(2)2121(1)1a a a a++-⋅+,其中a 2(3))2-a -2-5(4-2-3a a a ÷, 1-=a(4))12(1aa a a a --÷-,并任选一个你喜爱的数a 代入求值. (5),其中x=.6、化简求值: 111(11222+---÷-+-m m m m m m ), 其中m =37、先化简,再求值:,其中x 满意x 2+x ﹣2=0.8、化简:xx x x x x x x x 416)44122(2222+-÷+----+, 其中22+=x9、计算:332141222+-+÷⎪⎭⎫ ⎝⎛---+a a a a a a a .10、先化简,再求值:13x -·32269122x x x xx x x-+----,其中x =-6.11、先化简,再求值:•+,其中x 是从﹣1、0、1、2中选取的一个合适的数.12、先化简,再求值:222211y xy x xy x y x ++÷⎪⎪⎭⎫ ⎝⎛++-,其中1=x ,2-=y .13、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°)14、先化简再求值:1112421222-÷+--•+-a a a a a a ,其中a 满意20a a -=.15、化简:22222369x y x y yx y x xy y x y--÷-++++.。
2018年中考数学试卷解析分类汇编专题 计算题训练
2018 年中考数学试卷解析分类汇编专题+计算题训练一、集训一(代数计算)1.计算:( 1) Sin4501 3 8 (2)错误!未找到引用源。
2( 3) 2× (- 5)+ 23- 3÷1( 4) 22+ (-1)4+ (5- 2)0- |-3|;2( 5)( 3 )0- ( 1 )-2 + tan45°( 6) 116 22 021 22010 20121001 12 3 3 tan302.计算: 13二、集训二(分式化简)注意:此类要求的题目,如果没有化简,直接代入求值一分不得!考点:①分式的加减乘除运算②因式分解③二次根式的简单计算1.. 2.2x 12 4 x 2x2+b(a﹣ b).4.1 a 15.1 x2 13.( a+b)(a ) 1xa a x16、化简求值(1) 3 a (a 2 5 ) , a12a 4 a 2m22m 1 m 1(2) 化简求值:21 (m 1 ) , 其中 m= 3 .m m 11 · x 36x29 x 1x,其中 x=-6.(3) 先化简,再求值:2xx 3 x2 2 x(4) 先化简,再求值:1)÷x22x 1,其中x=2 (1x 2 1x(5) (1 1 ) a22a 1,其中 a = 2 -1.a 1 a(6) 化简并求值: 1 1 a b a2b2,其中a 3 2 2,b 3 2 3 .2a a b 2a1 12 x ,其中 1 , y(7) 先化简,再求值:x y x 22xy y2x 2 .x y(8) 先化简再求值: a 1a2a 2 4 1 ,其中 a 满足 a2a0 .a 2 2a 1 a 2 12三、集训三(求解方程)1. 解方程 x 2﹣ 4x+1=0.2.解分式方程2 3x 2 x 2324.已知 |a ﹣ 1|+ 错误!未找到引用源。
=0,求方裎 错误! 3.解方程: x =x - 1 . 未找到引用源。
2018年中考数学压轴题汇总
2018年中考数学压轴题汇总2018.05一、计算题(共10题)1.化简: .2.(2017•盐城)先化简,再求值:÷(x+2﹣),其中x=3+ .3.(2017•鄂州)先化简,再求值:(x﹣1+ )÷,其中x的值从不等式组的整数解中选取.4.(2015•海南)(1)计算:(﹣1)3﹣﹣12×2﹣2;(2)解不等式组:5.先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.6.解方程:(1)(2)3x﹣7(x﹣1)=3+2(x+3)7.计算题:计算和分解因式(1)计算:﹣|﹣4|+2cos60°﹣(﹣)﹣1(2)因式分解:(x﹣y)(x﹣4y)+xy.8.已知x2+y2+8x+6y+25=0,求- 的值.9.若a、b、c都不等于0,且+ + 的最大值是m,最小值是n,求m+n的值.10.如果有理数a,b满足,试求的值。
二、综合题(共40题)11.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.(2)若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第(1)问中EF 与BE、CF间的关系还存在吗?(3)若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?12.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.13.如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)求点N落在BD上时t的值;(2)直接写出点O在正方形PQMN内部时t的取值范围;(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;(4)直接写出直线DN平分△BCD面积时t的值.14.如图,等腰三角形△ABC的腰长AB=AC=25,BC=40,动点P从B出发沿BC向C运动,速度为10单位/秒.动点Q从C出发沿CA向A运动,速度为5单位/秒,当一个点到达终点的时候两个点同时停止运动,点P′是点P关于直线AC的对称点,连接P′P和P′Q,设运动时间为t秒.(1)若当t的值为m时,PP′恰好经过点A,求m的值.(2)设△P′PQ的面积为y,求y与t之间的函数关系式(m<t≤4)(3)是否存在某一时刻t,使PQ平分角∠P′PC?存在,求相应的t值,不存在,请说明理由.15.某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又不高于80元/件,试销中每天的销售量y(件)与销售单价x(元/件)满足下表中的函数关系.x(元/件)35 40 45 50 55y(件)550 500 450 400 350(1)试求y与x之间的函数表达式;(2)设公司试销该产品每天获得的毛利润为S(元),求S 与x之间的函数表达式(毛利润=销售总价﹣成本总价);(3)当销售单价定为多少时,该公司试销这种产品每天获得的毛利润最大?最大毛利润是多少?此时每天的销售量是多少?16.(2016•铜仁市)如图,抛物线y=ax2+bx ﹣1(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.17.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB .判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m,m+6)也在此反比例函数的图象上(其中m <0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.18.如图①,ABCD是边长为60cm的正方形硬纸片,切去四个全等的等腰直角三角形(阴影部分所示),其中E ,F 在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图②所示),形成有一个底面为正方形GHMN 的包装盒,设AE=x (cm).(1)求线段GF的长;(用含x的代数式表示)(2)当x为何值时,矩形GHPF的面积S (cm2)最大?最大面积为多少?(3)试问:此种包装盒能否放下一个底面半径为15cm,高为10cm的圆柱形工艺品,且使得圆柱形工艺品的一个底面恰好落在图②中的正方形GHMN内?若能,请求出满足条件的x的值或范围;若不能,请说明理由.19.若二次函数的图像记为,其顶点为,二次函数的图像记为,其顶点为,且满足点在上,点在上,则称这两个二次函数互为“伴侣二次函数”.(1)写出二次函数的一个“伴侣二次函数”;(2)设二次函数与轴的交点为,求以点为顶点的二次函数的“伴侣二次函数”;(3)若二次函数与其“伴侣二次函数”的顶点不重合,试求该“伴侣二次函数”的二次项系数.20.如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG﹣GH﹣HE﹣EF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B与楼梯两边都相切,且AO∥GH.(1)如图2①,若点H在线段OB时,则的值是________;(2)如果一级楼梯的高度HE=(8 +2)cm,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是________.21.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.22.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A、B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.23.(2016•张家界)已知抛物线y=a(x﹣1)2﹣3(a≠0)的图象与y轴交于点A(0,﹣2),顶点为B.(1)试确定a的值,并写出B点的坐标;(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;(3)试在x轴上求一点P,使得△PAB的周长取最小值;(4)若将抛物线平移m(m≠0)个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D 能否在同一条直线上?若能,请求出m的值;若不能,请说明理由.24.综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学计算题专项训练一、集训一(代数计算) 1. 计算: (1)3082145+-Sin (2)(3)2×(-5)+23-3÷12(4)22+(-1)4+(5-2)0-|-3|;(6)︒+-+-30sin 2)2(20(8)()()022161-+--(9)( 3 )0 - (12 )-2 + tan45° (10)()()0332011422---+÷- 2.计算:345tan 3231211-︒-⨯⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--3.计算:()()()︒⨯-+-+-+⎪⎭⎫⎝⎛-30tan 331212012201031100124.计算:()()112230sin 4260cos 18-+︒-÷︒---5.计算:120102(60)(1)|28|(301)21cos tan -÷-+--⨯--二、集训二(分式化简)1.. 2。
21422---x x x 、 3. (a+b )2+b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -⎛⎫+÷ ⎪⎝⎭6、化简求值(1)⎝ ⎛⎭⎪⎫1+ 1 x -2÷ x 2-2x +1x 2-4,其中x =-5. (2)(a ﹣1+)÷(a 2+1),其中a=﹣1.(3)2121(1)1a a a a ++-⋅+,其中a 2-1. (4))252(423--+÷--a a a a , 1-=a(5))12(1aa a a a --÷-,并任选一个你喜欢的数a 代入求值. (6)22121111x x x x x -⎛⎫+÷⎪+--⎝⎭然后选取一个使原式有意义的x 的值代入求值 (7)8、化简2111x x x -⎛⎫+÷ ⎪⎝⎭9、化简求值:111(11222+---÷-+-m m m m m m ), 其中m =3. 10、先化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan450 11、化简:xx x x x x x x x 416)44122(2222+-÷+----+, 其中22+=x12、化简并求值:221122a b a b a a b a -⎛⎫--+ ⎪-⎝⎭,其中322323a b =-=,. 13、计算:332141222+-+÷⎪⎭⎫ ⎝⎛---+a a a a a a a . 14、先化简,再求值:13x -·32269122x x x xx x x -+----,其中x =-6. 15、先化简:再求值:⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 . 16、先化简,再求值:a -1a +2·a 2+2aa 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.17、先化简,再求值:222211y xy x xy x y x ++÷⎪⎪⎭⎫ ⎝⎛++-,其中1=x ,2-=y .18、先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =. 19、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°) 20、22221(1)121a a a a a a +-÷+---+.21、先化简再求值:1112421222-÷+--•+-a a a a a a ,其中a 满足20a a -=. 22、先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。
23、先化简,再求值:)11(x -÷11222-+-x x x ,其中x =2 24、化简:22222369x y x y yx y x xy y x y--÷-++++. 25、先化简,再求值:2224441x x xx x x x --+÷-+-,其中x=-3. 三、集训三(求解方程)1. 解方程x 2﹣4x+1=0.2。
解分式方程2322-=+x x 3.解方程:3x = 2x -1 . 4。
已知|a ﹣1|+=0,求方裎+bx=1的解.5.解方程:x 2+4x -2=0 6。
解方程:xx - 1-31- x= 2.四、集训四(解不等式) 1.解不等式组,并写出不等式组的整数解.2.解不等式组()()()⎩⎨⎧+≥--+-14615362x x x x 3.解不等式组:⎩⎨⎧2x +3<9-x ,2x -5>3x . 4.解不等式组⎪⎩⎪⎨⎧<+>+.221,12x x 5.解方程组,并求的值.6.解不等式组⎪⎩⎪⎨⎧-≤-〉-121312x x x x 7. 解不等式组⎩⎨⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。
8. 解不等式组:102(2)3x x x -≥⎧⎨+>⎩ 9. 解不等式组313112123x x x x +<-⎧⎪++⎨+⎪⎩≤,并写出整数解.五、集训五(综合演练)1、(1)计算: |2-|o 2o 12sin30((tan 45)-+-+; (2)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .2、解方程: 0322=--x x3、解不等式组1(4)223(1) 5.x x x ⎧+<⎪⎨⎪-->⎩,4、 (1)12)21(30tan 3)21(001+-+---;(2))212(112aa a a a a +-+÷--5、(1)︳-33︱-︒30cos 2-12-22-+(3-π)0(2)(-2010)0+1--2sin60°(2) 先化简,再求值.34)311(2+-÷+-x x x ,其中x=3.. (3)已知x 2-2x =1,求(x -1)(3x +1)-(x +1)2的值.6.先化简,再求值:21111211a a a a a a ++-÷+-+-,其中a = 7.先化简,再求值:53(2)224x x x x ---÷++,其中3x =. 8.解分式方程:2641313-=--x x . 9.解方程组:34194x y x y +=⎧⎨-=⎩10.(1)计算:(-1)2+tan60°-(π+2010)012、已知a 、b 互为相反数,并且523=-b a ,则=+22b a .13、已知⎩⎨⎧=+=+6252y x y x 那么x-y 的值是( )14、若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,求()2010a b +的值15、计算:0452005)︒-+16 、计算: 131-⎪⎭⎫ ⎝⎛+0232006⎪⎪⎭⎫ ⎝⎛-3-tan60° 一.解答题(共30小题)1.计算题:①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.6..7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;(2).18.计算:.19.(1)(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(2)解方程:=﹣.22.(1)计算:.(2)求不等式组的整数解.23.(1)计算:(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°(2)解方程:.25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.。