南京邮电大学课程设计报告简易数字频率计步骤详细

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章技术指标

1.1整体功能要求

1.2系统结构要求

1.3电气指标

1.4扩展指标

1.5设计条件

第二章整体方案设计

2.1 算法设计

2.2 整体方框图及原理

第三章单元电路设计

3.1 时基电路设计

3.2闸门电路设计

3.3控制电路设计

3.4 小数点显示电路设计

3.5整体电路图

3.6整机原件清单

第四章测试与调整

4.1 时基电路的调测

4.2 显示电路的调测

4-3 计数电路的调测

4.4 控制电路的调测

4.5 整体指标测试

第五章设计小结

5.1 设计任务完成情况

5.2 问题及改进

5.3心得体会

第一章技术指标

1.整体功能要求

频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。

2.系统结构要求

数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。

3.电气指标

3.1被测信号波形:正弦波、三角波和矩形波。

3.2 测量频率范围:分三档:

1Hz~999Hz

0.01kHz~9.99kHz

0.1kHz~99.9kHz

3.3 测量周期范围:1ms~1s。

3.4 测量脉宽范围:1ms~1s。

3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误差)。

3.6当被测信号的频率超出测量范围时,报警.

4.扩展指标

要求测量频率值时,1Hz~99.9kHz的精度均为+1。

5.设计条件

5.1 电源条件:+5V。

5.2 可供选择的元器件范围如下表

门电路、阻容件、发光二极管和转换开关等原件自定。

第二章 整体方案设计

2.1 算法设计

频率是周期信号每秒钟内所含的周期数值。可根据这一定义采用如图2-1所示的算法。图2-2是根据算法构建的方框图。

被测信号 图2-2

号控制闸门电路的导通与开断。让被测信号送入闸门电路,当1s 闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数电路用以计算被测输入信号的周期数),当1s 闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s 内被测信号的周期个数,即为被测信号的频率。测量频率的误差与闸门信号的精度直接相关,因此,为保证在1s 内被测信号的周期量误差在10 ?3量级,则要求闸门信号的精度为10 ??量级。例如,当被测信号为1kHz 时,在1s 的闸门脉冲期间计数器将计数1000次,由于闸门脉冲精度为10 ??,闸门信号的误差不大于0.1s ,固由此造成的计数误差不会超过1,符合5*10 ?3的误差要求。进一步分析可知,当被测信号频率增高时,在闸门脉冲精度不变的情况下,计数器误差的绝对值会增大,但是相对误差仍在5*10 ?3范围内。

2.2 整体方框图及原理

输入电路:由于输入的信号可以是正弦波,三角波。而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。在整形之前由于不清楚被测信号的强弱的情况。所以在通过整形之前通过放大衰减处理。当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。

频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。时基信号由RC振荡电路构成一个较稳定的多谐振荡器,经4093整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。

周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。方波信号中的脉冲宽度恰好为被测信号的1个周期。将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。计数器累计的结果可以换算出被测信号的周期。用时间Tx来表示:Tx=NTs式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期。

时基电路:时基信号由4093、RC组容件构成多谐振荡器,其两个暂态时间分别为

T1=0.7(Ra+Rb)C T2=0.7RbC

重复周期为 T=T1+T2 。由于被测信号范围为1Hz~1MHz,如果只采用一种闸门脉冲信号,

则只能是10s脉冲宽度的闸门信号,若被测信号为较高频率,计数电路的位数要很多,而且测量时间过长会给用户带来不便,所以可将频率范围设为几档: 1Hz~999Hz档采用1s闸门脉宽;0.01kHz~9.99kHz档采用0.1s闸门脉宽;0.1kHz~99.9kHz档采用0.01s 闸门脉宽。多谐振荡器经二级10分频电路后,可提取因档位变化所需的闸门时间1ms、0.1ms、0.01ms。闸门时间要求非常准确,它直接影响到测量精度,在要求高精度、高稳定度的场合,通常用晶体振荡器作为标准时基信号。在实验中我们采用的就是前一种方案。在电路中引进电位器来调节振荡器产生的频率。使得能够产生10kHz的信号。这对后面的测量精度起到决定性的作用。

计数显示电路:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。在计数的时候数码管不显示数字。当计数完成后,此时要使数码管显示计数完成后的数字。

控制电路:控制电路里面要产生计数清零信号和锁存控制信号。控制电路工作波形的示意图如图2-5.

第三章单元电路设计

3.1 时基电路设计

相关文档
最新文档