机器人动力学
机器人的运动学和动力学模型
机器人的运动学和动力学模型机器人的运动学和动力学是研究机器人运动和力学性质的重要内容。
运动学是研究机器人姿态、位移和速度之间关系的学科,动力学则是研究机器人运动过程中力的产生和作用的学科。
机器人的运动学和动力学模型可以帮助我们理解机器人的运动方式和受力情况,进而指导机器人的控制算法设计和路径规划。
一、机器人运动学模型机器人运动学模型是描述机器人运动方式和位置关系的数学表达。
机器人的运动状态可以用关节角度或末端执行器的位姿来表示。
机器人的运动学模型分为正运动学和逆运动学两种。
1. 正运动学模型正运动学模型是通过机器人关节角度或末端执行器的位姿来确定机器人的位置。
对于串联机器人,可以使用连续旋转和平移变换矩阵来描述机械臂的位置关系。
对于并联机器人,由于存在并联关节,正运动学模型比较复杂,通常需要使用迭代方法求解。
正运动学模型的求解可以通过以下几个步骤:(1) 坐标系建立:确定机器人的基坐标系和各个关节的局部坐标系。
(2) 运动方程描述:根据机器人的结构和连杆长度等参数,建立各个关节的运动方程。
(3) 正运动学求解:根据关节的角度输入,通过迭代计算,求解机器人的末端执行器的位姿。
正运动学模型的求解可以用于机器人路径规划和目标定位。
2. 逆运动学模型逆运动学模型是通过机器人末端执行器的位姿来确定机器人的关节角度。
逆运动学问题在机器人的路径规划和目标定位等任务中起着重要作用。
逆运动学求解的难点在于解的存在性和唯一性。
由于机器人的复杂结构,可能存在多个关节角度组合可以满足末端执行器的位姿要求。
解决逆运动学问题的方法有解析法和数值法两种。
解析法通常是通过代数或几何方法,直接求解关节角度,但是解析法只适用于简单的机器人结构和运动方式。
数值法是通过迭代计算的方式,根据当前位置不断改变关节角度,直到满足末端执行器的位姿要求。
数值法可以用于复杂的机器人结构和运动方式,但是求解时间较长。
二、机器人动力学模型机器人动力学模型是描述机器人运动时受到的力和力矩的模型。
机器人动力学
机器人动力学
机器人动力学是一门包含机器人控制、力学、运动学等多个专业的交叉学科,其目的在于研究复杂的机械系统和机器人的运动行为和控制方法。
机器人动力学的研究方向涉及机器人的:机械学、运动学、控制学、信息学、人机交互、现代制造技术等。
这种复合学科专门用于分析、模拟和控制机器人、机床以及其他机械系统的运动行为。
机器人动力学的基本内容简述如下:
首先,它涉及机器人的运动学理论和控制理论,包括机器人体系结构,构型及其各部分之间的相互作用,如关节、驱动器和传感器等。
其次,它还包括机器人机械动力学理论,涉及机器人的运动特性,比如建模、仿真和控制,同时也涉及力学的本质、特性和应用,以及计算力学在机器人动力学中的应用。
最后,它也涉及信息学,指的是研究机器人行为的算法、传感器和感知、人机交互以及数据挖掘和处理。
机器人动力学应用于工业机器人、生产机械、软件和控制系统等多个领域,主要帮助提高机器人和机械设备的性能,从而提高工业生产效率、节省能源以及降低生产成本。
在精密加工领域尤其具有重要作用,比如机器视觉、机器雕刻和抛光,甚至是金属精加工等,在这些领域都能够发挥机器人动力学的优势。
另外,机器人动力学也可以应用于服务机器人、家用机器人,以及智能制造等行业。
现在,家用机器人如洗地机器人、清洁机器人等已经广泛应用,可以节省家庭劳动力;而在智能制造和服务机器人方面,它也有着广泛的应用,可以有效解决行业内的生产管理、库存管
理、仓储管理和技术支撑等问题。
未来,机器人动力学将继续发展壮大,有望成为一门具有世界水平的学科。
在未来,机器人动力学将继续发挥重要作用,将推动机器人和机器技术发展,为未来工业化生产提供必要的技术支持。
机器人和动力学
机器人和动力学机器人和动力学是紧密相关的,因为动力学为机器人的设计和控制提供了基础理论。
本文将探讨机器人和动力学之间的关系,并阐述机器人在不同领域的应用以及面临的挑战。
一、机器人和动力学的关系动力学是研究物体运动和力的关系的科学。
在机器人领域,动力学用于描述机器人在各种条件下的运动规律,包括关节机器人、轮式移动机器人、飞行机器人等。
通过动力学建模和分析,可以得出机器人的运动轨迹、速度和加速度等信息,从而优化机器人的性能和控制精度。
二、机器人在不同领域的应用1.工业领域:在工业领域,机器人被广泛应用于自动化生产线、装配、焊接、喷涂等环节。
通过精确的动力学模型,可以实现高效率、高质量的生产。
2.医疗领域:在医疗领域,机器人可以用于手术、康复训练、护理等服务。
例如,手术机器人可以在医生的控制下进行精确的手术操作,而康复训练机器人则可以帮助患者恢复肌肉力量和运动能力。
3.航空航天领域:在航空航天领域,机器人可以用于探索太空、卫星维修、无人机侦察等服务。
例如,在卫星维修中,机器人的精度和灵活性可以大大提高维修效率和质量。
4.服务领域:在服务领域,机器人可以用于客户服务、餐饮服务、酒店服务等环节。
例如,在客户服务中,机器人可以通过语音识别和自然语言处理技术为客户提供高效的服务。
三、面临的挑战虽然机器人在各个领域得到了广泛应用,但仍面临着一些挑战:1.安全性:机器人的应用过程中可能会对人类造成伤害,因此需要采取有效的安全措施来防止事故的发生。
例如,在手术中使用的手术机器人需要经过严格的测试和验证,以确保其安全性和可靠性。
2.精度和稳定性:机器人的精度和稳定性是影响其应用效果的关键因素。
在某些领域,如航空航天领域和医疗领域,对机器人的精度和稳定性的要求非常高,需要不断优化和控制机器人的性能。
3.感知和控制:机器人的感知和控制能力是其实现自主行动的关键。
目前,机器人的感知和控制技术仍存在一些问题,如对环境的感知不足、对动态变化的适应能力不足等。
机器人学中的动力学
机器人学中的动力学机器人学是研究制造、设计和运动控制机器人的学科,广泛应用于工业、医疗保健、国防、探险等领域。
机器人学中的动力学是机器人运动学的重要分支,掌握机器人运动学对于设计、控制机器人运动具有重要意义。
动力学的概念机器人学中的动力学是研究机器人运动的力学学科。
它主要关注如何对机器人的运动进行描述和控制。
机器人动力学包括机器人运动学和机器人力学的研究。
机器人运动学研究机器人的位置和位姿,而机器人力学研究机器人的力学特性和力学运动方程。
机器人学中的动力学主要涉及以下几个方面:- 机器人的运动轨迹和速度规划- 机器人的动力学建模和仿真- 机器人的力学特性和控制机器人的运动轨迹和速度规划机器人的运动轨迹和速度规划是机器人动力学的基本问题。
机器人的运动轨迹是机器人在空间中的运动路径,可以用各种运动学和动力学方法进行描述。
机器人的速度规划通常是在已知机器人的运动轨迹的条件下,确定机器人的运动速度以及加速度和减速度的大小和方向。
机器人的运动轨迹和速度规划在机器人控制中占据着重要的地位。
机器人的控制主要目的是使机器人完成特定的任务,如在制造车间中装配零件等。
在完成这些任务时,机器人需要根据任务的要求确定运动轨迹和速度规划,这样才能在短时间内完成高效的操作。
机器人的动力学建模和仿真机器人的动力学建模是机器人学中难点之一。
一个好的机器人动力学模型必须考虑机器人本身的特性和运动机理。
机器人的动力学模型可以用数学公式或者计算机模拟的方法进行描述。
此外,机器人的动力学模型需要考虑机器人的各种运动方式,如旋转、直线运动等。
机器人的仿真是指利用计算机模拟机器人运动状态和行为的过程。
机器人的仿真可以对机器人的运动轨迹、速度规划和控制逻辑进行模拟和测试,从而为机器人的设计和使用提供依据。
机器人仿真是一种低成本、高效率的机器人研究方法。
机器人的力学特性和控制机器人的力学特性和控制主要研究机器人在行动中的力学特性和控制方法。
机器人的力学特性包括机器人的质量、惯性、摩擦和发热等。
机器人动力学名词解释
机器人动力学名词解释机器人动力学是研究机器人运动和力学特性的学科。
它涉及到描述机器人运动的数学模型、力学原理和控制算法等方面的知识。
下面我将从多个角度对机器人动力学进行解释。
1. 机器人动力学的定义,机器人动力学是研究机器人运动学和力学学科的一部分,它主要关注机器人的运动规律、力学特性以及运动控制等方面的问题。
2. 机器人运动学和动力学的区别,机器人运动学研究机器人的几何特性和位置关系,而机器人动力学则研究机器人的运动过程中所涉及的力学原理和力的作用。
3. 机器人动力学的重要性,机器人动力学是实现机器人精确控制和运动规划的基础。
通过研究机器人动力学,可以了解机器人在不同工作状态下的运动特性,为机器人的控制算法和路径规划提供理论支持。
4. 机器人动力学模型,机器人动力学模型是描述机器人运动和力学特性的数学模型。
常用的机器人动力学模型包括欧拉-拉格朗日方程、牛顿-欧拉方程等。
这些模型可以描述机器人的运动学和动力学特性,并用于机器人的控制设计和仿真研究。
5. 机器人动力学的应用领域,机器人动力学广泛应用于工业机器人、服务机器人、医疗机器人等领域。
在工业机器人中,机器人动力学可以用于路径规划、轨迹控制和碰撞检测等任务。
在服务机器人和医疗机器人中,机器人动力学可以用于实现精确的操作和运动控制。
6. 机器人动力学的挑战和研究方向,机器人动力学研究面临着复杂的多体动力学问题、非线性控制问题和实时性要求等挑战。
当前的研究方向包括机器人动力学建模与仿真、动力学控制算法设计、力觉反馈控制等。
总结起来,机器人动力学是研究机器人运动和力学特性的学科,涉及机器人的运动规律、力学特性和运动控制等方面的内容。
它在机器人控制、路径规划和仿真等领域具有重要的应用价值。
机器人的动力学
机器人的动力学是研究机器人运动和力学特性的学科。
它涉及了描述机器人运动、力和力矩之间关系的原理和方法。
机器人动力学的主要内容包括以下几个方面:
运动学:机器人运动学研究机器人的位置、速度和加速度之间的关系。
它涉及描述机器人末端执行器(如机械臂)的位姿和运动轨迹,以及描述机器人关节的运动参数。
动力学:机器人动力学研究机器人在外部作用力或力矩下的运动行为。
它涉及描述机器人的质量、惯性、力和力矩之间的关系,以及机器人的运动响应和稳定性。
控制:机器人动力学与机器人控制密切相关。
动力学模型可以用于设计机器人控制算法,以实现所需的运动、力量和精度。
力觉传感:机器人动力学可以应用于力觉传感技术。
力觉传感器可以用于测量机器人末端执行器的外部力和力矩,以实现机器人与环境的交互、力量控制和安全操作。
动力学模拟和仿真:动力学模型可以用于机器人动力学的模拟和仿真。
通过在计算机中建立机器人动力学模型,可以预测机器人在特定任务和环境中的运动行为和性能。
机器人动力学的研究对于机器人设计、控制和运动规划等方面都具有重要意义。
它可以帮助优化机器人的运动性能、提高机器人的精度和效率,并为机器人在各种应用领域中的安全操作和协作提供基础。
机器人动力学 雅克比-概念解析以及定义
机器人动力学雅克比-概述说明以及解释1.引言1.1 概述机器人动力学是研究机器人运动过程中的力学和动力学特性的学科,主要涉及机器人的姿态、速度、加速度、力和力矩等相关物理量。
机器人动力学一直以来都是机器人领域的关键问题之一,对于机器人的运动控制和路径规划具有重要的指导意义。
雅克比矩阵是机器人动力学中一项关键的工具,用于描述机器人多自由度系统中各关节之间的运动传递关系。
通过雅克比矩阵,我们可以计算出机器人末端执行器在给定关节角速度下的线速度和角速度,从而实现对机器人运动的精确控制。
机器人动力学的研究在实际应用中有着广泛的意义。
首先,深入理解机器人的动力学特性可以帮助我们设计出更加高效、灵活的机器人控制算法,从而提升机器人的运动精度和速度。
其次,机器人动力学的研究还可以为机器人路径规划、障碍物避障等问题提供重要的理论支持和指导。
此外,随着机器人应用领域的拓展,如医疗、教育、家庭服务等,机器人动力学的研究也将在未来发挥更加重要的作用。
总结起来,机器人动力学是研究机器人运动特性的学科,雅克比矩阵则是机器人动力学中的重要工具。
通过研究和应用机器人动力学,我们可以实现对机器人运动的精确控制,提升机器人的运动效率和准确性,并且为机器人的应用和发展打下坚实的基础。
未来,机器人动力学的研究将随着机器人技术的不断发展而不断探索新的方向,并为更广泛的机器人应用提供理论支持和指导。
1.2 文章结构文章结构部分的内容应当包括对整篇文章的组织和章节安排进行介绍。
可以按照以下方式编写文章结构的内容:2. 文章结构本文共分为以下几个部分:引言、正文和结论。
2.1 引言部分将对机器人动力学的概念进行概述,介绍机器人动力学的背景和意义。
在此部分还将阐述本文的目的和结构。
2.2 正文部分将重点讨论雅克比矩阵的概念和应用。
首先,将介绍雅克比矩阵的定义和性质,以及其在机器人动力学中的重要作用。
接着,将探讨雅克比矩阵在路径规划、运动控制和力学分析等方面的应用。
机器人学基础机器人动力学蔡自兴课件
contents
目录
• 机器人动力学概述 • 机器人动力学建模 • 机器人运动学与动力学关系 • 机器人动力学仿真与实验验证 • 机器人动力学在智能控制中应用 • 总结与展望
01
机器人动力学概述
机器人动力学定义 01 02
机器人动力学研究内容01源自动力学建模机器人运动学与动力学关系分析
运动学方程与动力学方程的关系
运动学方程描述了机器人的运动学特性,而动力学方程描述了机器人的动态特性,两者相互关联,共同决定了机 器人的运动行为。
运动学参数对动力学性能的影响
机器人的运动学参数,如连杆长度、关节角度范围等,对机器人的动力学性能有重要影响,如惯性、刚度等。
基于运动学的机器人动力学控制策略
仿真结果展示与分析
轨迹跟踪性能
01
动态响应特性
02
关节力矩变化
03
实验验证方案设计与实施
实验平台搭建 实验参数设置 数据采集与分析
05
机器人动力学在智能控制中应用
智能控制算法在机器人动力学中应用
模糊控制
01
神经网络控制
02
遗传算法优化
03
基于深度学习的机器人动力学控制策略
深度学习模型构建 数据驱动控制 自适应控制
基于运动学的轨迹规划
基于动力学的控制策略
04
机器人动力学仿真与实验验证
机器人动力学仿真方法介绍
动力学模型建立
根据拉格朗日方程或牛顿-欧拉方程,建立机器 人的动力学模型。
仿真软件选择
选择MATLAB/Simulink、ADAMS等仿真软件 进行动力学仿真。
参数设置与初始条件
设定机器人的物理参数、运动范围、初始状态等。
《机器人动力学》课件
机器人动力学有助于优化机器人的设 计和性能,提高机器人的运动性能和 作业能力。
安全性和稳定性
通过机器人动力学的研究,可以预测 机器人在不同环境和操作条件下的行 为,从而避免潜在的危险和保证机器 人的安全稳定运行。
机器人动力学的发展历程
初始阶段
早期的机器人动力学研究主要关注于简单的机械臂模型,采用经典力学理论进行分析。
刚体动力学是研究刚体在力作用下的运动规律的科学。刚体动力学建模
是研究刚体运动过程中力和运动状态之间的关系。
02
牛顿-欧拉法
牛顿-欧拉法是一种基于牛顿运动定律和欧拉方程的刚体动力学建模方
法。通过这种方法,可以建立刚体的运动方程,描述刚体的运动状态。
03
拉格朗日法
拉格朗日法是一种基于拉格朗日方程的刚体动力学建模方法。这种方法
《机器人动力学》ppt 课件
目录
Contents
• 机器人动力学概述 • 机器人动力学的基本原理 • 机器人动力学建模 • 机器人控制中的动力学应用 • 机器人动力学研究的挑战与展望 • 机器人动力学实验与案例分析
01 机器人动力学概述
定义与特点
定义
机器人动力学是研究机器人运动过程中力和运动状态之间关系的学科。它主要关注机器人在操作物体 、环境交互以及自身运动过程中产生的力和扭矩,以及这些力和扭矩如何影响机器人的运动状态。
在实际应用中的表现。
06 机器人动力学实验与案例分析
实验一:刚体动力学实验
总结词
理解刚体动力学基本原理
详细描述
通过实验一,学生将学习刚体动力学 的基本原理,包括刚体的运动学和动 力学特性。实验将通过演示刚体在不 同条件下的运动,帮助学生理解刚体 动力学的概念和应用。
机器人动力学的原理和应用
机器人动力学的原理和应用前言机器人动力学是机器人技术领域中的重要概念,它涉及机器人的运动学和力学特性。
本文将详细介绍机器人动力学的原理和其在实际应用中的重要性。
1. 机器人动力学的概念机器人动力学是指研究机器人在特定环境中的运动、力学特性和力的作用方式的学科。
在机器人动力学中,主要包括运动学和动力学两个方面。
运动学研究机器人的位置、速度和加速度,而动力学研究机器人受到的力和力矩的大小、方向和作用点。
2. 机器人动力学的原理机器人动力学的原理是基于牛顿力学和刚体力学的基本原理。
其核心思想是利用动力学方程来描述机器人系统中各个部件之间的相互作用和力的传递。
机器人系统中的每个部件都有自己的质量、惯性矩阵和运动状态,通过动力学方程,可以计算出机器人部件之间的力和力矩。
3. 机器人动力学的应用机器人动力学在实际应用中具有广泛的应用价值,以下列举了一些常见的应用场景:•工业生产:机器人动力学可以帮助实现智能化的生产线,提高生产效率和质量。
通过准确计算机器人关节的力矩,可以确保机器人在执行任务时的稳定性和精确性。
•医疗领域:机器人在手术、康复和辅助护理等医疗领域的应用越来越广泛。
机器人动力学可帮助设计和控制机器人手臂和关节,使其具备精准定位和灵活性,为医生和患者提供更好的治疗和护理体验。
•军事和安全:机器人在军事和安全领域有着重要的应用,例如救援、侦查和炸弹拆解。
机器人动力学可以确保机器人在复杂和恶劣环境下的稳定操作,保障军人和安全人员的安全。
•服务机器人:随着智能家居和人工智能技术的发展,服务机器人的应用越来越广泛。
机器人动力学可以帮助设计和控制机器人的移动和操作能力,使其能够适应不同的环境和任务需求,提供更好的服务体验。
•教育和研究:机器人动力学在教育和研究领域也有重要的应用。
通过学习机器人动力学,可以帮助人们更好地理解机器人的运动和力学特性,并为机器人技术的发展提供理论基础。
4. 总结机器人动力学是机器人技术中的重要概念,它通过研究机器人的运动学和动力学特性,帮助提高机器人在不同应用场景中的运动和力学表现。
机器人动力学
机器人动力学机器人动力学是机器人领域中的一个重要研究方向,它主要研究机器人的运动学和动力学行为。
机器人动力学涉及到机器人的运动、力学、控制等方面知识,对于机器人的设计、运动控制和任务完成等都有着重要的影响。
本文将从机器人动力学的基本概念、运动学和动力学模型、以及应用场景方面进行阐述。
一、机器人动力学的基本概念机器人动力学是机器人技术中的一个重要分支领域,它主要研究机器人在运动过程中的力学行为及其控制。
机器人动力学的基础是牛顿运动定律和动力学原理,通过建立机器人的运动学和动力学模型,来描述机器人在不同力场中的运动过程。
二、机器人动力学的运动学模型机器人的运动学描述了机器人末端执行器在空间中的位置和姿态随时间的变化规律。
机器人的运动学模型可以分为正解和逆解两个方向。
正解通过已知机器人关节角度或长度,来求解机器人末端执行器的位置和姿态。
逆解则是通过已知机器人末端执行器的位置和姿态,来求解机器人关节角度或长度。
三、机器人动力学的动力学模型机器人的动力学描述了机器人在运动时所受到的力和力矩,以及机器人关节的运动学参数和动力学参数之间的关系。
机器人的动力学模型可以分为正解和逆解两个方向。
正解通过已知机器人关节角度、速度和加速度,来求解机器人末端执行器的力和力矩。
逆解则是通过已知机器人末端执行器的力和力矩,来求解机器人关节角度、速度和加速度。
四、机器人动力学的应用场景机器人动力学在许多实际应用中发挥着重要作用。
例如,在工业自动化领域,机器人动力学模型可用于控制机器人的姿态和位置,以完成各种生产任务。
在医疗领域,机器人动力学模型可用于辅助手术和康复训练等。
此外,机器人动力学模型还可应用于空间探索、军事作战、环境清理等领域。
总结机器人动力学是机器人技术中的一个重要研究方向,它研究机器人在运动过程中的力学行为和控制方法。
通过建立机器人的运动学和动力学模型,可以描述机器人在不同力场中的运动过程,并应用于工业自动化、医疗领域、空间探索等各个领域。
机器人动力学牛顿欧拉方程课件
05 总结与展望
本课程总结
内容回顾
详细总结了牛顿欧拉方程的基本原理、推导过程以及 在机器人动力学中的应用。
关键点解析
对课程中的关键知识点进行了深入剖析,帮助学生加 深理解。
实践操作指导
总结了如何利用牛顿欧拉方程进行机器人动力学建模 的实践操作步骤。
未来研究方向
01
02
03
理论深化
探讨如何进一步优化牛顿 欧拉方程,提高其计算效 率和准确性。
机器人动力学牛顿欧拉 方程课件
目录
Contents
• 引言 • 机器人动力学基础 • 机器人动力学应用 • 机器人动力学实例分析 • 总结与展望
01 引言
课程目标
01
掌握机器人动力学的基本原理
02 学习如何使用牛顿欧拉方程描述机器人运 动
03
理解机器人的动态特性对控制系统设计的 影响
04
培养解决实际机器人问题的能力
人的运动性能和稳定性。
机器人的实验验证
要点一
总结词
通过实际操作和实验数据验证机器人动力学的正确性和有 效性。
要点二
详细描述
机器人实验验证是检验机器人动力学理论和模型的重要手 段。通过搭建实验平台,对机器人进行实际操作和数据采 集,将实验数据与理论预测进行比较和分析,可以验证机 器人动力学模型的正确性和有效性。同时,实验验证还可 以发现理论模型中可能存在的缺陷和不足,进一步优化和 完善机器人动力学理论。
应用拓展
研究如何将牛顿欧拉方程 应用于更广泛的机器人领 域,如医疗机器人、服务 机器人等。
多机器人协同
探索多机器人系统中的动 力学问题,以及如何利用 牛顿欧拉方程进行协同控 制。
课程反馈与改进
机器人动力学
机器人动力学机器人动力学是机器人学的一门子领域,主要研究的是机器人系统的动作行为方面的问题,与机械结构和电气控制等方面紧密联系。
机器人动力学的发展和计算机的出现密不可分,其历史可以追溯到上世纪八十年代。
机器人动力学的研究内容主要涉及机器人系统动作行为动态建模、控制、优化与仿真,包括系统动力学与控制、机器人控制体系、学习与生物动力学、以及机器人系统仿真分析技术等。
系统动力学与控制主要研究机器人系统在动作行为变化过程中的物理特性,如建立机器人系统的动力学模型、设计机器人的控制算法,利用系统动力学的理论分析机器人的运动学特性,以及进行控制系统调试与优化等工作。
机器人控制体系研究通过机器人感知、计算、控制、规划、实施等环节,构建机器人控制系统,可以实现机器人智能化控制。
学习与生物动力学研究机器人智能化控制技术,可以实现动力学模型的自适应变化,学习机器人的运动规律,以及协调自然运动行为的研究。
机器人系统仿真分析技术研究机器人系统的复杂性,构建仿真系统,以模拟机器人运动行为在不同环境中的变化情况,掌握并优化机器人运动行为,以及开展精准分析等工作。
随着计算机技术和机器人技术的不断发展,机器人动力学研究也发生了很大变化,从传统的计算机指令系统开发转变为新的机器人智能化控制系统,使机器人动力学的发展取得了长足的进步。
未来机器人动力学研究将围绕智能化控制、动力学特性优化以及自主机器人系统建模与控制等研究方向发展,机器人动力学也将进一步发展,这将为机器人技术的未来应用研发发展提供基础和支持。
机器人动力学研究与应用对智能机器人的创新应用具有重要的意义,它为机器人技术的发展提供了技术保障。
未来,机器人动力学的研究将越来越受到人们的关注,机器人技术的应用也将受益于机器人动力学。
机器人的动力学分析
添加标题
感知与决策能力:机器人能够感知 环境做出合理的决策
适应性:机器人能够适应不同的环 境和任务具有较强的适应性
自主决策:机器人能够根据环境变 化做出自主决策
自主学习:机器人能够通过不断学 习提高自身能力
添加标题
添加标题
添加标题
添加标题
自主导航:机器人能够在未知环境 中进行自主导航
自主控制:机器人能够实现对自身 行为的自主控制
定义:机器人轨迹规划是指在满 足机器人动力学约束的前提下为 机器人设计出一条从起点到终点 的轨迹使得机器人能够按照该轨 迹完成指定的任务。
目标:轨迹规划的目标是使机 器人在完成任务的同时能够避 免碰撞、减少能耗、提高效率、 保证安全性和稳定性。
运动学模型:描述机器人运动 学特性的模型
轨迹规划:根据运动学模型规 划机器人的运动轨迹
优化方法:使用优化算法如遗 传算法、粒子群算法等优化轨 迹
轨迹跟踪:控制机器人按照规 划的轨迹运动实现轨迹跟踪
动力学模型:建立机器人的动力学模型包括运动学和动力学方程 轨迹规划:根据动力学模型规划机器人的运动轨迹 优化方法:采用优化算法如遗传算法、粒子群算法等对轨迹进行优化 仿真验证:通过仿真实验验证轨迹规划方法的有效性和可行性
微型化趋势:机器人越来越小功能越来越强大 应用领域:医疗、军事、工业等领域 技术挑战:微型化带来的设计、制造、控制等方面的挑战 发展趋势:微型化机器人将成为未来机器人发展的重要方向
汇报人:
遗传算法:通 过模拟生物进 化过程寻找最
优解
粒子群优化算 法:通过模拟 鸟群觅食行为
寻找最优解
模拟退火算法: 通过模拟金属 冷却过程寻找
最优解
神经网络优化 算法:通过模 拟人脑神经网 络寻找最优解
第四章 机器人动力学 53页 0.6M
m1 m2 gd1 sin1 m2 gd2 sin1 2 c11
2 1 2
2 1 2
2 1 2
2 2
(4 12)
Robotics 动力学
4.1 机器人刚体动力学
4.1.2 机械手动力学方程的求法
当考虑关节摩擦阻尼时
T2 d L L dt 2 2
r (t ) r ' (t ) ro ' (t )
Robotics 动力学
4.1 机器人刚体动力学
4.1.0 动力学基本定理
绝对运动速度:在定坐标系中的运动速度 相对运动速度:在动坐标系中的运动速度 牵连运动速度:动坐标系在定坐标系中的运动速度 绝对运动加速度:在定坐标系中的运动加速度 相对运动加速度:在动坐标系中的运动加速度 牵连运动加速度:动坐标系在定坐标系中的运动加速度 当牵连速度为平动时, a ae ar 当牵连运动为定轴转动时,
Qj:为非势的广义力
当含有粘性阻尼时,方程变为:
L Q j ,Φ:瑞利耗三散函数 q q j j
Robotics 动力学
4.1 机器人刚体动力学
4.1.0 动力学基本定理
例:图示为振动系统方程
1。动能
2。势能
1 2 T (m1 x12 m2 x2 ) 2
注意:这里只求显因变量的偏导数
Robotics 动力学
4.1 机器人刚体动力学
4.1.2 机械手动力学方程的求法
代入拉格朗日方程
T1 d L L dt 1 1
m1 m2 d12 m2 d 22 2m2 d1d 2 cos 2 m2 d 22 m2 d1d 2 cos 2 2 1 2m d d sin m d d sin 2 m1 m2 gd1 sin1 m2 gd2 sin1 2
第五章机器人动力学ppt课件
Eki
1 2
mi
T
ci
ci
1 2
i Ti i
Iiii
…1
Ek1
1 2
m1l1212
1 2
I
2
yy1 1
Ek 2
1 2
m2
(d
2 2
21
d
2 2
)
1 2
I
yy
2
21
总动能为:
Ek
1 2
(m1l12
I yy1
I yy2
m2d22 )12
1 2
m2
d
2 2
(3)系统势能 因为:
g [0 g 0]T
H (q, q) J T (q)U x (q, q) J T (q) 9q)ar (q, q)
G(q) J T (q)Gx (q)
3.关节力矩—操作运动方程 机器人动力学最终是研究其关节输入力矩与其输出的
操作运动之间的关系.由式(4)和(5),得(6) :
F M x (q)x U x (q, q) Gx (q) ……4
E p q
g(m1l1 m2d2 )c1
gm2 s1
(5)拉格朗日动力学方程 将偏导数代入拉格朗日方
程,得到平面RP机器人的动 力学方程的封闭形式:
d Ek Ek Ep
dt q q q
拉格朗日方程
1
2
(m1l12
I yy1
I yy2
m2
d
2 2
)1
2m2d21d2
m2d2 m2d212 m2 gs1
q)
1 2
qT
D(q)q
式中,D(q是) nxn阶的机器人惯性矩阵
第六章--机器人动力学-PPT
7/27/2024
49
首先介绍一下均匀杆(长度为2L,质量为m) 转动惯量的计算。
当均匀杆绕一端转动时,其转动惯量为:
J 2L l2dl 8 L3
0
3
由
m
2L
得
J 4 mL2 3
通常给出杆相对质心的转动惯量:
Jc
L l2dl 1 mL2
L
3
所以 J J c mL2
7/27/2024
考虑到小车只有水平方向(X)的运动,
故可列写小车运动方程
m0r G0u fx F0 r
7/27/2024
52
(2)摆体部分
Y
2L
c
m1 摆体质量 L 摆体质心c到支点距离 F1 摆体转动摩擦系数 J1c 摆体绕质心转动惯量
2 L f x
X
m1g L
r
J1 摆体绕支点的转动惯量
fx 小车对摆体作用力的水平分量
由已知条件可得
0 r 2m
m2 5kg
r 0
则有 m1r1 m2rg cos D1 10 1 5 2 9.8 1
196kg m2 / s2
N
r
M
m2
r1
m1
o
7/27/2024
25
则 (m1r12 m2r2 ) 2m2rr g cos m1r1 m2r
7/27/2024
6.1 机器人动力学研究概述
本章将在机器人运动学的基础上考虑到力对具有一定质 量或惯量的物体运动的影响,从而引入机器人动力学问 题; 机器人动力学研究机器人动态方程的建立,它是一组描 述机器人动态特性的数学方程; 目前主要采用两种理论来建立数学模型: (1)动力学基本理论,包括牛顿-欧拉方程 (2)拉格朗日力学,特别是二阶拉格朗日方程 如同运动学,动力学也有两个相反问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/8/11
精品课件
第六章 机器人动力学
6.1 机器人动力学研究概述
2020/8/11
精品课件
第六章 机器人动力学
6.1 机器人动力学研究概述
本章将在机器人运动学的基础上考虑到力对具有一定质 量或惯量的物体运动的影响,从而引入机器人动力学问 题; 机器人动力学研究机器人动态方程的建立,它是一组描 述机器人动态特性的数学方程; 目前主要采用两种理论来建立数学模型: (1)动力学基本理论,包括牛顿-欧拉方程 (2)拉格朗日力学,特别是二阶拉格朗日方程 如同运动学,动力学也有两个相反问题
(1)求动能T
先对 m 1 求 T1
显然
x1 r1 cos y1 r1 sin
0 而 r1 0
r1
o
m1
于是
x1 r1sin y1 r1cos
由于 v12 x12 y12
r122 sin2 r122 cos2 r122
根据动能的公式
T1
1 2
m1r122
2020/8/11
精品课件
动力学方程f的(一,般形,式): F g (r,r,r)
式中 ,F,,r分别表示力矩、力、角位移和线位移
2020/8/11
精品课件
5
第六章 机器人动力学
牛顿-欧拉方程
牛顿方程……面向平动
f ma
• 欧拉方程……面向转动
Jc (Jc)
式中 Jc ω τ
物体转动惯量 物体角速度 力矩
2020/8/11
V V 1 V 2 m 1 g 1 sri n m 2 g sr in
8
第六章 机器人动力学
6.2.3 拉格朗日函数方法
对于具有外力作用的非保守机械系统,其拉格朗日动力
学函数L可定义为
LTV
式中 T——系统总的动能; V——系统总的势能
若操作机的执行元件控制某个转动变量θ时,则执行元件的总
力矩 应为
ddtLL
若操作机的执行元件控制某个移动变量r时,则施加在运动方 向r上的力应为
《机器人原理与应用》
第六章 机器人动力学
2020/8/11
精品课件
1
第六章 机器人动力学
本章主要内容
(1)机器人动力学研究概述; (2)拉格朗日动力学方法; (3) r 操作机的动力学分析; (4)二连杆机构的动力学分析; (5)倒立摆系统的动力学分析; (6)机器人动力学方程一般形式; (7)考虑非刚体效应的动力学方程。
d dt q T i q Ti q Vi q D i Fqi
其中,q i 为广义坐标,表示为系统中的线位移或角位移的变量;
Fqi
为作用在系统上的广义力;
T,V和D
分别为 n T Ti i 1
是系统总的动能、势能和耗散能,
n
V Vi i 1
n
D Di i 1
2020/8/11
精品课件
其中, q1,q2,...q,s是所研究力学体系的广义坐标;
Q1,Q2,...Q,s是作用在此力学体系上的广义力;
T
是系统总动能。
分析力学注重的不是力和加速度,而是具有更广泛意义的 能量,扩大了坐标的概念。
2020/8/11
精品课件
7
第六章 机器人动力学
6.2.2 用于非保守系统的拉格朗日方程
对于同时受到保守力和耗散力作用的、由n个关节部件组成的机 械系统,其Lagrange方程应为
2020/8/11
精品课件
10
第六章 机器人动力学
2020/8/11
精品课件
第六章 机器人动力学
2020/8/11
精品课件
第六章 机器人动力学
2020/8/11
精品课件
第六章 机器人动力学
2020/8/11
精品课件
第六章 机器人动力学
2020/8/11
精品课件
第六章 机器人动力学
2020/8/11
Fr ddtLrLr
2020/8/11
精品课件
9
第六章 机器人动力学
6.2.4 拉格朗日方程的特点
它是以广义坐标表达的任意完整系统的运动方程式,方程 式的数目和系统的自由度数是一致的; 理想约束反力不出现在方程组中,因此建立运动方程式时 只需分析已知的主动力,而不必分析未知的约束反力; Lagrange 方程是以能量观点建立起来的运动方程式,为了 列出系统的运动方程式,只需要从两个方面去分析,一个 是表征系统运动的动力学量—系统的动能和势能,另一个 是表征主动力作用的动力学量—广义力。因此用Lagrange 方程来求解系统的动力学方程可以大大简化建模过程。
精品课件
第六章 机器人动力学
2020/8/11
精品课件
第六章 机器人动力学
例 6.3 r 操作机的动力学分析
6.3.1 r 操作机的动力学模型
加上负载的 r 操作机
N
r
M
m2
r1
m1
o
操作机的物理学模型
2020/8/11
精品课件
18
第六章 机器人动力学
6.3.2 建立拉格朗日函数
N
r
M
m2
T T 1 T 2 1 2m 1 r 1 22 1 2 m 2 r 2 1 2m 2 r22
2020/8/11
精品课件
20
第六章 机器人动力学
(2)求势能 V
根据势能的公式 V mgh
式中 h 为垂直高度,则
N
r
M
m2
r1
m1
o
对于 m 1 有 对于 m 2 有
得总势能
V1m1g1rsin
V2m2gsrin
(1)正问题 (2)逆问题ቤተ መጻሕፍቲ ባይዱ
2020/8/11
精品课件
4
第六章 机器人动力学
动力学的两个相反问题
动力学正问题:已知机械手各关节的作用力或力矩, 求各关节的位移、速度和加速度(即运动轨迹),主 要用于机器人仿真。 动力学逆问题:已知机械手的运动轨迹,即几个关节 的位移、速度和加速度,求各关节所需要的驱动力或 力矩,用于机器人实时控制。 求解动力学方程的目的,通常是为了得到机器人的运 动方程,即一旦给定输入的力或力矩,就确定了系统 地运动结果。
精品课件
6
第六章 机器人动力学
6.2 拉格朗日动力学方法
6.2.1 用于保守系统的拉格朗日方程
在《分析力学》一书中Lagrange是用s个独立变量来描述力学体 系的运动,这是一组二阶微分方程。通常把这一方程叫做Lagrange
方程,其基本形式为
ddtqTi qTi Qi i1,2,3.....s....
19
第六章 机器人动力学
N
再对 m 2 求 T 2
由于 x2 r cos y2 r sin
且 0 r 0
r
M
m2
r1
m1
o
有 x2 rcos rsin
y2 rsinrcos
v 2 2 r c o r s s in 2 r s i n rc o 2s
r 2 r22
则 得总动能
T212m2 r2r22