MEMS工艺(4体硅微加工技术)

合集下载

硅MEMS器件加工技术及展望

硅MEMS器件加工技术及展望

硅MEMS器件加工技术及展望随着科技的飞速发展,微电子技术已经成为了现代社会的基石,其中硅MEMS(微电子机械系统)器件更是成为了研究热点。

这些基于硅材料的微小机械结构,在通信、生物医学、航空航天等领域具有广泛的应用前景。

本文将介绍硅MEMS器件加工技术的基本原理和主要方法,并对其未来发展进行展望。

硅MEMS器件加工技术的基本原理是将半导体工艺应用于微小机械结构的制造中。

通过光刻、干法或湿法刻蚀、离子注入等半导体工艺,可以在硅片上加工出微小的机械结构。

这些机械结构可以包括悬臂梁、弹簧、谐振器、微泵、微阀等。

表面微加工技术是一种常见的硅MEMS器件加工方法,其主要流程包括光刻、氧化、刻蚀等步骤。

通过光刻,可以将设计好的图案转移到硅片上;再通过氧化,在硅片表面形成一层薄膜;最后通过刻蚀,将硅片表面的薄膜去掉,从而形成微小的机械结构。

体微加工技术是一种直接在硅内部制造微小机械结构的方法。

其主要流程包括掩膜制作、深反应离子刻蚀等步骤。

通过掩膜制作,可以将硅片表面不需要刻蚀的区域保护起来;再通过深反应离子刻蚀,可以直接在硅片内部刻出微小的机械结构。

随着科技的不断发展,硅MEMS器件加工技术也在不断进步。

未来,该技术将面临以下发展趋势:制程集成:通过将多个工艺步骤集成在一起,可以提高硅MEMS器件的制造效率和良品率。

智能化制造:应用人工智能和大数据技术,实现硅MEMS器件的智能化制造,提高生产效率。

环保和可持续性发展:在制造过程中考虑环保和可持续性发展,减少废弃物排放和能源消耗,推动硅MEMS产业的可持续发展。

应用拓展:随着硅MEMS技术的不断发展,其应用领域也将不断拓展。

未来,硅MEMS器件将在医疗、航空航天、环保等领域发挥更大的作用。

硅MEMS器件加工技术是一项具有重大意义的技术,其未来的发展趋势将更加广泛的应用领域、更高的制造效率和更环保的可持续性发展。

随着科技的不断发展,微电子制造技术的进步,微机电系统(MEMS)器件的设计与制造也在逐步提升。

MEMS的主要工艺类型与流程

MEMS的主要工艺类型与流程

MEMS的主要工艺类型与流程(LIGA技术简介)目录〇、引言一、什么是MEMS技术1、MEMS的定义2、MEMS研究的历史3、MEMS技术的研究现状二、MEMS技术的主要工艺与流程1、体加工工艺2、硅表面微机械加工技术3、结合技术4、逐次加工三、LIGA技术、准LIGA技术、SLIGA技术1、LIGA技术是微细加工的一种新方法,它的典型工艺流程如上图所示。

2、与传统微细加工方法比,用LIGA技术进行超微细加工有如下特点:3、LIGA技术的应用与发展4、准LIGA技术5、多层光刻胶工艺在准LIGA工艺中的应用6、SLIGA技术四、MEMS技术的最新应用介绍五、参考文献六、课程心得〇、引言《微机电原理及制造工艺I》是一门自学课程,我们在王跃宗老师的指导下,以李德胜老师的书为主要参考,结合互联网和图书馆的资料,实践了自主学习一门课的过程。

本文是对一学期来所学内容的总结和报告。

由于我在课程中主讲LIGA技术一节,所以在报告中该部分内容将单列一章,以作详述。

一、什么是MEMS技术1、MEMS的概念MEMS即Micro-Electro-Mechanical System,它是以微电子、微机械及材料科学为基础,研究、设计、制造、具有特定功能的微型装置,包括微结构器件、微传感器、微执行器和微系统等。

一般认为,微电子机械系统通常指的是特征尺度大于1μm小于1nm,结合了电子和机械部件并用IC集成工艺加工的装置。

微机电系统是多种学科交叉融合具有战略意义的前沿高技术,是未来的主导产业之一。

MEMS技术自八十年代末开始受到世界各国的广泛重视,主要技术途径有三种,一是以美国为代表的以集成电路加工技术为基础的硅基微加工技术;二是以德国为代表发展起来的利用X射线深度光刻、微电铸、微铸塑的LIGA( Lithograph galvanfomung und abformug)技术,;三是以日本为代表发展的精密加工技术,如微细电火花EDM、超声波加工。

MEMS加工工艺

MEMS加工工艺
体硅微机械加工技术和表面微机械加工技术的结合,具有两者的优 点,同时也克服了二者的不足
第七页,编辑于星期六:十三点 六分。
IC工艺与MEMS硅工艺的联系
8
硅是最基本的微机械材料,微细加工技术一般都 要涉及硅材料。针对微机械的微细加工也常被称 为硅微细加工(Silicon Micromachining),它是微传感 器、微致动器乃至MEMS迅速发展的基础技术。作
按照原理来分,可分为等离子体刻蚀(PE: Plasma Etching)、反应离子刻蚀(RIE: Reaction Ion Etching)和感应等离子体刻蚀(ICP
:Inductive Coupling PlasmaEtching)等几种。
第三十五页,编辑于星期六:十三点 六分。
36
干腐蚀装置原理
第四十页,编辑于星期六:十三点 六分。
41
加工工艺路线
驱动部分:可根据各种不同的结构采用高 掺杂的硅膜、形状记忆合金、金属膜薄片 等。
蚀速率要降低到低掺杂浓度时的1/20,这样实际上就可利
用高B掺杂区作为腐蚀阻挡层。
第三十三页,编辑于星期六:十三点 六分。
34
硅各向异性湿法腐蚀的缺点 • 图形受晶向限制
• 深宽比较差, 结构不能太小 • 倾斜侧壁 • 难以获得高精度的细线条。
第三十四页,编辑于星期六:十三点 六分。
35
干腐蚀
气体中利用反应性气体或离子流进行的腐蚀称为干 腐蚀。干腐蚀刻蚀既可以刻蚀多种金属,也可以刻 蚀许多非金属材料;既可以各向同性腐蚀,也可以 各向异性刻蚀,是集成电路工艺或MEMS常用工艺 。
第三十一页,编辑于星期六:十三点 六分。
32
3)硅的各向异性停蚀技术
第三十二页,编辑于星期六:十三点 六分。

硅微MEMS加工工艺_图文

硅微MEMS加工工艺_图文

EPW腐蚀条件
• 腐蚀温度:115℃左右 • 反应容器在甘油池内加热,加热均匀; • 防止乙二胺挥发,冷凝回流; • 磁装置搅拌,保证腐蚀液均匀; • 在反应时通氮气加以保护。 • 掩膜层:用SiO2,厚度4000埃以上。
腐蚀设备
影响腐蚀质量因素
• 腐蚀液成分
– 新旧腐蚀液 – 试剂重复性
• 温度 • 保护 • 搅拌
– 腐蚀窗口短边存在最小尺寸:
各向异性腐蚀液
• 腐蚀液:
– 无机腐蚀液:KOH, NaOH, LiOH, NH4OH等 ;
– 有机腐蚀液:EPW、TMAH和联胺等。
• 常用体硅腐蚀液:
– 氢氧化钾(KOH)系列溶液; – EPW(E:乙二胺,P:邻苯二酚,W:水)系
列溶液。
• 乙二胺(NH2(CH2) 2NH2) • 邻苯二酚(C6H4(OH) 2)
牺牲层技术
• 属硅表面加工技术。 • 是加工悬空和活动结构的有效途径。 • 采用此种方法可无组装一次制成具有活
动部件的微机械结构。 • 牺牲层材料
影响牺牲层腐蚀的因素
• 牺牲层厚度 • 腐蚀孔阵列 • 塌陷和粘连及防止方法
– 酒精、液态CO2置换水; – 依靠支撑结构防止塌陷。
典型牺牲层腐蚀工艺
• 流程2(不出现针孔):
• 热氧化SiO2,LPCVD Si3N4; • 背面光刻,腐蚀Si3N4,不去胶; • 正面光刻,腐蚀Si3N4和SiO2,去胶; • 体硅腐蚀。
凸角腐蚀补偿
• 凸角腐蚀是指在硅岛或硅梁的腐蚀成型 过程中,凸角部分被腐蚀掉的现象,体 硅各向异性腐蚀时经常出现,这是因为 对(100)晶面的硅片体硅腐蚀时,凸角的 边缘与[110]方向平行,而腐蚀液对此方 向的腐蚀速度较快。若要腐蚀出带凸角 的整齐的台面结构,必须采取凸角补偿 。

完整版MEMS加工技术及其工艺设备

完整版MEMS加工技术及其工艺设备

MEM加工技术及其工艺设备童志义MEMS是微电子技术与机械,光学领域结合而产生的,是20世纪90年代初兴起的新技术,是微电子技术应用的又一次革命性实验。

MEMS很有希望在许多工业领域,包括信息和通讯技术,汽车,测量工具,生物医学,电子等方面成为关键器件,把在Si衬底上的MEMS与IC集成在一起,还可以产生许多新的功能。

但是制造MEMS的加工技术主要有三种,第一种是以美国为代表的利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基MEMS器件;第二种是以日本为代表的利用传统机械加工手段,即利用大机器制造出小机器,再利用小机器制造出微机器的方法;第三种是以德国为代表的LIGA (德文Lithograpie—光刻,Galvanoformung —电铸的A bformung-塑铸三个词的缩写)技术,它是利用X射线光刻技术,通过电铸成型和铸塑形成深层微结构的方法。

其中硅加工技术与传统的IC工艺兼容,可以实现微机械和微电子的系统集成,而且该方法适合于批量生产,已经成为目前MEMS的主流技术。

随着电子,机械产品微小化的发展趋势,未来10年,微机械Mier omachine 与微机电MEMS产业将逐渐取代半导体产业成为主流产业,为此,日本,美国一些著名企业均开始加强其MEMS组件/模块制造能力。

当前,微机械与MEMS产业已被日本政府列入未来10年保持日本竞争力的产业,虽然目前MEMS组件/模块市场主要集中在一些特殊应用领域,但未来的5〜10年内,MEMS组件/模块市场规模将扩大到目前的3倍,ME MS相关系统市场将增长10倍(见表1),因此,掌握组件/模块技术将有利于未来在MEMS市场取得主动权。

微系统的增长包括微电子机械和最近对半导体产业设备和工艺开发具有重大影响的纳米技术。

光学式电子束直写光刻与湿法蚀刻硅工艺的结合,促进了早期的MEMS技术的发展。

最近,随着感应耦合等离子体刻蚀系统在深度垂直侧壁结构的应用使MEMS在单晶硅的开发成为可能。

mems制作流程

mems制作流程

MEMS制作流程1. 概述微机电系统(MEMS)是一种集成了微小机械结构、传感器、执行器和电子电路等功能的微型系统。

MEMS制作流程是将设计好的MEMS器件从初始材料开始,通过一系列工艺步骤逐步加工形成最终的器件。

本文将详细介绍MEMS制作的主要步骤和流程。

2. 设计在开始MEMS制作之前,首先需要进行器件的设计。

设计过程包括确定器件的功能、尺寸、材料选择等。

常见的MEMS器件包括压力传感器、加速度计、陀螺仪等。

3. 基础材料准备在进行MEMS制作之前,需要准备一些基础材料,包括硅片(通常为单晶硅或多晶硅)、玻璃基板、金属薄膜等。

这些材料将用于制作MEMS器件的基底和结构。

4. 硅片清洗由于硅片表面容易被污染,因此在进行后续工艺之前需要对硅片进行清洗处理。

清洗过程通常包括去除有机物和无机盐等污染物。

5. 硅片表面涂覆为了实现特定的功能,需要在硅片表面涂覆一层薄膜。

常见的涂覆方法包括物理气相沉积(PVD)、化学气相沉积(CVD)等。

涂覆的薄膜可以是金属、绝缘体或半导体材料。

6. 光刻光刻是MEMS制作中非常重要的步骤,用于定义器件结构的形状和尺寸。

光刻过程包括以下几个步骤: - 涂覆光刻胶:将光刻胶均匀涂覆在硅片上。

- 预烘烤:将硅片放入烘箱中进行预烘烤,使光刻胶变得更加坚固。

- 掩膜对位:将掩模与硅片对位,并使用紫外线曝光机将掩模上的图案转移到光刻胶上。

- 显影:使用显影剂去除未曝光区域的光刻胶。

- 后烘烤:将硅片放入烘箱中进行后烘烤,使已曝光区域的光刻胶更加坚固。

7. 干法刻蚀干法刻蚀是用于将硅片上的材料去除或改变形状的工艺步骤。

常见的干法刻蚀方法包括反应离子刻蚀(RIE)、高密度等离子体刻蚀(DRIE)等。

通过控制刻蚀时间和条件,可以实现不同形状和尺寸的结构。

8. 软件控制在MEMS制作过程中,软件控制起着重要的作用。

通过软件控制,可以精确地控制各个工艺步骤的参数,如温度、时间、气体流量等。

mems硅微加工技术

mems硅微加工技术

mems硅微加工技术
MEMS(Micro-Electro-Mechanical Systems)是一种将微型机
械元件、微型传感器、微型执行器和微型电子元件集成在一起的技术。

MEMS硅微加工技术是制造MEMS器件的关键技术之一,它主要
包括光刻、腐蚀、沉积、离子注入、热处理等步骤。

首先,光刻是MEMS硅微加工技术中的重要步骤之一。

通过光刻
技术,可以在硅片上制作出微细的图案和结构,为后续的加工步骤
奠定基础。

其次,腐蚀技术是利用化学溶液对硅片进行局部腐蚀,
形成所需的微结构和微孔洞。

而沉积技术则是在硅片表面沉积金属、氧化物或多晶硅等材料,用于制作电极、传感器和执行器等部件。

离子注入是通过控制离子注入的能量和剂量,改变硅片的导电
性能和机械性能,实现器件的性能调控。

热处理则是通过高温处理,使得材料的晶格结构发生改变,从而改善器件的性能和稳定性。

除了上述技术,MEMS硅微加工还涉及到表面微纳米加工、微结
构的制备和封装技术等。

通过这些技术的综合应用,可以实现微型
机械元件和微型传感器的高精度制造和集成,从而推动MEMS技术在
加速计、压力传感器、微型惯性器件等领域的应用。

总的来说,MEMS硅微加工技术是一项复杂而又精密的技术,它为微型机械系统的制造提供了重要的技术支持,也为微型传感器和执行器的集成提供了关键的工艺手段。

随着技术的不断进步,相信MEMS硅微加工技术将会在更多领域展现出其巨大的潜力和价值。

MEMS的制造技术

MEMS的制造技术
图4.15 重掺杂硼的硅自停止腐蚀工艺
具有的高选择性和物理腐蚀所具有的各向异性,目前 主要是将这两种方法组合起来使用。 4.2.2 (111)面自停止腐蚀技术 图4.16为(111)面自停止腐蚀工艺。其工艺流程为: 4.2.3 p-n结腐蚀自停止技术 p-n结腐蚀自停止是一种使用硅的各向异性腐蚀剂如氢 氧化钾的电化学腐蚀自停止技术,它利用了N型硅和P 型硅在各向异怀腐蚀液中的钝化电位不同这一现象。 图4.17给出了在氢氧化钾腐蚀液 (65℃,40%) 中 (100)晶向P型硅和N型硅样品的电流一电压特性。
图 4.23 X光过渡掩模板制造工艺流程图
(2) X光光刻胶
(3)同步辐射X光曝光 (4)光刻胶显影 4.3.3微电铸工艺 目前镍的微电铸工艺比较成熟,镍较稳定,且具有一定的硬度,可用于微复制模 具的制作。由于金是LIGA掩模板的阻挡层,所以,在LIGA技术中,金的微电铸技 术非常重要。有些传感器和执行器需要有磁性作为驱动力,所以,具有磁性的铁镍 合金的微电铸对LIGA技术也很重要。其他如银、铜等也是LIGA技术常用的金属材 料。
4.2.4电化学自停止腐蚀技术
图4.20是一种典型的电化学腐蚀自停止方法
图4.16 (111)面自停止腐蚀工艺
图4.17 P型和N型硅在KOH腐蚀液中的特性
图4.20 电化学腐蚀系统
图4.21 硅在5%HF中的电化学腐蚀I V
4.3 LIGA体微加工技术
四个工艺组成部分:LIGA掩模板制造工艺;X光 深层光刻工艺;微电铸工艺;微复制工艺。 4.3.1 LIGA掩膜板制造工艺
4.1.4.1 物理腐蚀技术 (1)离子腐蚀(Ion Etching ,IE)
图4.12平行板反应器的结构原理
(2)离子束腐蚀(Ion Beam Etching,IBE) 离子束腐蚀是一种利用惰性离子进行腐蚀的物理腐 蚀。在离子束腐蚀中,被腐蚀的衬底和产生离子的 等离子区在空间是分离的,如图4.13所示。

硅微加工技术在MEMS器件中的应用研究

硅微加工技术在MEMS器件中的应用研究

硅微加工技术在MEMS器件中的应用研究MEMS(Micro-electro-mechanical systems)是指微电子机械系统,是一种集微观机械、电子、光学、光机等多学科技术于一体的新型技术领域。

MEMS技术的发展,参与了传感器、执行器、微流控、生物医学应用等领域的技术创新。

其中硅微加工技术是MEMS器件中不可缺少的技术之一。

硅微加工技术是指通过微影、腐蚀、离子刻蚀等工艺,对硅晶片进行微加工处理,制造出微米级别的结构。

这种技术是MEMS器件中最为重要的一环,也是微电子器件制造的基础。

硅微加工技术的成熟,为MEMS器件的研发提供了坚实的技术保障。

在MEMS器件的应用研究中,硅微加工技术在制造过程中起到了至关重要的作用。

硅微加工技术的应用,可以为MEMS器件提供更为高效、稳定和精确的加工手段,同时还能够大幅度降低制造成本。

从而,使MEMS器件在自动化、微机电系统领域得到了广泛应用。

硅微加工技术在MEMS器件中的应用,可以从两个方面进行探讨:其一是在MEMS器件制造中的应用,其二是在MEMS器件性能优化中的应用。

下文将重点介绍这两个方面的研究内容。

一、硅微加工技术在MEMS器件制造中的应用MEMS器件的制造需要先进行设计和加工,之后进行组装与测试。

硅微加工技术在这个过程中的应用,可以从以下几个方面进行展开。

1. MEMS器件的设计与制造硅微加工技术可以制造出微小的、复杂的、高精度的器件结构,包括微机械阀、加速度计、陀螺仪等等。

而且,硅微加工技术的制造工艺相对简单,成本低廉,更加便于大规模量产。

因此,硅微加工技术在MEMS器件设计中起到了至关重要的作用。

通过微影、腐蚀等工艺,可以制造出MEMS器件所需的多种结构和布局设计。

同时,在制造过程中可以针对每个单元的特定需求,对其进行不同的工艺处理,最终制造出完整的器件。

2. MEMS器件的组装与封装在MEMS器件的制造过程中,需要对器件进行组装和封装,以保证器件的长期稳定性和机械强度。

MEMS工艺体硅微加工工艺

MEMS工艺体硅微加工工艺

MEMS工艺体硅微加工工艺1. 简介MEMS(Micro-Electro-Mechanical Systems),即微电子机械系统,是一种集成了电子、机械和光学等技术的微型设备。

MEMS工艺体硅微加工工艺是MEMS制造中最常用的一种工艺。

本文将介绍MEMS工艺体硅微加工的基本原理、工序以及常见的应用领域。

2. 工艺原理MEMS工艺体硅微加工工艺以单晶硅片作为主要材料,通过一系列的加工工序,制造出具有复杂结构和微尺寸的器件。

其工艺原理主要包括以下几个方面:2.1 单晶硅片制备单晶硅片是MEMS工艺体硅微加工的基础材料。

通过化学气相沉积(CVD)或磁控溅射等方法,在硅熔体中生长出单晶硅片。

然后,通过切割和抛光等工艺,将单晶硅片制备成规定尺寸和厚度的硅衬底。

2.2 光刻工艺光刻工艺是MEMS工艺体硅微加工中的重要步骤。

首先,将光刻胶覆盖在硅片表面。

然后,使用掩膜板,通过紫外光照射,使光刻胶发生化学反应,形成图案。

接着,将硅片浸泡在显影液中,去除未曝光的光刻胶。

最后,通过加热或暴露于紫外光下,固化已经显影的光刻胶。

2.3 甜蜜刻蚀甜蜜刻蚀是MEMS工艺体硅微加工中的关键步骤。

将制备好的硅片放置在刻蚀室中,通过控制刻蚀气体的流量、温度和压力等参数,使硅片表面发生化学刻蚀。

根据刻蚀深度和刻蚀特性的要求,可以选择不同的刻蚀方法,如湿法刻蚀、干法刻蚀等。

2.4 互连与封装互连与封装是MEMS工艺体硅微加工的最后环节。

通过金属薄膜沉积、光刻和腐蚀等工艺,将金属导线、引线等结构制作在硅片上,并与芯片上的电极进行连接。

同时,为了保护MEMS器件免受机械损伤和环境腐蚀,常常需要对其进行封装,通常采用薄膜封装或微结构封装等方法。

3. 工序流程MEMS工艺体硅微加工的工序流程会因具体的器件设计和制造要求而有所差异。

下面是一个典型的MEMS工艺体硅微加工的工序流程:1.单晶硅制备:通过CVD或磁控溅射等方法,制备出单晶硅片。

MEMS工艺

MEMS工艺
Ø 硅片本身不被加工,器件的结构部分由淀 积的薄膜层加工而成,结构与基体之间的 空隙应用牺牲层技术,其作用是支撑结构 层,并形成所需要形状的最基本过程,在 微器件制备的最后工艺中解牺牲层。
PPT文档演模板
MEMS工艺
Ø 表面微加工过程特点:
Ø添加——图形——去除 Ø添加:薄膜沉积技术 Ø图形:光刻 Ø去除:腐蚀技术
PPT文档演模板
MEMS工艺
2.残余应力
在微机械加工中是固有的
PPT文档演模板
MEMS工艺
3.存在于薄膜结构中本身的应力
Ø由微加工过程中原子结构局部变化产 生的
Ø例如,过量掺杂会导致结构在表面微 加工后产生很大的残余应力
PPT文档演模板
MEMS工艺
粘连
Ø两个分离薄片粘附在一起的现象称为 粘连;
PPT文档演模板
MEMS工艺
PPT文档演模板
MEMS工艺
表面微机械加工的特点
Ø 1、在表面微机械加工中,硅片本身不被刻 蚀,没有穿过硅片,硅片背面也无凹坑。
Ø 2、表面微机械加工适用于微小构件的加工, 结构尺寸的主要限制因素是加工多晶硅的 反应离子刻蚀工艺。
Ø 3、形成层状结构的特点为微器件设计提供 较大的灵活性。
Ø酒精、液态CO2置换水; Ø依靠支撑结构防止塌陷。
PPT文档演模板
MEMS工艺
PPT文档演模板
典型牺牲层腐蚀工艺
Ø 氧化,做体硅腐蚀掩膜层; Ø 光刻氧化层,开体硅腐蚀窗口; Ø 体硅腐蚀出所需底层结构; Ø 去除SiO2; Ø 生长或淀积牺牲层材料; Ø 光刻牺牲层材料成所需结构; Ø 生长结构材料; Ø 光刻结构材料; Ø 牺牲层腐蚀,释放结构层; Ø 防粘结处理。
MEMS工艺

MEMS工艺(4体硅微加工技术).讲义

MEMS工艺(4体硅微加工技术).讲义

1.KOH system
溶剂:水,也有用异丙醇(IPA) 溶液:20% - 50% KOH 温度: 60 – 80º C 速率:~1um/分钟 特点:镜面,易于控制,兼容性差
Si H 2O 2KOH K 2 SiOቤተ መጻሕፍቲ ባይዱ 2H
2
2.EDP system
EPW [NH2(CH2)2NH2乙二胺,C6H4(OH2)2 (邻苯二酚),H2O] 特点:蒸 气有毒,时效较差, P+选择性好
MEMS工艺—— 硅微加工工艺(腐蚀)
梁 庭
3920330(o) Liangting@
内容
腐蚀工艺简介 湿法腐蚀 干法刻蚀 其他类似加工工艺
腐蚀工艺简介
腐蚀是指一种材料在它所处的环境中由于另一种材料的作 用而造成的缓慢的损害的现象。然而在不同的科学领域对 腐蚀这一概念则有完全不同的理解方式。 在微加工工艺中,腐蚀工艺是用来“可控性”的“去除” 材料的工艺。
3、N2H4 (联氨、无水肼)
为有机、无色的水溶液,具有很强的毒性及挥发 性,在50oC以上就会挥发,故操作时需在良好装 置下及密闭容器中进行。 其优点包括相容于IC制程,对于氧化硅(SiO)及氮 化硅(SiN)等介电材料蚀刻率 低,Ti、Al、Cr、Au 及Pt等金属也无明显蚀刻反应,Ti和Al是目前最 常用的金属材料,蚀刻时不需有其它的保护层, 降低了制程的复杂性。
腐蚀工艺简介——腐蚀工艺重要性
大部分的微加工工艺基于“Top-Down”的加 工思想。 “Top-Down”加工思想:通过去掉多余材料 的方法,实现结构的加工。(雕刻——泥 人) 作为实现“去除”步骤的 腐蚀工艺是形成特定平面 及三维结构过程中,最为 关键的一步。

mems加工技术简介

mems加工技术简介
注释:利用 注释:利用LIGA技术职称的微小器件 技术职称的微小器件
LIGA技术
注释: 注释:LIGA技术制程技术示意图 技术制程 you!
该技术基于单晶硅 的不同晶向的腐蚀 速率存在各向异性, 利用硅的腐蚀速率 和硅的晶向、搀杂 浓度及外加电位有 关的特点,可以实 现适时停止腐蚀。 利用该技术可以制 造MEMS精密三维 结构
注释:高密度等离子设备, 注释:高密度等离子设备,用于 MEMS器件制作 器件制作
固相键合技术
固相键合技术就是 不用液态粘连剂而 将两块固体材料键 合在一起,而且键合 合在一起 而且键合 过程中材料始终处 于固相状态的方法。 于固相状态的方法。 主要包括: 主要包括:阳极键 合和直接键合两种。 合和直接键合两种。

MEMS技术分类
MEMS加工技术是MEMS技术的核心部分,也 是其研究领域中最为活跃的部分,加工MEMS 器件的技术目前主要有三种。
MEMS
MEMS 加 加 工 工 技 技 术

美国:化学腐蚀、集成电路 美国:化学腐蚀、 工艺技术对硅材料进行加工 日本: 日本:利用传统机械加工手 用大机器制造小机器,再 段,用大机器制造小机器 再 用大机器制造小机器 用小机器制造微机器的方法 德国: 德国:LIGA技术 技术
MEMS加工技术简介 加工技术简介
MEMS 续
20 世纪60 年代,微电子技术渗透到了 机械工程的各个领域,与传统精密机械 加工技术相互融合,形成了微机电系统。
力 光 声 感 温度
化学 行

模拟 信号 处理
数字 信号 处理
模拟 信号 处理
执 行 器

运 动 能 量 信 息 其 他
其他

与其他为系统的通信/接口 与其他为系统的通信 接口

MEMS加工工艺及表面加工

MEMS加工工艺及表面加工
Si+2e+——>Si2+
这里e+表示空穴,即Si得到空穴后从原子升 到氧化态
腐蚀液中的水解离发生下述反应 H2O=(OH)-+H+
17
Si2+与(OH)-结合,成为:
Si2++2(OH)-——>Si(OH)2
接着Si(OH)2放出H2并形成SiO2,即:
Si(OH)2——> SiO2+H2
44
体与表面微机械技术的比较
表面微机械加工技术
45
硅园片 淀积结构层 刻蚀结构层 淀积牺牲层
刻蚀牺牲层 淀积结构层
刻蚀结构层 释放结构
46
• 微加工过程都是在硅片表面的一些薄膜上进行的, 形成的是各种表面微结构,又称牺牲层腐蚀技术。 • 特点:在薄膜淀积的基础上,利用光刻,刻蚀等 IC常用工艺制备多层膜微结构,最终利用不同材料 在同一腐蚀液中腐蚀速率的巨大差异,选择性的腐 蚀去掉结构层之间的牺牲层材料,从而形成由结构 层材料组成的空腔或悬空及可动结构。
SFx+ F
Deep reactiveion etching ~1995
Surface micromachining
~1986
LIGA ~1978
4
MEMS加工技术的种类
硅微机械加工工艺:体硅工艺和表面牺牲层工艺
美国为代表,伴随硅固态传感器的研究、开发而在集成电路平面 加工工艺基础上发展起来的三维加工技术。具有批量生产,成本 低、加工技术可从IC成熟工艺转化且易于与电路集成
• 优点:与常规IC工艺兼容性好; 器件可做得很小
• 缺点:这种技术本身属于二维平面工艺,它限 制了设计的灵活性。
47
48
关键技术
牺牲层技术 薄膜应力控制技术 防粘连技术

MEMS标准工艺介绍

MEMS标准工艺介绍
采用硫酸和双氧水溶液去除衬底材料上的有机物, 氨水和双氧水溶液去除衬底材料上的 非金属玷污,盐酸和双氧水溶液去除衬底材料上的金属玷污。 溶液 温度 设备 硫酸:双氧水(80%:20%) 120ºC 清洗槽 氨水:双氧水:水(1:1:5) 75ºC 清洗槽 盐酸:双氧水:水(1:1:7) 75ºC 清洗槽 处理面数:双面 状 态:可用
处理材料:硅/硅键合要求:直径为100mm 的硅片,平整度小于2um;
硅/玻璃键合要求: 直
玻璃片,型号 Pyrex 7740。
键合条件:
电极 电压 0~ 2000 电极 电流 0~ 10mA 极板最 高温度 500℃ 温度均 匀性 +/-1% 温度控制 精度 +/-5% 卡盘压 力 0~ 2000mB 真空腔压力
处理材料: 符合进炉净化标准以及承受处理的温度,衬底材料直径 100mm ,厚度
400-1500um。 (1)高电阻率硼扩散工艺 条件 温度 950- 硼源 GS- 126 1150ºC 结深 0.1-0.5um 方块电阻 100欧姆/ 方块 设备 扩散炉
处理面数:双面 片数/批 : 最多48片 检 验:方块电阻偏差+/-5%,结深偏差+/-5% 状 态:可用
AIT 喷镀系统
AIT 挂镀系统
低成本的焊料凸点工艺 1.铝表面活化:用丙酮去除铝表面油污,在体积比为1:1的磷酸溶 液(8%)和氟硼酸铵(2%)中去除铝表面的氧化层。 2.二次浸锌:在锌酸盐中一次浸锌后,用50%的硝酸溶液去除锌层, 去离子水洗后,再进行二次浸锌。 3.化学镀镍:用水浴将化学镀镍溶液加热至90℃,将二次浸锌的晶 片浸入化学镀镍溶液中,20分钟后,取出,去离子水洗。 4.浸金:用水浴将浸金溶液加热至70℃,将化学镀镍的晶片浸入浸 金溶液溶液中,10分钟后,取出,去离子水洗,烘干。 5.焊料凸点的形成:用印刷的方法,在镍/金表面上印刷焊料,回流 形成焊料凸点。 6.焊料凸点尺寸:Φ250um。

MEMS器件的制作方法及MEMS器件与流程

MEMS器件的制作方法及MEMS器件与流程

MEMS器件的制作方法及MEMS器件与流程什么是MEMS器件MEMS(Micro-Electro-Mechanical Systems)中文译作“微电子机械系统”,它是一种极小型、低功耗、高度集成的微机电器件,采用微电子加工工艺制作而成。

MEMS器件不仅具有微小体积和低功耗的特点,还具有高度的可靠性、可生产性和成本优势,广泛应用于惯性传感器、气体传感器、生物传感器、微泵、微阀、无线射频器等领域。

MEMS器件制作方法MEMS器件制作一般分为五个阶段:晶圆制备、表面处理、光刻、腐蚀和封装。

下面将对每个阶段进行详细阐述。

晶圆制备MEMS器件的制作通常采用硅晶圆为基板,晶圆制备是整个制作过程的第一步。

晶圆制备包括以下步骤:1.刺激掺杂(Doping):添加不同种类的杂原子到硅单晶中,控制晶体内部的电学性质,形成P型或N型材料。

2.清洗:将晶圆放入超纯水中清洗去除表面的污垢和残留物。

3.割晶:将大块硅单晶切割成薄片,保证晶格方向一致。

4.粗磨和细磨:对硅晶圆进行处理,使其表面平整。

5.氧化:在硅晶圆表面形成一层二氧化硅氧化膜,保护晶圆表面免受污染或损伤。

表面处理表面处理是指对硅晶圆表面进行化学或物理处理,以准备结构的定义。

常见的表面处理方式有以下几种:1.清洗:利用超纯水和有机溶液等清除表面的杂质,保持晶圆表面洁净。

2.烘烤:用于去除化学处理后的残垢和溶剂,一般在烘炉或烘箱中进行。

3.清除二氧化硅膜:通过化学腐蚀或刻蚀的方式去除晶圆上的二氧化硅膜。

光刻光刻是MEMS器件制作工艺中比较关键的一个步骤。

在这个步骤中,芯片表面被覆盖了一层称为光刻胶的物质。

光刻胶的化学性质使得其对紫外线具有不同的反应,晶圆上光学显微镜上方的掩膜被置于紫外线光源下方,向光刻胶中投射图形化学图案。

投射光的图形化学图案将使得光刻胶局部性质发生变化,然后进一步处理。

1.选择合适的掩膜2.涂覆光刻胶并旋转均匀3.热压辊使得光刻胶均匀压贴到硅晶上4.紫外线曝光5.开发6.检验腐蚀MEMS制造中的腐蚀是利用腐蚀性的化学液体来沿着在晶圆上部署的光刻图形剥去目标材料的步骤。

MEMS的主要工艺类型与流程

MEMS的主要工艺类型与流程

MEMS的主要工艺类型与流程MEMS(微机电系统)是一种将微型机械结构与微电子技术相结合的技术,具有广泛的应用前景,在传感器、加速度计、微流体器件等领域有重要的作用。

MEMS的制备过程包括几个主要的工艺类型和相应的流程,本文将详细介绍这些工艺类型和流程。

1.半导体工艺半导体工艺是MEMS制备中最常用的工艺类型之一、它借鉴了集成电路制造的技术,将MEMS结构与电路结构集成在一起。

半导体工艺的制备流程主要包括以下几个步骤:(1)硅片准备:选择高纯度的单晶硅片作为基底材料,通常使用化学机械抛光(CMP)等方式使其表面光滑。

(2)掩膜和光刻:使用光刻胶将掩膜图形转移到硅片表面,形成所需的结构图案。

(3)蚀刻:使用干法或湿法蚀刻技术去除光刻胶外部的硅片,仅保留需要的结构。

(4)沉积:在蚀刻后的硅片表面沉积不同材料,如金属、氧化物等,形成MEMS结构的各个层次。

(5)光刻:重复进行掩膜和光刻步骤,形成更多的结构图案。

(6)终结:最后,进行退火、切割等步骤,完成MEMS器件的制备。

2.软件工艺软件工艺是MEMS制备中的另一种主要工艺类型。

与半导体工艺不同,软件工艺使用聚合物材料作为主要基底材料,并采用热压、激光加工等方式形成MEMS结构。

软件工艺的制备流程主要包括以下几个步骤:(1)选择聚合物材料:根据应用需求选择合适的聚合物材料作为基底材料。

(2)模具制备:根据设计要求制作好所需的模具。

(3)热压:将聚合物材料放置在模具中,通过加热和压力使其形成所需的结构。

(4)取模:待聚合物冷却后,从模具中取出完成的MEMS结构。

3.LIGA工艺LIGA(德语为"Lithographie, Galvanoformung, Abformung"的首字母缩写)工艺是一种利用光刻、电沉积和模具制备的工艺方法,主要适用于高纵深结构的制备。

LIGA工艺的制备流程主要包括以下几个步骤:(1)光刻:使用光刻胶将掩膜图形转移到聚合物或金属表面,形成结构图案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MEMS工艺—— 硅微加工工艺(腐蚀)
梁 庭
3920330(o) Liangting@
内容
腐蚀工艺简介 湿法腐蚀 干法刻蚀 其他类似加工工艺
腐蚀工艺简介
腐蚀是指一种材料在它所处的环境中由于另一种材料的作 用而造成的缓慢的损害的现象。然而在不同的科学领域对 腐蚀这一概念则有完全不同的理解方式。 在微加工工艺中,腐蚀工艺是用来“可控性”的“去除” 材料的工艺。
硅的各向异性腐蚀技术
各向异性(Anisotropy)
各向异性腐蚀液通常对单晶硅(111)面的腐 蚀速率与(100)面的腐蚀速率之比很大(1: 400)
湿法腐蚀的化学物理机制
腐蚀——生长 晶体生长是典型的各向异性表现。 腐蚀作用:晶体生长的反过程
湿法腐蚀的化学物理机制
腐蚀过程:
反应物扩散到腐蚀液表面 反应物与腐蚀表面发生化学反应 反应物的生成物扩散到溶液中去
(100)面双方块凸角腐蚀补偿
(100)面双方块凸角腐蚀补偿
(100)面双方块凸角腐蚀补偿
Si HNO3 HF H 2 SiF6 HNO2 H 2O H 2
优点: 无尖角, 较低应力
刻蚀速度快
可用光刻胶掩膜
目前主要的各向同性腐蚀液为: NHA和HNW
H:氢氟酸(HF)
N:硝酸(HNO3)
A:乙酸(CH3COOH)
W: Water
三、自停止腐蚀技术 机理:
EPW和KOH对硅的腐蚀在掺杂浓度小 于11019cm-3时基本为常数,超过该浓 度时,腐蚀速率与掺杂硼浓度的4次方 成反比,达到一定的浓度时,腐蚀速率 很小,甚至可以认为腐蚀“停止”。
各向异性腐蚀的特点:
腐蚀速率比各项同性腐蚀慢,速率仅能 达到1um/min 腐蚀速率受温度影响
在腐蚀过程中需要将温度升高到100℃左 右,从而影响到许多光刻胶的使用
各向异性腐蚀液
腐蚀液:
无机腐蚀液:KOH, NaOH, LiOH, NH4OH等; 有机腐蚀液:EPW、TMAH和联胺等。
氮气出口 冷凝水出口
Hale Waihona Puke 腐蚀设备冷凝洄流管道 冷凝水 温控温度计 冷凝水入口
氮气
气体 流量 控制 计
磨沙密封口
氮气入口
硅片 腐蚀液 甘油池 石英提篮 石英支架 搅拌器转子 加热电炉
继电器 电源
硅和硅氧化物典型的腐蚀速率
材料 硅在<100>晶向 腐蚀剂 KOH 腐蚀速率 0.25-1.4m/min
硅在<100>晶向 二氧化硅 二氧化硅
3、(111)面自停止腐蚀
KOH溶液对(100)和(111)面硅的 腐蚀速率差别很大,可高达100~400 倍,因此可利用(111)面作为停止腐 蚀的晶面。
(111)面自停止腐蚀工艺流程
腐蚀保护技术
如果硅晶片表面已经形成一些图案,其中 部分薄膜会被腐蚀液所影响,所以必须利 用腐蚀保护技术来保护已完成的结构。 目前常用的保护技术有两种:
2 NH 2 (CH 2 ) 2 NH 2 Si 3C 6 H 4 (CH 2 ) 2 NH 2 (CH 2 ) 2 NH Si(C 6 H 4 O2 ) 3 2 H
3 2
EDP腐蚀条件 腐蚀温度:115℃左右 反应容器在甘油池内加热,加热均匀; 防止乙二胺挥发,冷凝回流; 磁装臵搅拌,保证腐蚀液均匀; 在反应时通氮气加以保护。 掩膜层:用SiO2,厚度4000埃以上。
3、N2H4 (联氨、无水肼)
为有机、无色的水溶液,具有很强的毒性及挥发 性,在50oC以上就会挥发,故操作时需在良好装 臵下及密闭容器中进行。 其优点包括相容于IC制程,对于氧化硅(SiO)及氮 化硅(SiN)等介电材料蚀刻率 低,Ti、Al、Cr、Au 及Pt等金属也无明显蚀刻反应,Ti和Al是目前最 常用的金属材料,蚀刻时不需有其它的保护层, 降低了制程的复杂性。
氮化硅 氮化硅
EDP KOH EDP
KOH EDP
0.75m/min 40-80nm/h 12nm/h
5nm/h 6nm/h
影响腐蚀质量因素
晶格方向
腐蚀溶液的选择
腐蚀溶液的浓度
腐蚀时间
表面流速A
操作温度温度
转子 硅片 深度A 低速区
表面流速B
搅拌方式
深度B 高速区 腐蚀液 容器
100方向硅片的腐蚀特点
第二类是薄膜间因膨胀系数不同造成的残余应力
凸角腐蚀补偿
凸角腐蚀是指在硅岛或硅梁的腐蚀成型过 程中,凸角部分被腐蚀掉的现象,体硅各 向异性腐蚀时经常出现,这是因为对(100) 晶面的硅片体硅腐蚀时,凸角的边缘与[110] 方向平行,而腐蚀液对此方向的腐蚀速度 较快。若要腐蚀出带凸角的整齐的台面结 构,必须采取凸角补偿。
1.KOH system
溶剂:水,也有用异丙醇(IPA) 溶液:20% - 50% KOH 温度: 60 – 80º C 速率:~1um/分钟 特点:镜面,易于控制,兼容性差
Si H 2 O 2 KOH K 2 SiO3 2 H
2
2.EDP system
EPW [NH2(CH2)2NH2乙二胺,C6H4(OH2)2 (邻苯二酚),H2O] 特点:蒸 气有毒,时效较差, P+选择性好
腐蚀工艺简介——腐蚀工艺重要性
大部分的微加工工艺基于“Top-Down‖的加 工思想。 “Top-Down‖加工思想:通过去掉多余材料 的方法,实现结构的加工。(雕刻——泥 人) 作为实现“去除”步骤的 腐蚀工艺是形成特定平面 及三维结构过程中,最为 关键的一步。
湿法腐蚀
湿法腐蚀——―湿”式腐蚀方法,基于溶液 状态的腐蚀剂。 湿法腐蚀工艺特点:
常用体硅腐蚀液:
氢氧化钾(KOH)系列溶液; EPW(E:乙二胺,P:邻苯二酚,W:水)系列溶 液。
乙二胺(NH2(CH2) 2NH2) 邻苯二酚(C6H4(OH) 2) 水(H2O)
1.KOH system
KOH是目前在微机电领域中最常使用的非等 向蚀刻液,为一碱金属之强碱蚀刻液,其金 属杂质会破坏CMOS的氧化层电性,所以不 兼容于IC制程; 但因其价格低廉、溶液配制简单、对硅(100) 蚀刻速率也较其它的蚀刻液为快,更重要的 是操作时稳定、无毒性、又无色,可以观察 蚀刻反应的情况,是目前最常使用的蚀刻液 之一。
4、TMAH
氢氧化四钾铵为有机、无色之水溶液,原本为半导体制程中 正胶的显影液,但目前亦应用于蚀刻制程中。 TMAH的毒性低为其最大优点,对于SiO及SiN等介电材料蚀 刻率低;对于Ti和Al有明显的蚀刻,在蚀刻组件前需加入适 当的硅粉末,降低对铝的蚀刻率,亦可加入酸来降低蚀刻液 的pH值,如酸与铝会发生化学反应生成硅铝酸盐,硅铝酸盐 对蚀刻液有较好的抵抗能力,可以保护铝材的电路。 TMAH的蚀刻反应过程会因操作参数不同而有极大的差异, 且长时间蚀刻蚀刻液亦不稳定。此外,适用于硅微加工的高 浓度TMAH(>15%)价格高昂,都是无法广泛应用的原因。
设备简单,操作简便,成本低 可控参数多,适于研发 受外界环境影响大
浓度、温度、搅拌、时间
有些材料难以腐蚀
湿法腐蚀——方向性
各向同性腐蚀——腐蚀速率在不同方向上 没有差别 各向异性腐蚀——对不同的晶面的腐蚀速 率有明显差别 利用各向异性腐蚀特性,可以腐蚀出各种 复杂的结构。
各向异性腐蚀和各向同性腐蚀
111面凹角停止
110方向硅片的腐蚀特点
影响各向异性腐蚀的主要因素
(1) 溶液及配比
(2) 温度
各向同性腐蚀
硅的各向同性腐蚀在半导体工艺中以及在微 机械加工技术中有着极为广泛的应用。常用的 腐蚀液为HF-HNO3加水或者乙酸系统。腐蚀机 理为:
首先是硝酸同硅发生化学反应生成SiO 2,然后 有HF将SiO 2溶解。
硅腐蚀方法:干法和湿法 腐蚀方向选择性:各向同性和各向异性 腐蚀材料选择性: 选择性刻蚀或非选择性 刻蚀 选择方法:晶向和掩模 多种腐蚀技术的应用:体硅工艺(三维技 术),表面硅工艺(准三维技术)
硅的各向异性腐蚀 是利用腐蚀液对单晶硅不同晶向腐蚀速 率不同的特性,使用抗蚀材料作掩膜, 用光刻、干法腐蚀和湿法腐蚀等手段制 作掩膜图形后进行的较大深度的腐蚀。 机理:腐蚀液发射空穴给硅,形成氧化 态Si+,而羟基OH-与Si+形成可溶解的 硅氢氧化物的过程。
重掺杂自停止腐蚀
(1) 重掺杂自停止腐蚀(KOH 和EDP:51013/cm3) (2)(111)面停止 (3) 时间控制 (4)P-N结自停止腐蚀 (5)电化学自停止腐蚀
自停止腐蚀典型工艺流程
工艺路线(1)
硅 光刻胶 扩散层 二氧化硅
工艺路线(2)
1、薄膜自停止腐蚀
薄膜自停止腐蚀是指晶片刻蚀到最后,终止于其它不 会被刻蚀所影响的薄膜,这层薄膜可以是氧化硅、氮 化硅、富硅氮化硅、聚酰亚胺,甚至是金属。 利用薄膜自停止腐蚀必须考虑刻蚀选择性,以及薄膜 应力问题,因为应力太大将使薄膜发生破裂。
各向异性腐蚀简单小结:
粗糙晶面腐蚀比光滑晶面快。(111)面在腐 蚀过程中会因表面重建或吸附变得更平坦,因 而容易在腐蚀过程中显露出来。 理想晶体平滑面腐蚀速率的激活能和化学反应 的能量势差以及液体传输有关。前者的作用是 各向异性的,后者是各向同性的。 表面重构状态影响着腐蚀速率的变化 不同的腐蚀剂中,不同阳离子会影响腐蚀过程 中特殊面的稳定性,因而导致腐蚀结果不同。
一是制作夹具或用胶将整个面保护住;
另一种是淀积氮化硅将正面包住,待背后腐蚀 完后再将氮化硅去除
薄膜残余应力问题
薄膜应力引起结构破裂的问题,主要分为两 大类:
第一类是制造过程的残留热应力、高温淀积后回 归常温,由于热膨胀系数不同所产生的残留热应 力;这种残留热应力可由高温退火的方式达到一 定消除;
相关文档
最新文档