线性代数知识点总结

合集下载

自考本线性代数知识点总结

自考本线性代数知识点总结

自考本线性代数知识点总结一、向量和矩阵1. 向量的定义向量是有向线段的数学表示,通常用加粗的小写字母来表示,如a、b等。

向量有大小和方向,可以表示为一组有序的数值,例如a=(a1, a2, ..., an)。

2. 向量的运算向量可以进行加法、数乘和内积运算。

加法是指对应位置上的数值相加,数乘是指一个标量与向量的每个分量相乘,内积是指两个向量对应位置上的数值相乘后再相加得到一个标量。

3. 矩阵的定义矩阵是一个按照长方阵列排列的复数或实数集合。

矩阵通常用大写字母来表示,如A、B 等,可以表示为一个矩形数表格。

4. 矩阵的运算矩阵可以进行加法、数乘和乘法等运算。

矩阵的加法是指对应位置上的元素相加,数乘是指一个标量与矩阵的每个元素相乘,矩阵的乘法则是一种复杂的运算,需要满足一定的规则。

5. 矩阵的转置和逆矩阵的转置是指将矩阵的行和列互换得到的新矩阵,用A^T表示。

矩阵的逆是指对于一个n阶方阵A,存在一个n阶方阵B,使得A与B的乘积为单位矩阵。

二、行列式和特征值1. 行列式行列式是矩阵的一个重要性质,它可以用来描述矩阵线性变换前后的面积或体积的缩放比例。

行列式的计算是一个重要的线性代数知识点,非常重要。

2. 特征值和特征向量特征值是矩阵的一个重要性质,它是矩阵A的一个标量λ,使得矩阵A减去λ乘以单位矩阵的行列式为0。

特征向量是对应于特征值的非零向量,它可以用来描述矩阵线性变换的方向。

三、线性方程组和矩阵的应用1. 线性方程组线性方程组是由线性方程组成的方程组,它可以用矩阵的形式表示为AX=B,其中A为系数矩阵,X为未知数向量,B为常数向量。

2. 矩阵的应用矩阵在各个领域都有着广泛的应用,如在工程学中可以用来描述结构的受力分布,计算机科学中用来表示图像和二维图形的变换,物理学中用来描述物质的状态等。

四、线性变换和空间1. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足两个性质:对于所有的向量u和v以及标量c,有T(u+v) = T(u) + T(v),T(cu) = cT(u)。

线性代数知识点全面总结

线性代数知识点全面总结

线性代数知识点全面总结线性代数是研究向量空间、线性变换、矩阵、线性方程组及其解的一门数学学科。

它是高等数学的基础课程之一,广泛应用于物理学、工程学、计算机科学等领域。

下面将全面总结线性代数的知识点。

1.向量向量是线性代数的基本概念之一,它表示有方向和大小的物理量。

向量可以表示为一个有序的元素集合,也可以表示为一个列向量或行向量。

向量的加法、减法、数乘等运算满足一定的性质。

2.向量空间向量空间是一组向量的集合,其中的向量满足一定的性质。

向量空间中的向量可以进行线性组合、线性相关、线性无关等运算。

向量空间的维数是指向量空间中线性无关向量的个数,也称为向量空间的基的个数。

3.矩阵矩阵是线性代数中的另一个重要概念,它是由若干个数排成的矩形阵列。

矩阵可以表示线性方程组、线性变换等。

矩阵的加法、数乘运算满足一定的性质,矩阵的乘法满足结合律但不满足交换律。

4.线性方程组线性方程组是由线性方程组成的方程组。

线性方程组可以表示为矩阵乘法的形式,其中未知数对应为向量。

线性方程组的解可以通过高斯消元法、矩阵的逆等方法求解。

5.行列式行列式是一个包含数字的方阵。

行列式的值可以通过一系列的数学运算求得,它可以表示方阵的一些性质,例如可逆性、行列式的大小等。

6.矩阵的特征值与特征向量矩阵的特征值和特征向量是矩阵的重要性质。

特征值表示线性变换后的方向,特征向量表示与特征值对应的方向。

通过求解特征值和特征向量可以分析矩阵的性质,例如对角化、矩阵的相似等。

7.线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以通过矩阵的乘法表示,矩阵中的元素代表了向量的变换规则。

8.最小二乘法最小二乘法是一种通过最小化误差的平方和来求解线性方程组的方法。

最小二乘法可以用于求解多项式拟合、数据拟合等问题,它可以通过求矩阵的伪逆来得到解。

9.正交性与正交变换正交性是指向量或函数满足内积为零的性质。

正交变换是一种保持向量长度和夹角不变的线性变换。

线性代数知识点归纳,超详细

线性代数知识点归纳,超详细

线性代数知识点归纳,超详细线性代数复习要点第⼀部分⾏列式1. 排列的逆序数2. ⾏列式按⾏(列)展开法则3. ⾏列式的性质及⾏列式的计算⾏列式的定义1.⾏列式的计算:①(定义法)②(降阶法)⾏列式按⾏(列)展开定理:⾏列式等于它的任⼀⾏(列)的各元素与其对应的代数余⼦式的乘积之和.推论:⾏列式某⼀⾏(列)的元素与另⼀⾏(列)的对应元素的代数余⼦式乘积之和等于零.③(化为三⾓型⾏列式)上三⾓、下三⾓、主对⾓⾏列式等于主对⾓线上元素的乘积.④若都是⽅阵(不必同阶),则⑤关于副对⾓线:⑥范德蒙德⾏列式:证明⽤从第n⾏开始,⾃下⽽上依次的由下⼀⾏减去它上⼀⾏的倍,按第⼀列展开,重复上述操作即可。

⑦型公式:⑧(升阶法)在原⾏列式中增加⼀⾏⼀列,保持原⾏列式不变的⽅法.⑨(递推公式法) 对阶⾏列式找出与或,之间的⼀种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的⽅法称为递推公式法.(拆分法) 把某⼀⾏(或列)的元素写成两数和的形式,再利⽤⾏列式的性质将原⾏列式写成两⾏列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶⾏列式,恒有:,其中为阶主⼦式;3. 证明的⽅法:①、;②、反证法;③、构造齐次⽅程组,证明其有⾮零解;④、利⽤秩,证明;⑤、证明0是其特征值.4. 代数余⼦式和余⼦式的关系:第⼆部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵⽅程的求解1.矩阵的定义由个数排成的⾏列的表称为矩阵.记作:或①同型矩阵:两个矩阵的⾏数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满⾜:交换律、消去律, 即公式不成⽴.a. 分块对⾓阵相乘:,b. ⽤对⾓矩阵○左乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○⾏向量;c. ⽤对⾓矩阵○右乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对⾓矩阵相乘只⽤把对⾓线上的对应元素相乘.④⽅阵的幂的性质:,⑤矩阵的转置:把矩阵的⾏换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余⼦式.,, .分块对⾓阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结篇1第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断线性代数知识点总结篇2行列式一、行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

完整版线性代数知识点总结

完整版线性代数知识点总结

完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。

以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。

向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。

2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。

矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。

3.矩阵的运算:包括矩阵的加法、减法和乘法运算。

矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。

4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。

特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。

5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。

正交向量是指内积为零的向量,可以用来表示正交补空间等概念。

6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。

正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。

7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。

线性映射是向量空间之间的函数,具有保持线性运算的性质。

8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。

9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。

对称矩阵是一个方阵,其转置等于自身。

10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。

SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。

11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。

线性代数总结知识点

线性代数总结知识点

线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。

以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。

- 向量加法:两个向量对应分量相加得到新的向量。

- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。

- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。

- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。

2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。

- 矩阵加法和减法:对应元素相加或相减。

- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。

- 矩阵的转置:将矩阵的行变成列,列变成行。

- 单位矩阵:对角线上全是1,其余位置全是0的方阵。

- 零矩阵:所有元素都是0的矩阵。

3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。

- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。

4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。

- 子空间:向量空间的子集,它自身也是一个向量空间。

- 维数:向量空间的基(一组线性无关向量)的大小。

- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。

5. 线性变换- 定义:保持向量加法和标量乘法的函数。

- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。

6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。

- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。

线性代数重要知识点及典型例题答案

线性代数重要知识点及典型例题答案

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。

推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。

③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。

推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。

④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。

化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。

线性代数知识点简单总结

线性代数知识点简单总结

线性代数知识点简单总结线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

以下是线性代数的一些核心知识点的简单总结:1. 向量与空间- 向量:可以视为空间中的点或箭头,具有大小和方向,可以进行加法和数乘运算。

- 零向量:所有向量加法的单位元,加任何向量结果不变。

- 单位向量:长度为1的向量。

- 向量空间:一组向量的集合,其中任意向量的线性组合仍然在这个集合中。

- 子空间:向量空间的子集,自身也是一个向量空间。

- 维数:向量空间的基的大小,表示为n维空间。

2. 矩阵与线性变换- 矩阵:一个由数字排列成的矩形阵列,可以表示线性变换。

- 行向量与列向量:矩阵中的行和列可以被视为行向量或列向量。

- 线性变换:保持向量加法和数乘的函数,可以用矩阵来表示。

- 单位矩阵:对角线为1,其他为0的方阵,与任何矩阵相乘结果不变。

- 转置:将矩阵的行变成列,列变成行的操作。

3. 线性方程组- 齐次线性方程组:形如Ax=0的方程组,其中A是矩阵,x是未知向量。

- 非齐次线性方程组:形如Ax=b的方程组,b不是零向量。

- 行列式:方阵的一个标量值,可以表示矩阵表示的线性变换对空间体积的缩放因子。

- 克拉默法则:使用行列式解线性方程组的方法,适用于小规模且系数矩阵行列式非零的情况。

4. 特征值与特征向量- 特征值:一个标量λ,使得存在非零向量x满足Ax=λx。

- 特征向量:与特征值对应的非零向量x。

- 特征多项式:用于求解特征值的多项式,定义为det(A-λI)=0。

- 对角化:将矩阵表示为特征向量和特征值的组合。

5. 内积与正交性- 内积(点积):两个向量的函数,满足Schwarz不等式。

- 正交:两个向量的内积为零,表示它们在空间中垂直。

- 正交基:一组向量,任意两个向量都正交。

- 正交补:对于一个向量空间的子集,所有与该子集中所有向量正交的向量组成的集合。

6. 奇异值分解- 奇异值分解(SVD):将任意矩阵分解为三个特殊矩阵的乘积,即A=UΣV*。

线性代数 知识点总结

线性代数 知识点总结

线性代数知识点总结一、向量1、向量的定义向量是指具有大小和方向的量,通常用定位矢量、力、速度、加速度等概念来描述,是线性代数的基础概念之一。

在向量的表示上,通常用箭头表示。

2、向量的加法向量的加法满足结合律和交换律,即对于任意两个向量a、b和任意数α,有a+b=b+a,(a+b)+c=a+(b+c),α(a+b)=αa+αb。

3、向量的数量积向量的数量积又称内积或点积,是指两个向量相乘后相加的结果。

表示为a•b,数值为|a||b|cosθ,其中θ为a、b之间的夹角。

4、向量的线性相关与线性无关若存在一组不全为零的实数α1、α2、…、αn,使得α1a1+α2a2+…+αnan=0,则向量a1、a2、…、an为线性相关。

否则为线性无关。

5、向量的外积向量的外积又称叉积,是指两个向量相乘后得到一个垂直于原两个向量的新向量。

其模长为两个向量长度的乘积与夹角的正弦。

6、向量的投影向量a在向量b上的投影是指垂直于b的向量a′,满足a=a′+a″,其中a″即为a在b上的投影。

7、标量标量是没有方向的,只有大小的量。

标量和向量共同构成线性代数的基础。

二、矩阵1、矩阵的定义矩阵是由m行n列的数按特定顺序排列的格式,通常用方括号表示。

其中m、n分别称为矩阵的行数和列数。

2、矩阵的运算矩阵的加法、数乘、矩阵乘法等运算是线性代数中矩阵的重要运算。

矩阵乘法中的常见性质有结合律、分配律、非交换性等。

3、矩阵的转置矩阵的转置是指行列互换,即对于矩阵A,其转置记为A',且满足(a')ij=(a)ji。

4、矩阵的秩矩阵的秩是指矩阵的列向量(或行向量)组成的矩阵的秩。

矩阵的秩有着一系列重要性质和应用。

5、矩阵的逆若矩阵A存在逆矩阵A-1,使得AA-1=A-1A=I,其中I是单位矩阵,则称矩阵A可逆。

良态矩阵的逆矩阵具有诸多性质。

6、矩阵幂矩阵的幂是指将矩阵连续乘积的运算。

矩阵幂在线性代数以及其他数学领域中有着广泛的应用。

线代概念知识点总结

线代概念知识点总结

线代概念知识点总结1. 向量空间向量空间是线性代数中最基本的概念之一。

它是一个集合,其中的元素称为向量,满足一定的运算规则和数学性质。

具体来说,一个向量空间需要满足以下条件:•对于任意两个向量u和v,它们的和u+v也在向量空间中。

•对于任意一个向量u和任意一个标量k,它们的数乘ku也在向量空间中。

•向量空间中存在一个零向量。

向量空间的例子包括实数集合R^n、复数集合C^n、函数空间、多项式空间等。

向量空间的维数是指最小生成向量空间的向量个数,它反映了向量空间的维度。

2. 线性映射线性映射是向量空间之间的一种特殊的映射关系。

它满足以下条件:•对于任意两个向量u和v以及标量k,有f(u+v)=f(u)+f(v)和f(ku)=kf(u)。

线性映射在线性代数中有重要应用,它可以用来描述向量空间之间的映射关系,例如线性变换、投影变换等。

线性映射的核与像是线性代数中的重要概念,它们分别表示线性映射的零空间和值域空间。

3. 矩阵矩阵是线性代数中的另一个重要概念,它是一个按照长方形排列的数的集合,通常用大写字母表示。

矩阵可以用来表示某一线性变换所对应的变换矩阵,从而简化线性变换的计算。

矩阵的加法和数乘运算定义为两个相同维度矩阵的对应元素之和,以及矩阵中的每个元素乘以一个标量。

矩阵的乘法是线性代数中的一个重要操作,也是应用最为广泛的代数运算之一。

两个矩阵A和B的乘积C的定义是C=AB,其中C中的元素c(i,j)等于矩阵A的第i行与矩阵B的第j列的内积。

4. 线性方程组线性代数中研究线性方程组的性质和解的存在唯一性等问题。

线性方程组是指形如a1x1+a2x2+…+anxn=b的方程组,其中a1、a2、…、an为系数,x1、x2、…、xn为未知数,b为常数。

线性方程组的解通常是指求得一组满足方程组所有方程同时成立的未知数值。

线性方程组的解可以分为唯一解、无解和有无穷多解三种情况。

线性代数的基本理论可以用来讨论线性方程组解的存在唯一性的条件,例如矩阵的秩、行列式的值等。

线代知识点总结归纳

线代知识点总结归纳

线代知识点总结归纳1. 基本概念线性代数的基本概念包括向量、矩阵、线性方程组、行列式等。

向量是线性代数中的基本概念,它是一个有向量在空间中的表示。

通常用n维实数或复数坐标表示一个n维向量,例如,一个三维向量可以表示为(x,y,z)。

矩阵是由若干个数排成若干行和若干列组成的数表,通常用大写字母表示,例如,矩阵A。

线性方程组是由一组线性方程组成的方程组,通常用矩阵形式表示,例如,Ax=b。

行列式是一个数学概念,用来判断矩阵是否可逆,是一个非零数值。

2. 矩阵运算矩阵运算包括矩阵加法、矩阵数量乘法、矩阵乘法等。

矩阵加法是将两个相同维度的矩阵进行对应元素的相加,例如,矩阵A和矩阵B相加得到矩阵C。

矩阵数量乘法是将一个数与一个矩阵的每一个元素相乘,例如,数k与矩阵A相乘。

矩阵乘法是将一个m×n的矩阵与一个n×p的矩阵相乘得到一个m×p的矩阵,例如,矩阵A与矩阵B相乘得到矩阵C。

3. 向量空间向量空间是一个由向量构成的集合,并且满足一定的线性运算和封闭性质。

向量空间包括零向量、线性组合、线性相关与线性无关等概念。

零向量是所有元素都为零的向量,通常用0表示。

线性组合是将向量乘以一个标量再相加得到一个新的向量,例如,向量u和向量v的线性组合是ku+lv。

线性相关是指向量集合中存在非零标量使得它们的线性组合为零向量,线性无关是指向量集合中不存在非零标量使得它们的线性组合为零向量。

4. 特征值与特征向量矩阵的特征值和特征向量是线性代数中的重要概念。

特征值是一个数,特征向量是一个非零向量,使得矩阵与特征向量的乘积等于特征值与特征向量的乘积,即Ax=λx。

通过求解矩阵的特征值和特征向量,可以得到矩阵的对角化与相似对角化等结果,进而解决一些重要的问题,例如,求解线性方程组、奇异值分解等。

综上所述,线性代数是数学中的一个重要分支,它研究向量空间、矩阵、线性变换等代数结构,并且在科学与工程领域广泛应用。

大学线性代数知识点总结

大学线性代数知识点总结

大学线性代数知识点总结1. 向量与空间- 向量的定义与表示- 向量的加法与数乘- 向量的内积与外积- 向量的模、方向与单位向量- 向量空间的定义与性质- 基、维数与坐标表示- 子空间及其性质- 线性相关与线性无关的概念2. 矩阵- 矩阵的定义与表示- 矩阵的加法、数乘与转置- 矩阵的乘法规则- 矩阵的逆- 行列式的概念与性质- 行列式的计算方法- 秩的概念与求解- 矩阵的分块3. 线性方程组- 线性方程组的表示- 高斯消元法- 行列式法- 逆矩阵解法- 克拉默法则- 线性方程组的解的结构- 齐次与非齐次线性方程组 - 线性方程组的解空间4. 特征值与特征向量- 特征值与特征向量的定义 - 特征值与特征向量的计算 - 矩阵的对角化- 矩阵的Jordan标准形- 特征值与特征向量的应用5. 内积空间- 内积空间的定义- 正交与正交性- 正交基与正交矩阵- 格拉姆-施密特正交化过程 - 最小二乘法- 正交投影与正交补6. 线性变换- 线性变换的定义与性质- 线性变换的矩阵表示- 线性变换的核与像- 线性变换的不变子空间- 线性变换的复合与逆变换 - 线性变换的分类7. 广义逆矩阵- 广义逆矩阵的概念- 广义逆矩阵的计算方法- 广义逆矩阵的性质与应用8. 谱理论- 谱定理- 谱半径与谱半径估计- 谱聚类9. 线性代数在其他领域的应用- 计算机图形学- 数据分析与机器学习- 量子力学- 结构工程- 电路分析结语线性代数是数学的一个重要分支,它在科学、工程、经济等多个领域都有着广泛的应用。

掌握线性代数的基本概念、理论和方法是解决实际问题的关键。

本文总结了线性代数的核心知识点,旨在为学习和应用线性代数提供参考和指导。

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理线性代数是数学的一个分支,主要研究向量、向量空间以及线性映射等概念和性质。

它在数学领域具有广泛的应用,被广泛应用于物理学、计算机科学、经济学、工程学等领域。

以下是对《线性代数》的知识点进行归纳整理:1.矩阵和向量:矩阵是一个二维的数字阵列,可以表示为一个矩阵的形式。

向量是矩阵的特殊情况,只有一个列的矩阵。

矩阵和向量可以进行加法和数乘运算。

2.矩阵乘法:矩阵乘法是矩阵运算中的重要操作,它利用矩阵的行和列的组合,将两个矩阵相乘得到新的矩阵。

3.行列式:行列式是一个标量值,用于判断一些矩阵是否可逆。

行列式的值为0表示矩阵不可逆,非零表示矩阵可逆。

4.向量空间:向量空间是一组向量的集合,满足一定的条件。

向量空间具有加法和数乘运算,并满足一定的性质,如封闭性、结合律、分配律等。

5.线性相关与线性无关:向量集合中的向量如果不能由其他向量线性组合得到,则称这个向量集合是线性无关的;反之,如果存在一个向量可以由其他向量线性组合得到,则称这个向量集合是线性相关的。

6.基与维数:如果向量集合是线性无关的,并且能够生成整个向量空间中的所有向量,则称这个向量集合是向量空间的一组基。

向量空间的维数是指基向量的个数。

7.矩阵的秩:矩阵的秩是指矩阵列向量或行向量中的线性无关向量的个数。

秩表示矩阵中线性无关的方向个数。

8.特征值与特征向量:对于一个n维矩阵A,如果存在一个标量λ和非零向量X,使得AX=λX成立,则λ称为矩阵A的特征值,对应的非零向量X称为矩阵A的特征向量。

9.对角化:如果矩阵A可以通过相似变换得到一个对角矩阵B,则称矩阵A可以被对角化。

对角化后的矩阵可以简化各种计算。

10.线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以用矩阵来表示,通过矩阵乘法来表示向量的线性变换。

11.正交性:向量集合中的向量如果互相垂直,则称这个向量集合是正交的。

如果正交向量集合中的每个向量都是单位向量,则称这个向量集合是标准正交的。

线性代数概率论知识点总结

线性代数概率论知识点总结

线性代数概率论知识点总结1. 向量与空间- 向量的定义、性质和运算(加法、数乘、内积、外积)。

- 向量空间(也称为线性空间)的概念,包括定义、性质和例子。

- 子空间、线性组合、线性无关和基的概念。

- 维度、跨度和维数的概念。

2. 矩阵- 矩阵的定义、性质和运算(加法、数乘、乘法)。

- 单位矩阵、对角矩阵、对称矩阵和正交矩阵。

- 矩阵的逆和行列式的概念。

- 矩阵的秩和克拉默法则。

3. 线性变换- 线性变换的定义和性质。

- 线性变换与矩阵之间的关系。

- 特征值和特征向量的概念及其物理意义。

4. 行列式- 行列式的定义、性质和计算方法。

- 行列式的几何意义和在解线性方程组中的应用。

5. 线性方程组- 线性方程组的表示和解的一般概念。

- 高斯消元法和高斯-若尔当消元法。

- 线性方程组的解的结构,包括唯一解、无解和无穷多解的情况。

6. 特征值问题和二次型- 二次型的定义和标准型。

- 用特征值和特征向量解决实际问题。

概率论1. 概率基础- 概率的定义和性质。

- 条件概率、独立事件和贝叶斯定理。

- 全概率公式和期望值的概念。

2. 随机变量- 随机变量的定义和分类(离散和连续)。

- 概率分布函数和概率密度函数。

- 累积分布函数和它的应用。

3. 重要的概率分布- 离散分布,如二项分布、泊松分布。

- 连续分布,如正态分布、均匀分布、指数分布。

- 分布的参数(如均值、方差、偏度和峰度)。

4. 多维随机变量- 联合分布和边缘分布。

- 协方差和相关系数。

- 多元正态分布。

5. 大数定律和中心极限定理- 大数定律的概念和应用。

- 中心极限定理的意义和重要性。

6. 统计推断- 点估计和区间估计。

- 假设检验的基本概念。

- 最大似然估计法。

线性代数和概率论的这些知识点构成了它们各自的理论基础,并且在实际应用中相互交织。

例如,在统计分析中,线性代数的工具被用来处理多维数据集,而概率论提供了理解数据背后随机性的数学框架。

掌握这些基础知识,可以帮助我们更好地理解和解决实际问题。

线性代数知识点全面总结

线性代数知识点全面总结

线性代数知识点全面总结线性代数是一门重要的数学学科,它研究的是向量空间、线性映射和线性方程组等基本概念及其相互关系。

线性代数在数学、物理、计算机科学、经济学等各个领域都有广泛的应用。

下面是线性代数的一些重要知识点的全面总结:1. 向量空间(Vector Space)向量空间由一组满足一些性质的向量组成。

向量空间的定义要求满足加法和数量乘法封闭性、零向量存在性、加法逆元存在性等性质。

在向量空间中,还可以定义线性组合、线性相关性、线性无关性等概念。

2. 矩阵(Matrix)矩阵是由一组数按照一个确定的规律排列成的矩形阵列。

矩阵的加法、数量乘法等运算满足线性运算的性质。

矩阵可以表示线性方程组、线性映射等。

3. 线性映射(Linear Mapping)线性映射是指将一个向量空间的元素映射到另一个向量空间的元素,并保持向量空间的加法和数量乘法运算。

线性映射可以用矩阵表示,并且具有一些重要的性质,比如保持零向量、保持加法和数量乘法等。

4. 线性方程组(Linear System)线性方程组是一组线性方程的集合。

线性方程组可以用矩阵和向量表示,形式为Ax=b,其中A是系数矩阵,x是未知向量,b是常数向量。

线性方程组的求解可以使用消元法、矩阵求逆等方法。

5. 特征值和特征向量(Eigenvalues and Eigenvectors)特征值和特征向量是线性映射中的重要概念。

对于一个线性映射,如果存在一个非零向量x,使得线性映射作用于x的结果等于x乘以一个常数λ(即f(x)=λx),那么λ就是这个线性映射的特征值,x就是对应的特征向量。

6. 内积空间(Inner Product Space)内积空间是向量空间中引入内积运算的概念。

内积可以用来度量向量的夹角和长度,并且可以定义向量的正交性、正交投影等概念。

内积空间可以是实数域或复数域上的。

7. 正交性和正交基(Orthogonality and Orthogonal Basis)正交性是指向量之间的夹角为直角。

线性代数知识点总结-最新

线性代数知识点总结-最新

线性代数⼀、⾏列式1. ⼆阶与三阶⾏列式对⼆元线性⽅程组有⼆阶段⾏列式若记则对个数组成的⾏列的数表有三阶⾏列式2.全排列和对换排列全排列:把个不同的元素排成⼀列,叫做这个元素的全排列排列。

逆序:对于个不同的元素先规定⼀个元素之间的标准次序在这个元素的任⼀排列中当某⼀对元素的先后顺序与标准次序不同时就说它构成⼀个逆序。

逆序数:⼀个排列中所有逆序的总数。

奇排列:逆序数为技术的排列偶排列:逆序数为偶数的排列排列的逆序数:对换:将排列中的任意两个元素对调,其余的元素不动的过程。

相邻对换:将相邻两个元素进⾏的对换。

定理:⼀个排列中的任意两个元素对换,排列改变奇偶性。

推论奇排列对换成标准排列的对换次数为奇数,偶数列对换成标准数列的对换次数为偶数。

3.n阶⾏列式对个数组成的⾏列的数表有阶⾏列式,记作4.⾏列式的性质⾏列⾏列式称为的转置⾏列式性质:⾏列式与它的转置⾏列式相等性质:对换⾏列式的两⾏列,⾏列式变号推论:如果⾏列式有两⾏列完全相同,则此⾏列式等于零性质:⾏列式的某⼀⾏列中所有的元素都乘同⼀数,等于⽤数乘此⾏列式性质:⾏列式中如果有两⾏(列)元素成⽐例,则此⾏列式等于零性质:若⾏列式的某⼀⾏的元素都是两数之和,则⾏列式可拆分为两个⾏列式相加性质:把⾏列式的某⼀⾏的个元素乘同义数然后加到另⼀⾏列对应的元素上去,⾏列式不变。

5.⾏列式按⾏(列)展开在阶⾏列式中把元所在的第⾏和第列划去后在阶⾏列式中把元所在的第⾏和第列划去后留下来的阶⾏列式叫做元的余⼦式记作记叫做元的代数余⼦式引理⼀个阶⾏列式如果其中第⾏所有元素除元外都为零那么这⾏列式等于与它的代数余⼦式的乘积即定理按⾏列展开法则⾏列式等于它的任⼀⾏列的各元素与其对应的代数余⼦式乘积之和即或例如四阶⾏列式中元的余⼦式和代数余⼦式分别为⼆、矩阵2.1 线性⽅程组、矩阵、矩阵的运算当常数项不全为零时有元⾮齐次线性⽅程组含有个末知数个⽅程的元⾮齐次线性⽅程组:其中是第个⽅程的第个末知数的系数是第个⽅程的常数项当全为零时有元齐次线性⽅程组:元齐次线性⽅程组⼀定有零解不⼀定有⾮零解即⼀组不全为零的解2.1.1 矩阵1、矩阵介绍对由个数排成的⾏列的数表称为⾏列矩阵矩阵:数位于矩阵的第⾏第列称为矩阵的元2、矩阵的种类矩阵的种类:其中称为系数矩阵称为末知数矩阵称为常数项矩阵称为增⼴矩阵⾏矩阵⾏向量:列矩阵列向量:实矩阵元素是实数的矩阵复矩阵元素是复数的矩阵除特别说明外都指实矩阵阶矩阵阶⽅阵:⾏数与列数都等于的矩阵同型矩阵⾏数、列数都相等的两个矩阵相等矩阵如果与是同型矩阵并且它们的对应元素相等即那么就称矩阵与矩阵相等记作零矩阵元素都是零的矩阵注意不同型的零矩阵是不同的对⾓矩阵对⾓阵:从左上⾓到右下⾓的直线叫做对⾓线以外的元素都是的阶⽅阵:特别当有阶单位矩阵单位阵:单位阵的元为:当当2.1.2 矩阵的运算1、矩阵的加法矩阵的加法:设有两个矩阵和那么矩阵与的和记作规定为只有当两个矩阵是同型矩阵时才能进⾏加法运算矩阵加法满⾜下列运算规律设都是矩阵设矩阵记称为矩阵的负矩阵由此规定矩阵的减法为2、矩阵数乘数与矩阵的乘积记作或规定为:数乘矩阵满⾜下列运算规律设、为矩阵、为数3、矩阵相乘矩阵相乘:对矩阵矩阵有矩阵记为其中按此定义⼀个⾏矩阵与⼀个列矩阵的乘积是⼀个阶⽅阵也就是⼀个数由此表明乘积矩阵的元就是的第⾏与的第列的乘积如:4、转置矩阵矩阵称为的转置矩阵:例如转置矩阵的运算规律:对称矩阵对称阵:元素以对⾓线为对称轴对应相等的阶矩阵如果阶⽅阵满⾜:即则为对称矩阵⽅阵的⾏列式:⽅阵的⾏列式或:由阶⽅阵的元素所构成的⾏列式各元素的位置不变伴随矩阵:⾏列式的各个元素的代数余⼦式所构成的矩阵称为矩阵的伴随矩阵有:注:2.2 逆矩阵、克拉默法则、矩阵分块法2.2.1 逆矩阵1、逆矩阵的定义、性质和求法:逆矩阵的定义、性质和求法:逆矩阵的定义、性质和求法:对于阶矩阵如果有⼀个阶矩阵使则矩阵是可逆的的逆矩阵逆阵在矩阵的乘法中的作⽤与数类似如果矩阵是可逆的那么的逆矩阵是惟⼀的这是因为若、都是的逆矩阵则有所以的逆矩阵是惟⼀的定理若矩阵可逆,则定理若则矩阵可逆且其中为矩阵的伴随矩阵推论:若或,则故逆矩阵满⾜下述运算规律若可逆则亦可逆且若可逆数则可逆且若、为同阶矩阵且均可逆则亦可逆且2、逆矩阵的初步应⽤:逆矩阵的初步应⽤:设求矩阵使其满⾜解:若存在则⽤左乘上式右乘上式有即若⽽故知、都可逆且于是2.2.2 克拉默法则克拉默法则:含有个末知数的个线性⽅程的⽅程组:①它的解可以⽤阶⾏列式表⽰即有克拉默法则:如果线性⽅程组①的系数矩阵的⾏列式不等于零即:那么⽅程组①有惟⼀解其中是把系数矩阵中第列的元素⽤⽅程组右端的常数项代替后所得到的阶矩阵即2.2.3 分块矩阵1、分块矩阵分块矩阵:以⼦块为元素的形式上的矩阵将矩阵⽤若⼲条纵线和横线分成许多个⼩矩阵每⼀个⼩矩阵称为的⼦块例如将矩阵分成⼦块的分法很多下⾯举出三种分块形式,,分法可记为其中即为的⼦块⽽形式上成为以这些⼦块为元的分块矩阵2、分块矩阵的运算分块矩阵的运算与普通矩阵的运算相类似:分块矩阵的运算与普通矩阵的运算相类似:设矩阵与的⾏数相同、列数相同采⽤相同的分块法有:其中与的⾏数相同、列数相同那么:设为数那么:设为矩阵为矩阵分块成:其中的列数分别等于的⾏数那么:其中设则设为阶⽅阵若的分块矩阵只有在对⾓线上有⾮零⼦块其余⼦块都为零矩阵且在对⾓线上的⼦块都是⽅阵即其中都是⽅阵那么称为分块对⾓矩阵分块对⾓矩阵的⾏列式满⾜:由此性质可知若则并有:补充:。

线性代数知识点及总结

线性代数知识点及总结

线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。

性质1行列式与它的转置行列式相等。

性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。

推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。

性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。

性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。

而算得行列式的值。

4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。

第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。

二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

求秩:利用初等变换将矩阵化为阶梯阵得秩。

4.逆矩阵(1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立);(2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)(3)可逆的条件:①|A|≠0;②r(A)=n; ③A->I;(4)逆的求解伴随矩阵法A^-1=(1/|A|)A*;(A* A的伴随矩阵~)②初等变换法(A:I)->(施行初等变换)(I:A^-1)5.用逆矩阵求解矩阵方程:AX=B,则X=(A^-1)B;XB=A,则X=B(A^-1);AXB=C,则X=(A^-1)C(B^-1)三、线性方程组1.线性方程组解的判定定理:(1) r(A,b)≠r(A) 无解;(2) r(A,b)=r(A)=n 有唯一解;(3)r(A,b)=r(A)<n 有无穷多组解;特别地:对齐次线性方程组AX=0(1) r(A)=n 只有零解;(2) r(A)<n 有非零解;再特别,若为方阵,(1)|A|≠0 只有零解(2)|A|=0 有非零解2.齐次线性方程组(1)解的情况:r(A)=n,(或系数行列式D≠0)只有零解;r(A)<n,(或系数行列式D=0)有无穷多组非零解。

(2)解的结构:X=c1α1+c2α2+…+Cn-rαn-r。

(3)求解的方法和步骤:①将增广矩阵通过行初等变换化为最简阶梯阵;②写出对应同解方程组;③移项,利用自由未知数表示所有未知数;④表示出基础解系;⑤写出通解。

3.非齐次线性方程组(1)解的情况:利用判定定理。

(2)解的结构:X=u+c1α1+c2α2+…+Cn-rαn-r。

(3)无穷多组解的求解方法和步骤:与齐次线性方程组相同。

(4)唯一解的解法:有克莱姆法则、逆矩阵法、消元法(初等变换法)。

四、向量组1.N维向量的定义注:向量实际上就是特殊的矩阵(行矩阵和列矩阵)。

2.向量的运算:(1)加减、数乘运算(与矩阵运算相同);(2)向量内积α'β=a1b1+a2b2+…+anbn;(3)向量长度|α|=√α'α=√(a1^2+a2^2+…+an^2) (√ 根号)(4)向量单位化(1/|α|)α;(5)向量组的正交化(施密特方法)设α1,α 2,…,αn线性无关,则β1=α1,β2=α2-(α2’β1/β1’β)*β1,β3=α3-(α3’β1/β1’β1)*β1-(α3’β2/β2’β2)*β2,………。

3.线性组合(1)定义若β=k1α1+k2α 2+…+knαn,则称β是向量组α1,α 2,…,αn的一个线性组合,或称β可以用向量组α1,α 2,…,αn的一个线性表示。

(2)判别方法将向量组合成矩阵,记A=(α1,α 2,…,αn),B=(α1,α2,…,αn,β)若r (A)=r (B),则β可以用向量组α1,α 2,…,αn的一个线性表示;若r (A)≠r (B),则β不可以用向量组α1,α 2,…,αn的一个线性表示。

(3)求线性表示表达式的方法:将矩阵B施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。

4.向量组的线性相关性(1)线性相关与线性无关的定义设k1α1+k2α2+…+knαn=0,若k1,k2,…,kn不全为0,称线性相关;若k1,k2,…,kn全为0,称线性无关。

(2)判别方法:①r(α1,α 2,…,αn)<n,线性相关;r(α1,α 2,…,αn)=n,线性无关。

②若有n个n维向量,可用行列式判别:n阶行列式aij=0,线性相关(≠0无关) (行列式太不好打了)5.极大无关组与向量组的秩(1)定义极大无关组所含向量个数称为向量组的秩(2)求法设A=(α1,α 2,…,αn),将A化为阶梯阵,则A的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。

五、矩阵的特征值和特征向量1.定义对方阵A,若存在非零向量X和数λ使AX=λX,则称λ是矩阵A的特征值,向量X称为矩阵A的对应于特征值λ的特征向量。

2.特征值和特征向量的求解:求出特征方程|λI-A|=0的根即为特征值,将特征值λ代入对应齐次线性方程组(λI-A)X=0中求出方程组的所有非零解即为特征向量。

3.重要结论:(1)A可逆的充要条件是A的特征值不等于0;(2)A与A的转置矩阵A'有相同的特征值;(3)不同特征值对应的特征向量线性无关。

六、矩阵的相似1.定义对同阶方阵A、B,若存在可逆矩阵P,使P^-1AP=B,则称A与B相似。

2.求A与对角矩阵∧相似的方法与步骤(求P和∧):求出所有特征值;求出所有特征向量;若所得线性无关特征向量个数与矩阵阶数相同,则A可对角化(否则不能对角化),将这n个线性无关特征向量组成矩阵即为相似变换的矩阵P,依次将对应特征值构成对角阵即为∧。

3.求通过正交变换Q与实对称矩阵A相似的对角阵:方法与步骤和一般矩阵相同,只是第三歩要将所得特征向量正交化且单位化。

七、二次型n1.定义n元二次多项式f(x1,x2,…,xn)=∑ aijxixj称为二次型,若aij=0(i≠j),则称为二交型的标准型。

i,j=12.二次型标准化:配方法和正交变换法。

正交变换法步骤与上面对角化完全相同,这是由于对正交矩阵Q,Q^-1=Q',即正交变换既是相似变换又是合同变换。

3.二次型或对称矩阵的正定性:(1)定义(略);(2)正定的充要条件:①A为正定的充要条件是A的所有特征值都大于0;②A为正定的充要条件是A的所有顺序主子式都大于0;《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。

第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。

二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

求秩:利用初等变换将矩阵化为阶梯阵得秩。

4.逆矩阵(1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立);(2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)(3)可逆的条件:①|A|≠0;②r(A)=n; ③A->I;(4)逆的求解伴随矩阵法A^-1=(1/|A|)A*;(A* A的伴随矩阵~)②初等变换法(A:I)->(施行初等变换)(I:A^-1)5.用逆矩阵求解矩阵方程:AX=B,则X=(A^-1)B;XB=A,则X=B(A^-1);AXB=C,则X=(A^-1)C(B^-1)三、线性方程组1.线性方程组解的判定定理:(1) r(A,b)≠r(A) 无解;(2) r(A,b)=r(A)=n 有唯一解;(3)r(A,b)=r(A)<n 有无穷多组解;特别地:对齐次线性方程组AX=0(1) r(A)=n 只有零解;(2) r(A)<n 有非零解;再特别,若为方阵,(1)|A|≠0 只有零解(2)|A|=0 有非零解2.齐次线性方程组(1)解的情况:r(A)=n,(或系数行列式D≠0)只有零解;r(A)<n,(或系数行列式D=0)有无穷多组非零解。

相关文档
最新文档