电力有源滤波及无功补偿装置的研究

电力有源滤波及无功补偿装置的研究
电力有源滤波及无功补偿装置的研究

电力有源滤波及无功补偿装置的研究【摘要】在如今的电力系统发展中,更多的都是依赖于高电压的电力系统,但是高电压的电力系统中,有源滤波的存在以及,无功的存在都是高电压电力系统中存在的巨大损害。所以本文主要就是针对10kv电力系统中的谐波的危害,还有无功的危害入题,对10kv电力有源滤波及无功补偿装置原理,装置基于的硬件的DSP的硬件设计,以及装置的软件设计,还有高压电力系统中逆变器的改进做了一个理论性的探讨。

【关键词】电力系统;10kv;谐波;无功

一、前言

由于高电压电力系统的使用,能够大大的降低电力在传输过程中的损耗,所以我们如今的电力系统中10kv以上的高电压电力系统已经广泛的使用了。但是电力系统中存在的有源滤波,还有存在无功现象,都会造成电力损耗的增多,还有都会造成一定的设备损坏,所以必须要对有源滤波进行控制,还有对无功进行补偿,那么就需要一个装置的来完成这些问题的处理,所以进行这样的一个理论性的探讨也是非常有必要的。

二、谐波和无功的危害

1、谐波的危害

(一)谐波电流产生的附加热效应,由于集肤效应及邻近效应使交流电阻随频率增加而增加,引起10kv电力设备线路的损耗严重损耗。

(二)谐波电压增加了介质应力,加速绝缘老化,缩短10kv电力设备设备的寿命。

(三)谐波对10kv电力设备电缆造成影响;电缆的分布电容而造成谐波放大,寿命减短。

(四)谐波影响换流设备;交流电网电压的畸变可能引起触发脉冲间隔不等,并通过正反馈而放大系统的谐波电压,使10kv电力设备整流器工作不稳定,逆变器出现换相失败。换相槽电压引发高频衰减振荡而形成电压尖刺,还可能损坏10kv电力设备换流装置的元件。

(五)干扰信号处理单元,破坏电子设备正常工作,和保护设备的性能;谐波电流还影响断路器、熔断器、继电保护装置等很多的设备的正常工作。

(六)谐波会对通信线路造成干扰;引起通讯的噪声,降低通话质量,甚至导致引起信号丢失。

2、无功的危害

10kv电力设备中无功的存在,就会引起10kv电力设备受电端电压的波动,降低供电质量。此外,在10kv电力系统中,必须维持无功功率平衡,当10kv 电力系统中一旦没有其他的无功电源,那么将由发电机来提供所有的无功电源负荷的消耗,这样就会导致发电机的消耗增加,工作效率达到极限,然后就是引起整个电路系统的不稳定,有可能会造成整个电路系统的崩溃;如果没有对无功进行有效地补偿,电力系统受到无功破坏的几率很大。

三、10kv电力有源滤波及无功补偿装置原理

谐波源,其实就是非线性的负载,并且以此产生了大量的无功消耗。所以进行10kv电力系统地有源滤波和无功补偿装置的设计,就是主要考虑两个电路部分:一是10kv指令电流运算电路,二是10kv补偿电流发生电路。10kv电力有源滤波及无功补偿系统基本工作原理是:检测控制对象而得到的电压和电流,然后经指令电流运算电路计算得出补偿电流的指令信号,据此由补偿电流发生电路产生补偿电流,让该10kv电力系统补偿电流与负载电流中要补偿的谐波和无功电流相抵消,最终得到期望的电源电流。

四、10kv电力有源滤波及无功补偿装置的硬件

整个10kv电力有源滤波及无功补偿装置可认为由两大部分组成:一是10kv 指令电流运算电路,二是10kv补偿电流发生电路。10kv补偿电流发生电路又是由三个各部分来组成的:一是主电路;二是驱动电路;三是电流跟踪控制电路。10kv指令电流运算电路主要是利用DSP;然后通过运用扩展dq算法,就可以来检测10kv电力系统负载电流中的两个主要的量:谐波还有无功分量,并根据10kv 电力系统谐波控制极无功补偿装置所需要达到的补偿目的,来计算出所需要的补偿电流的指令信号。然后整个补偿电流发生电路,就可以通过前面计算检测电路的结果进行指令的处理,产生跟踪指令电流,然后产生补偿电流,就能够起到无功的补偿,还有对谐波的有效控制。

10kv电力有源滤波及无功补偿装置,主要的的硬件控制系统所需如下:DSP 控制的控制运算芯片、A/D还有D/A电路、采样所需要的周期信号发生器(电路)、

非线性负载电流的调理检测器(电路),还有驱动电路、三角波的比较电路,最后就是直流侧压与均压的整个控制电路,通过这些电路来组成一个有效的10kv 用电系统的有源滤波及无功补偿装置。

10kv电力有源滤波及无功补偿装置与负载(谐波源)并联连接,故所接的交流电压是一样的,因此10kv电力有源滤波及无功补偿装置的容量主要由交流侧相电流的有效值决定,而交流侧相电流的有效值的大小和装置的补偿目的(是只补偿谐波还是要同时补偿谐波和无功)有关。如果只补偿谐波时,10kv电力有源滤波及无功补偿装置的补偿电流与负载电流的谐波分量大小相等而方向相反,两者的有效值是一样的,这种情况下,补偿装置的容量取决于10kv电力系统中负载电流中谐波的大小。

五、10kv电力有源滤波及无功补偿装置的软件

1、10kv电力有源滤波及无功补偿装置DSP主程序的功能主要为计算谐波与无功补偿指令电流、对直流侧总电压及上、下电容均压进行控制,接收外部的启动信号进行软启动,接收外部的关断信号将指令电流置零等。要合理利用时间,最大限度的减少装置的时延,需要合理的安排控制电路系统的时序。当采样信号来到后,先对所有的电路信号采样保持与A/D转换,然后计算出指令电流,对软起动过程进行准确的判断后以后,输出PWM信号。然后通过软件的控制,控制整个有源滤波及无功补偿装置来工作,实时,自动的进行谐波的控制还有实时的进行无功的准确补偿。

2、10kv高压电力系统中逆变器的改进:目前,在低于10kv的低压系统中,谐波控制,还有无功补偿已经比较有效地进行了技术性处理。但在高于10kv的高压方面,由于补偿装置的功率器件耐压情况还没有得到相应的改善,造成了现在的10kv以上级的高压滤波器不像低压滤波器技术还不够成熟。功率器件端电压过冲均衡措施基于以上原因,对于功率器件的串联使用可以采取以下一些措施:

(一) 10kv系统设计时尽量选用型号一致、特性一致的功率器件,并且其10kv 吸收电路、驱动电路的结构,参数应严格一致。

(二)除了对10kv元件提出上述要求外,10kv系统设计工艺也要讲究,以避免电路分布参数带来的影响。

这样做就是为了能够良好解决由10kv开关器件端压不均所带来的某些10kv 器件损坏问题,满足有10kv源滤波器中应用PWM技术所需的高开关速度,并尽可能降低10kv开关器件静态及动态损耗。

10kv功率器件直接串联均压的控制方法:每支10kv功率器件并联了一个阻值较大的电阻,其目的是保证10kv串联功率器件的静态均压,其中并联电阻尽量选择比较大的阻值,就能减小电路在关断时的漏电,也就能够有效地减少损耗。

10kv控制电路,要保证10kv的主电路中,串联功率器件的动态换相过程要保持10kv功率器件端的电压处于有效地平衡。可以通过加入10kv电力系统的反馈回路来控制10kv功率器件的端电压,使端电压不超过10kv功率器件所能够承受的上限。主要的控制过程:从10kv主电路中分别取两个功率器件的端电压,将其与给定的上限电压进行比较,当某功率器件所承受的电压大于其上限电压时,比较所得结果将输入控制器,并由控制器产生控制脉冲送给功率器件的触发门,进行控制,使产生过压的10kv功率器件短暂的开通或关断,来降低其端压,以免损坏。

六、结束语

通过本文的探讨研究,就是希望能够在实际的工作过程中,实际的10kv电力系统工作情况中,设计一个恰当的有源滤波和无功补偿装置,并且实际的起到作用,只有这样才能够有效地提高10kv电力系统地工作效率,更多的减少电力系统工作中产生的损耗;我们也希望能够集思广益,能够通过更多人的努力来改进我们10kv的有源滤波及无功补偿装置的设计,能够更好地把这样的装置运用到实际的工作中。

参考文献

[1]严伟.配电网无功补偿技术的探讨[J].科技传播.2010(19)

[2]罗华聪.电网无功补偿装置的应用[J].价值工程.2010(28)

[3]冯东生.电网无功补偿装置的应用[J].科技风.2010(21)

[4]姜京京,唐昊.浅谈无功补偿和几种无功补偿设备[J].黑龙江科技信息.2010(35)

滤波补偿无功补偿的区别

滤波补偿与无功补偿的区别 一、综述 普通无功补偿装臵实现无功功率补偿是通过投切400V的普通电容器来实现的。 普通电容器的电压等级是400V,过压能力是1.1倍,过流能力是1.3倍。谐波会叠加在基波上对电容器产生冲击,使电容器处于过压过流的状态,极易产生电容器的损坏或谐振事故。电容器的故障会使功率因数下降,功率因数低于0.9供电公司会进行处罚。 滤波补偿装臵实现无功功率补偿是通过投切电容电抗LC串联电路来实现的。 滤波电容器的电压等级是480V,过压能力是1.1倍,过流能力是2.0倍。串联滤波电抗器会对电容器实现保护,同时电容器的技术参数较高,所以能实现电容补偿的安全运行。电容电抗串联回路具有调谐频率(P7-189Hz),对低于这个频率的基波呈容性实现无功补偿的功能,对于高于这个频率的谐波电流呈感性,呈现低阻抗的滤波功能,也就是说在实现无功功率补偿的同时滤除系统中的谐波。 二、从谐波对电力系统的影响来说明普通无功补偿与滤波补偿的区别 谐波造成电网污染,电网电压的严重畸变,影响线路的稳定运行和电网的质量,近年来供电部门对此越来越重视,要求用户将系统谐波的畸变率控制在安全线以下,所以普通的无功补偿装臵会淡出市场

被滤波补偿所取代。 三、对电力设备的影响来说明普通无功补偿与滤波补偿的区别 A、由于谐波趋肤效应的影响,电缆电线过热,绝缘老化加速,易损坏并导致线间短路和接地故障引起电气火灾和人身电击事故;造成能源浪费同时降低电缆铜排使用寿命; B、变压器和马达的过热,损坏甚至于烧毁; 补偿功率因数的装臵上还可能由于谐波的放大,产生并联电容器过热、损坏或谐振事故; C、断路器及漏电保护装臵、接触器、热继电器等电气保护元件过热,失灵,误动作,接地保护装臵功能失常; D、中性线过负荷、发热,甚至于烧损、着火; E、谐波导致继电保护装臵误动作,导致开关元件误动作,使电气测量仪表计量不准确; F、谐波在负载与负载间相互影响,降低了生产设备的操作精度与工艺准确度。 普通无功补偿完全没有消谐功能,滤除谐波最经济的方法就是使用滤波补偿装臵来实现无功补偿与滤除谐波的双功能。 四、产生对计算机网络、通信、有线电视等弱电系统设备的干扰,从这方面说明普通无功补偿与滤波补偿的区别 现代工程项目非常重视弱电系统的安全运行,所以滤波补偿装臵取代无功补偿装臵是科技发展的需要。

有源电力滤波器设计

1 引言 近年来,公用电网受到谐波电流和谐波电压的严重污染,而电力电子装置是其主要的谐波污染源。随着电力电子装置的日益广泛应用,电网中的谐波污染也日益严重,谐波污染影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。 滤波器在本质上是一种频率选择电路,通常用幅频响应和相位响应来表征一个滤波电路的特性。理想滤波电路在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的相互位置不同,滤波器可分为低通、高通、带通、带阻、全通5类。有源滤波器采用有源器件需要使用电源,加上功耗较大且集成运放的带宽有限,因此目前有源滤波电路的工作频率难以做得很高,一般不能用于高频场合。但总的来讲有源滤波器在低频(低于1MHz)场合中使用有较无源滤波器更优的性能,因而目前在音频处理、工业测控等领域广泛应用。有源电力滤波器是一种用于动态抑制谐波、补偿无功功率的新型电力电子装置,能对大小和频率都变化的谐波及无功功率进行补偿。和传统的无源滤波器相比,有以下几点突出的优点: (1)对各次谐波和分数谐波均能有效地抑制,且可提高功率因数; (2)系统阻抗和频率发生波动时,不会影响补偿效果。并能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响; (3)不会产生谐振现象,且能抑制由于外电路的谐振产生的谐波电流的变化; (4)用一台装置就可以实现对各次谐波和基波无功功率的补偿; (5)不存在过载问题,即当系统中谐波较大时,装置仍可运行,无需断开。 由以上可看出,它克服了传统的无源滤波器的缺点,具有良好的调节性能,因而有很大的发展前途。

电力有源滤波器的设计

工学院毕业设计(论文) 题目:电力有源滤波器的设计 专业:电气工程及其自动化 班级:电气082 姓名:邓大伟 学号: 1609080203 指导教师:国海 日期: 2011年12月22日

目录 摘要: (1) 1 绪论 (2) 1.1概述 (2) 1.2抑制谐波的方法 (2) 1.3本文研究的内容 (3) 2 APF的工作原理和结构 (4) 2.1APF的基本原理和种类 (4) 2.2APF的谐波检测方法 (5) 2.3APF的补偿电流控制方法 (6) 3 有源电力滤波器谐波检测及控制策略 (8) 3.1瞬时无功功率理论简介及其应用 (8) 3.2SVPWM调制策略 (10) 4 控制系统的总体设计方案 (14) 4.1系统初始化程序的设计 (14) 4.2中断子程序设计 (14) 4.3I P-I Q法补偿谐波和无功电流的原理框图 (15) 5 电力有源滤波器的仿真实现 (17) 5.1源电力滤波器仿真模型的建立 (17) 5.2结果仿真 (21) 总结与展望 (25) 致谢 (26) 参考文献 (27) ABSTRACT: (28)

电力有源滤波器的设计 摘要:随着电力电子装置日益广泛的应用,电力电子装置自身所具有的非线性导致了电网中含有大量谐波,这些谐波给电力系统带来了严重的污染,严重危害了用电设备和通信系统的稳定运行。虽然传统的无源电力滤波器具有结构简单、成本低、技术成熟、运行费用低等优点,但同时也有一些缺点,例如只能抑制固定的几次谐波,并对某次谐波在一定条件下会与电网阻抗产生谐振反而而使谐波放大。 目前,谐波抑制的一个重要趋势是采用有源电力滤波器,有源电力滤波器也是一种电力电子装置,且相关技术的研究也日渐成为研究的热点。本文阐述了几种常见APF的拓扑结构及各自的优缺点,详细分析了基于瞬时无功功率理论的谐波检测方法,比例控制和前馈控制两种电流环控制策略以及SPWM和SVPWM两种调制策略。介绍了电力有源滤波器的基本原理和结构,并设计了并联型有源电力滤波器的控制系统,实验结果表明,其谐波抑制和无功补偿可以达到良好的效果,在技术上是可行的。 关键词:电力有源滤波器;谐波检测 ;APF

浅谈无功补偿与无源滤波

浅谈无功补偿与无源滤波 用电设备正常工作不但要从电源取得有功功率,还需要获取无功功率。如果电网中的无功功率不足,用电设备就没有足够的能力建立正常工作的电磁场,导致端电压下降,从而影响用电设备的正常运行。 电网输出的功率包括两部分:一是有功功率:直接消耗电能,把电能转变为机械能、热能、化学能或声能,利用这些能作功,这部分功率称为有功功率;二是无功功率:不消耗电能,只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率。 实际上用电设备正常工作不但要从电源取得有功功率,还需要获取无功功率。如果电网中的无功功率不足,用电设备就没有足够的能力建立正常工作的电磁场,导致端电压下降,从而影响用电设备的正常运行。但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中常常使用一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。无功补偿是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换,这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。

无功补偿可以增加电网中有功功率的比例常数,减少发、供电设备的设计容量,减少投资,降低线损等。在无功补偿中,串联电抗的无功补偿电容器能够达到避免谐振滤除谐波等功能,在IEC标准中,将电容器与串联电抗器构成的设备统称为滤波器。无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道。采用电力滤波装置就近吸收谐波源所产生的谐波电流,是抑制谐波污染的有效措施。 。 通常采用由电力电容器、电抗器和电阻器适当组合而成的无源滤波装置进行滤波,其实质就是根据电容电阻固有的阻抗特性,对某一特定频率的谐波呈低阻抗,为负载谐波电流提供较低的阻抗通道,与电网阻抗形成分流的关系,使大部分该频率的谐波流入滤波器,而不流入电网,其滤波特性由系统和滤波器的阻抗比所决定,所以滤波器一旦制成,性能参数难以变动,滤波特性受系统参数的影响较大;当波电流增大时,滤波器负担随之加重,可能造成滤波器过载;除此之外,无源滤波器只能消除特定的几次谐波,而对某些次谐波会产生放大作用。以上诸多缺点大大限制了无源滤波器的应用场合。

有源电力滤波器的应用及效果.

有源电力滤波器的应用 所在学院:信息科学与工程学院 专业班级: 学生姓名: 学生学号: 指导教师:

有源电力滤波器的应用 上学期我们学习了《电力电子技术》这门课,通过这门课的学习我了解到:以非线性负载为主产生的谐波会对电力系统形成很大的危害,而传统的电力电子装置本身就是产生谐波的主要污染源。要想抑制电力电子装置和其它谐波源造成的电力系统谐波,基本思路有两条:一是装设补偿装置,设法补偿其产生的谐波;而是对电力电子装置本身进行改进,使其不产生谐波,同时也不消耗无功功率,或者根据需要能对其功率因数进行控制,即采用高功率因数变流器。 装设LC 调谐滤波器是传统的补偿谐波的主要手段。LC 调谐滤波器虽然存在很多缺陷,但其结构简单,既可补偿谐波,又可补偿无功,一直被广泛应用与电力系统中谐波和无功功率补偿。目前的趋势是采用先进的电力电子装置进行谐波补偿,这就是有源电力滤波器(APF )。与LC 无源滤波器相比,有源滤波器具有明显的优越性能,能对变化的谐波进行迅速的动态跟踪补偿,而且补偿特性不受电网频率和阻抗的影响。有源电力滤波器的变流电路可以分为电压型和电流型。从与补偿对象的连接方式看,有源电力滤波器又可分为并联型和串联型。电压型和并联型在实际中应用较广。 本学期做了一个谐波的产生和抑制的实验,其中谐波是由三相桥式整流电路这一非线性负载产生的,在实验中采用了两种抑制谐波的方法,一种是并联无功补偿电容器和LC 滤波器,另一种是并联一个有源电力滤波器。目标是经过这两次滤波,使谐波电流的畸变率降到5%左右。 有源电力滤波器基本原理如下图1所示。设负载电流为l i ,谐波检测器从负载电流中检测出谐波电流h i ,令指令电流*c h i i =-,补偿电流控制算法控制逆变 器产生补偿电流*c c i i =,注入母线,抵消负载电流中的谐波,达到抑制谐波电流流向电源的目的。系统由四个主要部分组成有源滤波主电路、外围驱动板、谐波检测器 、DSP 器件。

低压无功补偿及滤波装置技术要求Word

低压无功补偿及滤波装置技术要求 一、控制器部分 1.工作电源:86--256VAC 2.测量精度:相间电压≤0.5% 线电流≤0.5% 无功功率≤1% 功率因数≤1% 3.控制器动态响应时间t ﹤30ms 4.每组电容器可设定为长期接通或断开 5.按无功功率需求投切电容器,杜绝投切震荡 6.在线设定PT、CT、运行电压范围、动作延时时间、报警限值 7.具有温度测量及保护功能 8.具有谐波测量和保护功能 二、投切单元部分 投切单元的组成结构及优点 采用电容器、电抗器、投切开关、保护装置一体化的电容器投切开关单元,以便于补偿装置的安装、容量的增减及现场维护。紧凑型设计,整体结构紧凑,外形美观;母线式开关直接挂接在母排上,无需螺丝固定。 母排无需打孔连接,连接方便。 节省安装空间,安装容量大。 安装快捷、方便。 减少布线,易于维护。 标准化、紧密和坚固的优化设计、方便系统扩充容量。 合理的结构设计,单元的通用性好,适合GGD、GCS、GCK、MNS等各种型号柜体的安装。 四种不同容量的投切单元,可满足各种容量的补偿柜的投切精度的需求。 其中投切单元的主要器件技术要求如下: 1、投切开关: 1)无触点开关: a通过反并联晶闸管投切电容器组 b.动作时间要求不大于20ms c电容器组投入时涌流控制在额定电流的1.7倍以内,切除时无过电压产生。 d具有超温保护功能 e可频繁投切电容器组 2)智能复合开关 a采用可控硅投切电容器组、继电器运行的工作方式 b可选5-12VDC电平控制和485通讯控制 c即可控制△接电容器又可分别控制Y接电容器组的每一相 d工作内阻为零、无功耗、不产生谐波 接触器 a采用主触头本身有抑制涌流作用的电容器专用接触器 b接触器在电容器组退出工作时具备放电功能

有源电力滤波器品牌排行

有源电力滤波器(APF)品牌排行 当前,市场上生产有源电力滤波器的厂家很多,各个品牌参差不齐,且国家标准未正式出台,所以只能挑选出一些市场上一些主流的APF品牌,从质量、稳定性各方面介绍一下当前市场上主流有源电力滤波器品牌的市场情况: 合资主流品牌:霍尼韦尔、GE、诺基亚、ABB、施耐德、 传统的电气行业的几大合资品牌从稳定性、可靠性来说都依然是值得可靠信赖,但是技术参数比得上国内品牌,国内品牌因为竞争的缘故一味追求性能参数,产品稳定性大打折扣,合资品牌的价格都相对较高,一般市场标价达2000~4000元/A。传统的合资品牌西门子貌似还没有APF。 国产一线品牌:南京亚派麦克斯韦电气深圳盛弘上海思源赛博电气深圳英纳仕追日电气........数百家品牌 估计国内生产APF的厂家有上百家,以上品牌都是最近2年广告比较多的品牌,推广力度比较大而已。但是参差不齐。国产品牌的通病就是质量不稳定,国产品牌没有7年以上的应用案例,价格也不一定便宜,国产品牌的价格一般是合资的50%~100%。有源电力滤波器的核心器件比如IGBT、电容器、CPU等国内电子元件技术都不稳定,所以国内生产APF 的厂家大多依靠进口国外品牌的核心元器件,然后再在国内组装,所以成本总体也不低,主要是人工成本较低。另外国产有源电力滤波器的通病就是并联技术,IGBT并联技术还不过关。但是未来的趋势肯定是核心器件国产化后,国内APF厂家的价格也许才会真正降到很低。 另外,有源电力滤波器出来10年左右,市场上有部分打着国外欧美公司品牌(如意大利、美国)的旗号,游龙混杂,有些品牌名字看着大气,实际上是国内生产的,满足国内市场扬眉崇外的心理,所以要注意辨别。

APF有源电力滤波器

有源电力滤波器 有源电力滤波器(APF:Active power filter)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对不同大小和频率的谐波进行快速跟踪补偿,之所以称为有源,是相对于无源LC滤波器,只能被动吸收固定频率与大小的谐波而言,APF可以通过采样负载电流并进行各次谐波和无功的分离,控制并主动输出电流的大小、频率和相位,并且快速响应,抵销负载中相应电流,实现了动态跟踪补偿,而且可以既补谐波又补无功和不平衡。

1、概述 2、理论基础 3、工作原理 4、标准 5、三电平 ?技术优势 ?滤波器 ?基本应用 ?主要应用场合 ?其他 ?优势 6、性能说明 7、配件选型 1、概述 三相电路瞬时无功功率理论是APF发展的主要APF;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。 2、理论基础 有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高!实际应用安全系数很低,国际普遍做法是以变压器升压,来保证可靠性,国家相关部

门也要求以变压器升压的形式和有源滤波器结合,治理高压谐波! 3、工作原理 Satons有源电力滤波器通过电流互感器检测负载电流,并通过内部DSP计算,提取出负载电流中的 谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。 这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流

动态无功补偿及滤波装置

NSVC-2000I系列动态无功补偿及滤波装置 一、简介 NSVC-2000I动态无功补偿及滤波装置,使用无触点电子开关代替原来的机械开关,并采用了基于DSP大规模集成电路数字信号处理技术,综合国外先进技术与清华大学、东南大学、江苏大学电气工程学院联合开发的数字化的智能控制器,克服了投入时的浪涌电流及切除时的操作过电压,其动作时间≤16ms,同时还显示所有与配电系统相关的电气参数,可实现远程控制、显示、打印等功能。该系列产品多种功能已达到国内领先或国际先进水平。 电力系统的用户中有的使用大量负荷频繁变化的设备,如轧钢机、电弧炉、变频装置、中频炉、软启动等负载产生的高次谐波也随之注入电网,引起电压和电流的畸变,使用电环境恶化,影响用电设备的正常工作。为此装置中设计有谐振点偏移的功能,可以有效地避免高次谐波的并联谐振,滤除谐波,且无大电流产生,保证应有的电网配电质量。 其功能:节能、增容、稳压、滤波 1、无功补偿及滤波使总电流减小,电能损耗降低,即节能。 2、实现无功就地补偿,增加配电电源设备的供电能力,即增容。 3、动态无功补偿响应速度快、实时性强,无电压闪变,使输出电压稳定,即稳压。 4、动态无功补偿装置可滤除谐波,消除谐波干扰,即滤波。 二、主要特点 1、基于DSP大规模集成电路数字信号处理技术,对采集参数进行无功计算,输出投 切控制信号;响应速度快、实时性强,快速跟随补偿,提高配电系统功率因数及 运行的稳定性。动态响应时间≤16ms。 2、控制原理为等压零电流平滑地、连续地、快速地投切电容器组,无投切浪涌电流、 无电压闪变。零电流切除,无操作过电压。克服了原老式无功补偿装置即PFC系 统投切时产生的瞬变过程,避免电容器的过热、胀肚,可使装置寿命达到10年以 上。 3、控制器具有大屏幕液晶显示,可采样、计算、显示系统的电压、电流、功率因数、 谐波、有功、无功、有功电度、无功电度等22种电气参数,可存储3个月的用电 量,并通过RS232/RS485通讯口与上位机连接,实现数据显示、打印及远距离控 制的功能。

有源电力滤波技术的国内外现状分析及其改进措施

有源电力滤波技术的现状分析及其改进方法 摘要:随着非线性负荷广泛使用,电能质量在不断下降。而有源电力滤波技术是解决该问题的有效手段。本文首先介绍有源电力滤波器(APF:Active power filter)的组成和分类,然后论述有源电力滤波器的两个关键性技术,最后对它的发展前景进行分析。 关键词:有源滤波技术、电流谐波、电流控制方法 正文:随着电力电子技术不断发展,电网中增加了大量的非线性负载,特别是大容量变流设备的使用,导致大量谐波注入电网,使得电网电压和电流波形发生畸变,电能质量日益下降,电网谐波已成为电网一大公害。 随着电力电子技术及控制技术的不断发展,大功率可关断器件(GTR、GTO、IGBT等)不断使用,以及对非正弦情况下无功功率理论研究深入,使得APF开始在民用设备上使用,且单机装置的容量逐步提高,其应用领域从补偿用户自身的谐波向改善整个电力系统供电质量的方向发展。 APF的组成及分类 1.组成 最基本的并联型APF系统主要由两大部分组成——指令电流检测电路与补偿电流发生电路(由电流跟踪控制电路、驱动电路和主电路三部分构成)。 2.分类 从不同角度出发,APF具有不同的分类标准。 根据应用场合不同,APF可以分为有源直流滤波器和有源交流滤波器两大类。前 者主要用来消除高压直流系统中换流器直流侧的电流、电压谐波;后者则应用于交流电力系统。 2)根据逆变器直流侧储能元件不同,APF又分为电流型和电压型。电压型APF效率高,投资少,可任意并联扩容,易于单机小型化,经济性优,适用于电网谐波补偿,因此目前实用装置九成以上是电压型。 3)根据APF与电网连接方式不同,APF可以分为并联型、串联型、混合型和串-并联型。目前并联APF在技术上已经成熟,它是当前应用最广泛的APF拓扑结构。串联型APF与并联型APF相比前者损耗大,且各种保护电路也复杂。因此,很少研究单独使用的串联型APF,而大多数将它作为混合型APF的一部分予以研究。 而串-并联型APF组合了串联APF和并联APF的优点,能解决电气发生的大多电能质量问题,所以又称之为万能APF或统一电能质量调节器(UPQC)。但是该类APF尚处在试验阶段,主要问题是控制复杂,造价高。 APF的关键技术 指令电流的检测方法和补偿电流的产生是有APF的两个关键技术。 1.检测方法 1)瞬时空间矢量法 它是目前APF中应用最广的一种指令电流检测方法。该理论现已包括p—q法,ip—iq法以及d—p法等。其中p—q法最早应用,仅适用于对称且无畸变的电网;而ip—iq法既对电网电压畸变有效,同时适用不对称三相电网;基于同步旋转变换的d—p法不仅简化了对称无畸变下的指令电流运算,而且也适用于不对称、有畸变的电网。 2)自适应检测法 该方法从负载电流中消去基波有功分量,从而得到所需补偿的电流值。该方法的优点是对电网电压畸变、频移及电网参数变化有较好的自适应调节能力,缺点是其动态响应较慢。

电力有源滤波器的设计-开题报告

工程学院 本科毕业设计(论文)开题报告题目:电力有源滤波器的设计 专业: 班级:学号: 学生: 指导教师: 2014 年3月

文献综述1.3谐波的抑制方法 (1)无源滤波 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点。基本的无源滤波器的拓扑结构如下图所示: (2)有源滤波 目前,谐波抑制的一个重要趋势是采用电力有源滤波器(Active Power Filter-APF)[2]。有源电力滤波器也是一种电力电子装置。其基本原理是从补偿对象中检测出谐波电流,由补偿装置产生与该谐波电流大小相等而极性相反的补偿电流,从而消除电网中的谐波。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且在日本等国得到广泛的应用。有源电力滤波器的基本思想在六七十年代就己经形成。80年代以来,由于大中功率全控型半导体器件的成熟,脉冲宽度调制(Pulse Width Modulation-PWM)控制技术的进步,以及基于瞬时无功功率理论的谐波电流瞬时检测方法的提出,有源电力滤波器才得以迅速发展。

文 献 综 述 2.1按联接方式确定APF的种类 APF的结构形式很多,但其基本原理都是类似的,按电路拓朴结构可分为并联型APF、串联型APF和串--并联型APF。 (1)并联型APF 下图为并联型APF 基本结构。由于与系统并联, 可等效为一受控电流源。并联型APF 可产生与负荷电流大小相等、方向相反的谐波电流, 从而将电源侧电流补偿为正弦基波电流。主要适用于抵消非线性负载的谐波电流、无功补偿及平衡三相系统中的不平衡电流等。并联型APF 在技术上比较成熟[4]。 并联型有源滤波器结构图 2)串联型APF 图2.3为串联型APF基本结构。通过1个匹配变压器将APF串联在电源和负载之间, 以消除电压谐波, 平衡或调整负载的端电压。与并联型APF相比, 串联型APF损耗较大, 且各种保护电路也较复杂。因此, 很少单位使用串联型APF, 大多将其作为混合型APF 的一部分。 串联型有源滤波器结构图

有源电力滤波器的要求及应用

有源电力滤波器通过电流互感器检测负载电流,并通过内部DSP计算,提取出负载电流中的谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。 有源电力滤波器是现代化工业的主要副产品之一,随着工业现代化程度提高,谐波的问题日益严重。这主要是现代化工业的用电方式发生了巨大的变化。传统工业的主要电力负荷是电动机和电阻加热设备,这些设备是线性负载,不会产生谐波电流。而现代化工业的主要电力负荷是电流变换器,包括变频器、中频炉、直流电机驱动器等,这些负荷都是非线性负载,工作时产生严重的谐波。 另一方面,大部分配电系统,包括变压器、开关柜、继电保护器、无功补偿柜等,都是按照线性负荷设计的。当实际负荷为非线性负荷时,对配电系统造成严重的危害,轻则导致系统过热、不稳定,重则损坏配电设备。 解决这个问题的最好方法就是在非线性设备的电源输入端安装有源电力滤波器,将非线性负荷转变为线性负荷,谐波导致的各种问题便迎刃而解。这种安装在设备的电源输入端的谐波滤波器就是设备级谐波滤波器。 有源电力滤波器的特殊要求 设备级有源电力滤波器与母线级谐波滤波器有不同的要求。设备级有源电力滤波器与所配的设备一同构成一个完整的系统,谐波滤波器的作用是保证这个系统的谐波电流发射满足特定的标准,例如,GB17625标准。因此,设备级有源电力滤波器要满足一下四个方面的要求: 1)不与系统发生不良作用:配装了谐波滤波器的设备可能在任何系统中使用,而任何情况下都不允许与系统之间发生不良的相互作用,例如与系统发生谐振,放大谐波电流。 2)不会导致超前的功率因数:设备配装了滤波器,功率因数要达到0.98以上,不允许出现过大的感性无功功率和容性无功功率; 3)滤波效果确定:滤波器与特定设备组合起来后,谐波电流发射必须是确定的,与系统的参数无关,这样才能确保设备安装了滤波器后,满足特定的要求;

有源电力滤波器的基本原理和分类

有源电力滤波器的基本原理和分类 1.有源电力滤波器的基本原理 有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。 图1 有源滤波器示意图 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型有源滤波器的优点是损耗较少,效率高,是目前国外绝大多数有源滤波器采用的主电路结构。电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感阻上将产生较大损耗,所以目前较少采用。 图2 电压型有源滤波器

图3 电流型有源滤波器 2.有源电力滤波器的分类 按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。 图4 并联型有源滤波器 图4所示为并联型有源滤波器的基本结构。它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。目前并联型有源滤波器在技术上已较成熟,它也是当前应用最为广泛的一种有源滤波器拓补结构。 图5 串联型有源滤波器 图5所示为串联型有源滤波器的基本结构。它通过一个匹配变压器将有源滤波器串联于电源和负载之间,以消除电压谐波,平衡或调整负载的端电压。与并联型有源滤波器相比,串联型有源滤波器损耗较大,且各种保护电路也较复杂,因此,很少研究单独使用的串联型有源滤波器,而大多数将它作为混合型有源滤波器的一部分予以研究。 图6 混合型有源滤波器 图6所示为混合型有源滤波器的基本结构。它是在串联型有源滤波器的基础上使用一些

FC滤波及无功补偿装置在谐波治理中的应用

FC滤波及无功补偿装置在谐波治理中的应用 方利祥马金雷 (首钢京唐钢铁联合有限责任公司,河北唐山063200) 摘要:本文主要介绍了FC滤波及无功补偿装置在110KV变电站10KV系统谐波治理中的应用,根据电能质量在线监测的结果,对含量较高的谐波进行针对性的治理,使10KV系统谐波含量低于国标值,保证电能质量。 关键词:变电站;电能质量;谐波 0 引言 首钢京唐公司一冷轧110KV变电站设置3台50MVA主变压器,其中1#主变带10KV一、二段母线,3#主变带10KV三、四段母线,2#主变备用,为保证10KV母线电源质量,每段10KV母线分别设置一组FC滤波补偿装置。此110KV变电站主要给酸轧、连退、电镀锌产线供电,其中主要用电及非线性负载为酸轧产线的五连轧轧机,也是10KV母线最主要的谐波源。 1 谐波检测 110KV变电站故障录波柜内装有一台电能质量在线监测仪,用于时时监测10KV母线谐波含量情况,自2013年12月开始,监测仪时常出现谐波超标报警,经过提取监测数据发现谐波总畸变率超过国值标(>4%),且11次、13次谐波含量较高,详细数据见下表。 电能质量统计报表(电压)

2 谐波治理 谐波超标一方面导致线路、电气设备损耗增加,加大了电力运行成本,增加了电费的支出,另一方面谐波使电气设备过热、绝缘老化,使用寿命缩短,甚至发生故障或烧毁,间接影响产品质量。由于谐波不经治理是无法自然消除,因此,当谐波超标时,必须坚决的进行有效治理。 2.1 创新点与技术关键 变电站每段10KV母线上设计了5次、7次、11次、13次滤波补偿装置,且投入顺序设计了联锁逻辑关系,即投入时,必须先投入5次、7次滤波, 11次、13次滤波装置才能顺利投入运行。然而,从谐波监测数据表来看,总谐波含量超标的主要原因是由于11次、13次谐波含量较高。因此,本次谐波治理的创新点是:根据各阶次谐波含量的大小,对11次、13次谐波进行针对性治理。技术关键是:如何解除联锁关系,只投入11次、13次滤波补偿装置。 2.2 技术方案 2.2.1 联锁逻辑解除 下图为11次、13次滤波支路高压柜合、分闸控制原理图,从图中可以看出高压柜合闸有三个联锁条件: 高压柜合分闸控制原理图 1)7次滤波支路隔离柜刀闸在合位 2)5次、7次滤波支路高压柜断路器在合位 3)11次、13次滤波支路隔离柜允许投入运行选择开关在“允许位”

有源电力滤波器与电气控制原理图

有源电力滤波器与电气控制原理图 电气原理图是根据电气动作原理绘制的,用于分析动作原理和排除故障.而不考虑电气设备的电气元器件的实际结构和安装情况。通过电路图,可详细地了解电路、设备电气控制系统的组成和工作原理,并可在测试和寻找故障时提供足够的信息,同时电气原理图也是编制接线图的重要依据。 1.电气原理图绘制 电气原理图中,一般分为主电路和控制电路两部分分别画出。主电路是设备的驱动电路,在控制电路的控制下,根据控制要求由电源向用电设备供电。主电路通常用粗实线画在图样的左侧(或上方)。在电力拖动线路中,实际上就是设备的电源、电动机及其他用电设备等。 控制和辅助电路一般用细实线画在图样的右侧(或下方)。控制电路、辅助电路要分开画。控制电路画出控制主电路工作的控制电器的动作顺序,画出用作其他控制要求的控制电器的动作顺序。控制电路由接触器和继电器的线圈以及各种电器的常开、常闭触点组合构成控制逻辑,实现需要的控制功能。辅助电路是指设备中的信号和照明部分。主电路、控制电路和其他辅助的信号照明电路,保护电路一起构成电控系统。 电气原理图中的电路可以水平布置或者垂直布置。当水平布置时,电源线垂直画,其他电路水平画,控制电路中的耗能元件画在电路的最右端。当垂直布置时,电源线水平画,其他电路垂直画,控制电路中的耗能元件画在电路的最下端。

2.元器件绘制和器件状态 电气原理图中的所有电气元器件不画出实际外形图,而采用国家标准规定的图形符号和文字符号表示。同一电器的各个部件可根据需要画在不同的地方,但必须用相同的文字符号标注。电气原理图中所有元器件的可动部分通常表示在电器非激励或不工作的状态和位置。其中,常见的元器件状态有: (1)继电器和接触器的线圈处在非激励状态。 (2)断路器和隔离开关在断开位置。 有源电力滤波器/APF的系统结构 Dow有源电力滤波器/APF的主电路功能框图如图1所示,Dow 3L结构框图如图2所示,Dow4L 结构框图如图3所示。 图1 Dow3L/4L主电路功能图

有源滤波器的基本原理

有源滤波器的基本原理 有源滤波器是一种用于动态抑制谐波、补偿无功的电力电子装置,它能对大小和频率都变化的谐波,以及变化无功进行补偿。其应用可克服LC滤波器等传统的谐波抑制和无功补偿的缺点。 有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有

源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型有源滤波器的优点是损耗较少,效率高,是目前国内外绝大多数有源滤波器采用的主电路结构。电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感内阻上将产生较大损耗,所以目前较少采用。

2.有源电力滤波器的分类 按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。 图4所示为并联型有源滤波器的基本结构。它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。目前并联型有源滤波器在技术上已较成熟,

有源电力滤波器

顾名思义该装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高! 二、基本原理: 有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。它由指令电流运算电路和补偿电流发生电路两个主要部分组成。指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。 三、基本应用: 谐波主要危害: ? 增加电力设施负荷,降低系统功率因数,降低发电、输电及用电设备的有效容量和效率,造成设备浪费、线路浪费和电能损失; ?引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或无法投入运行; ? 产生脉动转矩致使电动机振动,影响产品质量和电机寿命; ? 由于涡流和集肤效应,使电机、变压器、输电线路等产生附加功率损耗而过热,浪费电能并加速绝缘老化; ? 谐波电压以正比于其峰值电压的形式增强了绝缘介质的电场强度,降低设备使用寿命; ? 零序(3的倍数次)谐波电流会导致三相四线系统的中线过载,并在三角形接法的变压器绕组内产生环流,使绕组电流超过额定值,严重时甚至引发事故。 ? 谐波会改变保护继电器的动作特性,引起继电保护设施的误动作,造成继电保护等自动装置工作紊乱;

高压动态无功补偿及滤波装置(TCR型SVC)简介资料

高压动态无功补偿及滤波装置(TCR型SVC)在实际生产中的 应用 设备概述 SVC装置由晶闸管控制电抗器(TCR)和高压无源滤波器(FC)构成。控制系统根据负荷工作状态改变与电抗器串联的晶闸管的导通角,从而改变电抗器提供的感性无功,起到平滑调节供电系统无功功率的作用。 SVC=FC+TCR TCR: Thyristor Controlled Reactor晶闸管控制电抗器 SCV: Static Var Compensator静止型动态无功补偿装置 [高压动态无功补偿及滤波装置主要设备构成] 1.全数字控制柜 2.晶闸管阀组 3.主电抗器 4.纯水冷却系统 5.FC滤波回路 [SVC高压动态无功补偿及滤波装置简介] 1、基于DSP的全数字控制系统,具有运算速度快、处理数据量大,实现实时控制量计算。 2、采用柜式结构,实现外来干扰屏蔽,抗干扰能力优越。 3、控制整个系统的运行。 4、采用卧式结构,晶闸管叠装压接式,纯水冷却、内取能、内阻尼、空气绝缘、BOD保护。 5、晶闸管选用ABB优质产品,电气性能良好,串联使用控制电抗器的投入与切除。 6、主电抗器,通过晶闸管阀组连接到SVC系统中,成为SVC最重要的部分。 7、电抗器为空心、干式、铜线或铝线环氧固化型,线形度高、噪音小、动热稳定性好,绝缘冷却、内取能、内阻尼、空气绝缘、BOD保护。 8、晶闸管选用ABB优质产品,电气性能良好,串联使用控制电抗器的投入与切除。 9、主电抗器,通过晶闸管阀组连接到SVC系统中,成为SVC最重要的部分。 10、电抗器为空心、干式、铜线或铝线环氧固化型,线形度高、噪音小、动热稳定性好,绝缘强度高,散热好。 11、通过晶闸管的相位控制达到动态无功补偿的目的。 12、主要设备采用国外著名公司进口元件,主循环泵、等离子交换机、精密过滤器等核心机构采用不锈钢316L材质。 13、 PLC程序控制,保护、报警功能完备。 14、无腐蚀,无污染,符合环保要求。 [TCR型SVC技术特点] 1. 动态相应时间快,实现平滑调节。 采用基于DSP的全数字化控制,动态相应时间小于10ms.

有源滤波器的概念原理与设计说明

一、基本概念: 有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,之所以称为有源, 顾名思义该装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高! 二、基本原理: 有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。它由指令电流运算电路和补偿电流发生电路两个主要部分组成。指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号`,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。 三、基本应用: 谐波主要危害: ? 增加电力设施负荷,降低系统功率因数,降低发电、输电及用电设备的有效容量和效率,造成设备浪费、线路浪费和电能损失; ? 引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或无法投入运行; ? 产生脉动转矩致使电动机振动,影响产品质量和电机寿命; ? 由于涡流和集肤效应,使电机、变压器、输电线路等产生附加功率损耗而过热,浪费电能并加速绝缘老化; ? 谐波电压以正比于其峰值电压的形式增强了绝缘介质的电场强度,降低设备使用寿命; ? 零序(3的倍数次)谐波电流会导致三相四线系统的中线过载,并在三角形接法的变压器绕组内产生环流,使绕组电流超过额定值,严重时甚至引发事故。 ? 谐波会改变保护继电器的动作特性,引起继电保护设施的误动作,造成继电保护等自动装置工作紊乱;

浅谈有源电力滤波器设计

综述 随着大容量电力电子装置在高压交流电力系统中日益广泛的应用,谐波和无功等问题严重地威胁着系统自身的安全稳定运行。针对10~35kV高压交流电力系统,国内外目前主要采用无源电力滤波器来抑制谐波并补偿无功功率。无源电力滤波器具有诸多的缺陷,难以达到理想的性能。受功率半导体开关器件的约束,有源电力滤波器常规技术方案的应用限制在低压交流电力系统。提出一种基于基波磁通补偿的串联型有源电力滤波器新原理,通过电力电子变换器的控制,使串联变压器对基波呈现很小的一次侧漏阻抗,对谐波呈现很大的励磁阻抗。通过电力电子变换器的控制,变压器一次侧呈现连续无极可调的电抗。借鉴基波磁通补偿理论及磁通可控的可调电抗器原理,根据串并联的对偶特性,本文提出一种新型的基于阻抗可控的并联混合型有源电力滤波器。在电力电子变换器的控制下,变压器对谐波电流呈现近似为零的低阻抗,从而输导电力系统中的谐波电流,同时对基波电流呈现连续无极可调的电抗,与无源电力滤波器相结合,实时补偿系统的无功功率。通过变压器隔离降压,确保该滤波器安全、可靠、稳定地工作。

1 工作原理 1.1 变压器的结构 变压器的结构如图1所示。其一次侧AX与二次侧ax的匝数分别为W1、W2,变比k=W1/W2,一次侧与二次侧的互感为M。一次侧绕组的电阻为r1,自感为L11。变压器采用非晶态合金铁心,为了确保变压器工作在B-H曲线的线性区,铁心开有气隙。利用电压型逆变器向变压器二次侧绕组中注入补偿电流i2且满足i2=-α*∑i1(n)-β*i1(1) 式中:α为谐波补偿系数;∑i1(n)为实时检测的变压器一次侧谐波电流;β为基波补偿系数;i1(1)为实时检测的变压器一次侧基波电流。 1.2 谐波抑制原理 从AX端看,变压器n次谐波电压方程为ù1(n)=(r1+jW n L11)/ì1(n)+jW n Mì2(n) 若α满足谐波补偿条件α=L11/M 则从AX端看,变压器对谐波电流的等效阻抗为Z AX(n)=ù1(n)/ì1(n)=r1通常r1可忽略,因此,在满足谐波补偿条件时,变压器对谐波电流呈现近似为零的低阻抗。谐波等效电路如图2所示。

相关文档
最新文档