基于普通编码器的高精度位置检测方法

基于普通编码器的高精度位置检测方法
基于普通编码器的高精度位置检测方法

万方数据

万方数据

万方数据

万方数据

总结高精度定位难点与解决办法

安全是企业生存发展的首要基础。在电力、化工等大型复杂作业环境中,现场设备多,作业过程多变,对现场人员的安全防护管理更是重中之重的首要任务。 人员的位置管控是安全管理的主要因素。必须严格管理作业人员按照安全规定的位置和路线进行作业,危急情况下更需要准确获知人员的实时位置,以便及时准确施救。 但是,在这些场合,受现场环境的限制,通用的室外GPS定位或普通的室内定位技术很难达到预期的精度和要求,迫切需要研制特定的定位设备和系统,实现作业人员的实时定位和追踪管理,保障作业安全。 技术难点 1、电厂、化工厂厂区建筑物复杂,大型设备多,建筑物的遮挡、金属电磁干扰反射等因素使得常见的技术方案难以实现精准定位。 2、作业人员活动的随机性高,包括室内、室外、管廊等位置,无法采取路径吸附等位置纠正算法。 3、人员的活动状态、姿态等安全信息也需要感知。 4、对设备的防爆性、携带和使用的方便性、待机时间等要求高。 人员定位解决方案 针对电厂、化工厂的定位需求,云酷科技采用UWB精准定位、激励器存在性检测定位、车辆采用GPS定位技术相结合的定位方案。 整体定位方案运用业内领先的TOA算法,同时结合定位大数据分析,解决了传统定位模式抗干扰能力差、定位准确度低、安装布线困难、成本费用高等问题;针对不同区域提供不同定位解决方式,达到定位精准度适宜,投入性价比高的建设目标。同时考虑到不同电厂的业务需求不同,系统拥有两票管理、缺陷/隐患管理、到岗到位管理、外委管理、工器具管理、车辆管理、手机APP等多种功能模块。支持电子围栏、人脸识别、视频监控联动、智能门禁

联查、各类报警预警等功能。 该方案可帮助中电厂厂区实现现场操作的更加规范化、协同化、科学化和智能化,人员安全监控和管理变得更加主动、及时和准确,大大提升企业精细化管理水平和企业人员安全,成功搭建事前预防、事中及早发现、事后可追溯的安全防范机制,成为智慧电厂的代表性项目之一。

光电编码器原理课件

光电编码器原理课件

光电编码器 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90&or dm;的两路脉冲信号。 根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。(REP) 1.1增量式编码器

增量式编码器是直接利用光电转换原理 输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 1.2绝对式编码器 绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。

编码器

编码器工作原理,光电编码器的工作原理分析 编码器工作原理 绝对脉冲编码器:APC 增量脉冲编码器:SPC 两者一般都应用于速度控制或位置控制系统的检测元件. 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器(旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、

编码器位置与速度检测

制作速度检测部件 实验报告 专业:机械设计制造及其自动化 姓名:xxx 学号:xxx 实验时间:2012-2013学年第2学期

制作速度检测部件 一、实验原理: 1.利用外部中断0对信号源在一定时间内产生的脉冲进行计数,并对外部中断0设置为跳变沿中断(IT0=1) 2.利用定时器0进行计时,并在中断程序中读取这段时间内产生的脉冲数,再利用脉冲数与路程之间的对应关系求得编码器的速度。 3. 光电开关的使用,如图: 测速方法: M 法测速 测取c T 时间内旋转编码器输出的脉冲个数1M ,用以计算这段时间内的平均转速,称作M法测速,图12所示。电机的转速为 r/min 601 c ZT M n = , M 法测速的分辨率: c c c ZT ZT M ZT M Q 60 60)1(6011= -+= M 法测速误差率: c T 1 M 图12 M 测速法原理图

% 1001%10060 ) 1(60 60%1111max ?=?-=M ZT M ZT M ZT M c c c δM 法测速适用于高速段, T 法测速 记录编码器两个相邻输出脉冲的间的高频脉冲个数M2,f0为高频脉冲频率,图13所示。 电机转速 r/min ZM f 60ZT 60n 2 t == T 法测速的分辨率: )1(6060)1(602202020-=--=M ZM f ZM f M Z f Q 或Zn f Zn Q -= 02 60 T法测速误差率: % 10011 %10060 60 )1(60%22 020 20max ?-=?-=M ZM f ZM f M Z f δ T 法测速适用于低速段。 M/T 法测速 把M 法和T 法结合起来,既检测TC 时间内旋转编码器输出的脉冲个数M1,又检测同一时间间隔的高频时钟脉冲个数M2,用来计算转速,称作M/T 法测速。采用M/T 法测速时,应保 2 M 2f M T t =图13 T 测速法 c T 1 M 2 M 图14 M/T 法测速原理图

光电编码器分类及作用

光电编码器分类及作用 光电编码器是一种通过光电转换将输出轴的机械几何位移量转换为脉冲或数字量的传感器,主要由光源、码盘、光学系统及电路4部分组成, 光电编码器主要有增量式编码器、绝对式编码器、混合式绝对值编码器、旋转变压器、正余弦伺服电机编码器等,其中增量式编码器、绝对式编码器、混合式绝对值编码器属于数字量编码器,旋转变压器、正余弦伺服电机编码器属于模拟量编码器. 一、增量式编码器 增量式编码器可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,通过计数设备来知道其位置.增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。一般来说,增量式光电编码器输出A、B 两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。同时还有用作参考零位的Z 相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志

信号。标志脉冲通常用来指示机械位置或对积累量清零。 二、绝对式编码器 绝对式编码器每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。其位置是由输出代码的读数确定的。当电源断开时,绝对型编码器并不与实际的位置分离。重新上电时,位置读数仍是当前的。绝对编码器能够直接进行数字量大的输出,在码盘上会有若干的码道,码道数就是二进制位数。在每条码道上都会由透光与不透光的扇形区域组成,通过采用光电传感器对信号进行采集。在码盘两侧分别设置有光源和光敏元件,这样光敏元件则能够根据是否接受到光信号进行电平的转换,输出二进制数。并且在不同位置输出不同的数字码。从而可以检测绝对位置。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数。优点:可以直接读出角度坐标的绝对值,没有累积误差,电源切除后位置信息不会丢失。编码器的抗干扰特性、数据的可靠性大大提高了。 三、混合式绝对值编码器 混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 四、旋转变压器 旋转变压器简称旋变,是一种可变耦合原理工作的交流控制电机。它的副方(次级)输出电压与转子转角呈确定的函数关系。由经过特殊电磁设计的高性能硅钢叠片和漆包线构成的,相比于采用光电

编码器安装以及检测方法

问过很多人了,大家都知道这个东西不能私自乱碰,但是问题是:它还是被我莽撞地宽衣解带了,已近不是原装处子的西门子伺服电机,装上伺服驱动器就耍泼,从地面跳起老高。一个劲的扑腾,特来此请教坛子里的高手,到底如何从新安装伺服电机的编码器,如何检测编码器的位置,如何调整,需要的设备等。 问题起由:伺服电机与减速齿轮箱直连垂直安装,最近天气温度高,齿轮箱油封故障,齿轮油经由轴渗漏入下方的伺服电机,再从伺服电机电缆接口漏出来了,但是电机各项参数正常,电流,速度,力矩,温度均正常。因为对伺服的不了解,我们担心这些漏油会降低伺服电机的寿命,故决定拆开电机清洁,不小心连编码器也拆了,清洁电机后,原样装回,伺服驱动器上电就转,而且转速不均匀,空载静置地面的电机固定频率地相一个方向抖动,如果不用手按住,就会跳离地面! 问题分析:查看电机的结构后,发现该三相交流永磁转子电机,定子类似于普通交流电机,转子为永磁体,转子长筒型,中有轴向孔洞,后轴端有一测速发电机形式的编码器,外圈三相六线的,就是有三组绕组类似一般的交流电机的定子,但是后部有两相集电环导流到内圈绕组,内圈也有一绕组,两相,估计是励磁用的。 这样一个结构的伺服电机拆开后竟然就完全不能原装装回去了,怎么装都不能正常运行了,电机抖的厉害,西门子SIMODRIVE 611驱动器有时有501,509,605等报警,一般都是501,报警内容为转子位置检测过电流120%。 处理过程:经过请教西门子的一些工程师和一些朋友,都反应是编码器安装位置不对引起的,同时特意叮嘱不能随便拆编码器和转子的相对位置,但是都无法提供正确的编码器从新安装的方法,所以特来求教,希望有过这方面经验,知识,的高手指点一二,多谢了! 解决办法:1 该电机在旋转变压器旋转部分有条随意画的线条,不知道该对那里,没有明显的对应标记,但是我松掉变压器螺钉后,运转电机,慢慢手动旋转变压器也找到了比较好的运转位置,现在那个电机恢复了青春,在设备上无怨无悔地工作了 2 将编码器的尾盖打开,固定编码器的连接片的位置要做个记号先将里面的 M5螺丝拆下,然后用一个长一点的全螺纹M6的螺丝旋进去便可将编码器顶出来。编码器的尾盖拆开后里面圆孔的边缘有个刻线。电机的尾部也有条刻线(与编码器连接的部分),记好两刻线的位置 3这电机应是无刷电机了,所以编码器检测换向位置UVW,故不能随意安装了,现场调节一般手一边调节编码器,一边看电机电流,让其在最小则是最佳位置,但往往由于手的抖动或其他原因,不会在位置最佳,电机不能满负荷或高速运行,正规的如下: 1.波形观察法 适用于带换相信号的增量式编码器、正余弦编码、旋转变压器。 1) 以示波器直接观察UV线反电势波形过零点与传感器的U相信号上升沿/Z信号、或Sin信号过零点、或Sin包络信号过零点的相位对齐关系,以此方法可以将传感器的上述信号边沿或过零点对齐到-30度电角度相位; 2) 以阻值范围适当的三个等值电阻构成星形,接入永磁伺服电机的UVW动力线,以示波器观察U相动力线与星形等值电阻的中心点之间的虚拟U相反电势波形与

编码器工作原理

编码器工作原理 Prepared on 22 November 2020

的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器、等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,也能得到一个速度信号,这个信号要反馈给器,从而调节的输出数据。故障现象: 1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电路来处理。编码器pg接线与参数与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的,因此选择合适的pg卡型号或者设置合理. 编码器一般分为增量型与绝对型,它们存着最大的区别:在的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输出型,一般均选用串行输出或型输出,德国生产的绝对型编码器串行输出最常用的是SSI (同步串行输出)。

绝对式光电编码器基本构造及特点

绝对式光电编码器基本构造及特点 用增量式光电编码器有可能由于外界的干扰产生计数错误,并且在停电或故障停车后无 法找到事故前执行部件的正确位置。采用绝对式光电编码器可以避免上述缺点。绝对式光电编码器的基本原理及组成部件与增量式光电编码器基本相同,也是由光源、码盘、检测光栅、光电检测器件和转换电路组成。与增量式光电编码器不同的是,绝对式光电编码器用不同的数码来分别指示每个不同的增量位置,它是一种直接输出数字量的传感器。在它的圆形码盘上沿径向有若干同心码道,每条上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有N 位 二进制分辨率的编码器,其码盘必须有N 条码道。绝对式光电编码器原理如图1-8 所示。 绝对式光电编码器是利用自然二进制、循环二进制(格雷码)、二-十进制等方式进行光 电转换的。绝对式光电编码器与增量式光电编码器不同之处在于圆盘上透光、不透光的线条图形,绝对光电编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。它的特点是:可以直接读出角度坐标的绝对值;没有累积误差;电源切除后位置信息不会丢失;编码器的精度取决于位数;最高运转速度比增量式光电编码器高。 图1-8 绝对式光电编码器原理 1.3.2 码制与码盘 绝对式光电编码器的码盘按照其所用的码制可以分为:二进制码、循环码(格雷码)、 十进制码、六十进制码(度、分、秒进制)码盘等。四位二元码盘(二进制、格雷码)如图1-9 所示。图中黑、白色分别表示透光、不透光区域。

(完整word)编码器试题及答案,推荐文档

炼钢厂编码器试题 命题人雷登才 一、填空题(共30题) 1、测量方式的分类:(旋转编码器)和(直尺编码器)。 2、按编码方式的分类:(绝对式编码器)(增量式编码器)和(混合式编码器)。 3、旋转编码器是通过测量被测物体的旋转角度并将测量到的(旋转角度)转化为(脉冲电信号)输出。 4、绝对式旋转编码器是指用光信号扫描分度盘(分度盘与传动轴相联)上的格雷码刻度盘以确定(被测物)的绝对位置值,然后将检测到的格雷码数据转换为电信号以(脉冲)的形式输出测量的位移量。 5、(编码器)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。 6、编码器把角位移或直线位移转换成电信号,前者称为(码盘),后者称为(码尺)。 7、按照读出方式编码器可以分为(接触式)和(非接触式)两种。 8、增量式编码器是将位移转换成(周期性)的电信号,再把这个电信号转变成计数脉冲,用脉冲的(个数)表示位移的大小。 9、绝对式编码器的每一个位置对应一个确定的(数字码),因此它的示值只与测量的(起始)和(终止)位置有关,而与测量的(中间过程)无关。 10、增量型编码器通常为(A相、B相、Z相)输出。 11、增量型编码器A相、B相为相互延迟(1/4)周期的脉冲输出。

12、增量型编码器Z相是指(单圈脉冲),即每圈发出一个脉冲。 13、绝对值型编码器:就是对应一圈,每个基准的角度发出一个唯一与该角度对应(二进制)的数值,通过外部记圈器件可以进行多个位置的记录和测量。 14、编码器按信号的输出类型分为:(电压输出)、集电极开路输出、推拉互补输出和长线驱动输出。 15、炼钢厂常用(增量式编码器)和(绝对式编码器),对应1圈脉冲个数为(1024)和(8192)。 16、编码器本身不能产生和输出正确的波形,这种情况下需更换(编码器)或维修其内部器件。 17、编码器线路故障:通常为编码器线路(断路、短路)或接触不良,这时需更换电缆或接头。 18、编码器+5V电源下降:是指+5V电源过低,通常不能低于(4.75)V。 19、编码器电缆屏蔽线未接或脱落,这会引入干扰信号,使波形不稳定,影响通信的准确性,必须保证屏蔽线可靠的(焊接及接地)。 20、编码器安装松动:这种故障会影响位置(控制精度或编码值丢失)。 21、我们通常用的是增量型编码器,可将旋转编码器的输出脉冲信号直接输入给(PLC),利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。

光电编码器详解

光电编码器 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。绝对脉冲编码 器:APC 增量脉冲编码器:SPC 1.光电编码器原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90°的脉冲信号。 1.1 增量式编码器 增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。 增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。一般来说,增量式光电编码器输出A、B两相互差 90度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。同时还有用作参考零位的Z相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。标志脉冲通常用来指示机械位置或对积累量清零。 增量式光电编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成。码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期;检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线。它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差电度角。当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差电度角的近似于正弦波的电信号,电信号经过转换电路的信号处理,可以得到被测轴的转角或速度信息。 增量式光电编码器的优点是:原理构造简单、易于实现;机械平均寿命长,可达到几万小时以上;分辨率高;抗干

直线运动定位精度检测方法及测量工具(经济实用可靠)

三种定位精度测量工具的比较 (个人理解、供交流参考) 关键词:数控轴线、定位精度、经济、实用、可靠、测量方法 通过对三种测量工具的比较,得出结论:用光栅尺测定位精度,是一种经济、实用、高效的办法 Q:定位精度是什么? A:指坐标轴在数控装置控制下运动所能达到的位置精度,实际位置与理想位置之间的误差称为定位误差。 简单理解:工人希望滑台按照控制指令运动到位置A(45mm),实际滑台运动到位置A’(45.03mm)。那么,目标位置A与实际位置A’之间的差异就是定位误差(即0.03mm)。(实际检测中,需要按照一定的取样规律、多点重复多次测量,并按照统计学方法计算系统定位精度。有国标参考,不在罗嗦) Q:定位精度这个概念、这个参数代表着什么? A:在数控机床中,这个数值越小,表示床子的精度越高,能用于加工高精度要求的工件。(例如:图纸要求钻2个孔,孔间距尺寸要求是50±0.01mm,显然这个尺寸要求对一台0.03mm定位误差的床子来说,相当艰难!这个零件需要在更高精度的床子上加工) Q:如何测量定位精度?(三种不同测量工具的对比) A:关键在于选什么样的工具去测出滑台的实际位置?要根据实际情况选一把合适的“尺子”。 1>激光干涉仪(雷尼绍、安捷伦等品牌) 优点:这是国际标准中首选的测量工具,相当的高大上。准确、权威、自动数据处理并出报告,而且是非接触式测量。当前所有的三坐标测量仪出厂前都要用激光干涉仪检测定位精度并在系统螺距补偿参数中进行μ级精度的补偿。 据说可以测0.0001精度等级的设备!!!保守分析,测±0.002mm级别的定位精度不在话下。 缺点:贵!价格大概是¥20w左右。(土豪可优选) 2>标准尺(三丰)+光学读数显微镜

高分辨率 高精度角度编码器

高分辨率,高精度角度编码器 机械制造业作为基础工业,其发展在国民经济中有着举足轻重的作用,而精密测量技术是它发展的基础和先决条件。测量的精度和效率在一定程度上决定了制造业乃至技术发展的水平。元素周期表的发明者门捷列夫说过:“从开始有测量的时候起,才开始有科学。没有测量,精密科学就没有意义”。新的测量方法标志着真正的进步,测试技术的水平是衡量一个国家科学技术水平的重要标志之一。仅就几何测量仪器的发展来看,在19世纪中叶以前,机械制造业中的主要测量工具是钢板刻线尺,测量精度为1mm。机械式测量器具,如游标卡尺和千分尺的出现,将测量精度提高到了0.01mm。量块出现以后,采用量块作为长度基准,大大推动了微差测量法的发展,将测量精度提高到了微米级。进入20世纪30年代、40年代以后,出现的电动量仪、光学量仪和气动量仪,以及诞生于近20年的激光干涉仪,隧道扫描显微镜,除继续使用机械式测量器具以外,还逐渐采用了基于几何光学与物理光学原理的光学量仪,这都极大的促进了当时技术的发展,为几何量的测量开辟了新的。 随着科学技术和制造业的发展,各个领域对测量微小尺寸的要求越来越迫切,传统的测量技术和设备难以在精度、效率及自动化程度方面完全满足要求,甚至根本无法实现。显然,融合当今的最新科学理论和技术成果,开发高效率的智能化精密测量系统有着重要的理论意义和实用价值。 角度是一个重要的计量单位,角度测量是计量技术的重要组成部分。不仅有以检测角度为目的的角度检测,还有为了检测的方便和可靠,将其他物理量也转换成角度量来进行检测的角位移检测。生产和科学的不断发展使得角度测

量越来越广泛地应用在工业、科研等领域,技术水平和测量准确度也在不断提高。 角度测量技术按照测量原理可以分为三大类:机械式测角技术、电磁式测角技术和光学测角技术。机械式和光学测角技术的研究起步较早,技术也已经非常成熟。光学测角方法比一般的机械和电磁方法有更高的准确度,而且更容易实现细分和测试过程的自动化,但使用我公司研究新的电感式测角技术将精度提高至±3″。在高精度角度测试技术领域,各种新型的测角技术不断涌现,成为高精度测角技术的主流方向。随着电子计算机技术的蓬勃发展,使得以近代波动光学为基础的光电检测法得以实现自动化,这极大地扩充了角度测量的应用范围。按照被测角性质可以分为静态角度测量和动态角度测量两种。高精度角度测试技术在静态角度测试领域己经日趋成熟,各种测试理论和方法日益完善。然而,实现动态角度的高精度测量,是测角技术领域的一个难点,也因此成为国内外测角技术研究的一个热点。 国内外角度测量的研究现状 1 机械测角法 测角技术中研究最早的是机械式测角法,主要以多齿分度盘为代表,它是一种基于机械分度定位原理的圆度分度技术。最早的多齿分度盘的雏形出现在20世纪20年代,完整的圆分度器件是由美国Gate公司研制成功的,并于1960年获得该技术专利,其分度为士o.25”。前苏联考纳斯机床厂研制的YLUI-05型角度测量仪最小分度间隔为15”,测量误差不大于O.1”。由于多齿分度盘的齿数不能无限增加,因此细分受到限制,由此而出现了差动细分方法。原理上,差动

编码器工作原理

的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器、等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,也能得到一个速度信号,这个信号要反馈给器,从而调节的输出数据。故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电路来处理。编码器pg接线与参数与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的,因此选择合适的pg卡型号或者设置合理. 编码器一般分为增量型与绝对型,它们存着最大的区别:在的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输出型,一般均选用串行输出或型输出,德国生产的绝对型编码器串行输出最常用的是SSI(同步串行输出)。

伺服电机相位与编码器位置调整关系

伺服电机相位与编码器位置调整关系 主流的伺服电机位置反馈元件包括增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等。 增量式编码器的相位对齐方式 在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察编码器的U相信号和Z信号; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器的U相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。 上述验证方法,也可以用作对齐方法。

需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。 有些伺服企业习惯于将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而不作为本讨论的话题。 绝对式编码器的相位对齐方式 绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独的引脚给出单圈相位的最高位的电平,利用此电平的0和1的翻转,也可以实现编码器和电机的相位对齐,方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察绝对编码器的最高计数位电平信号;

绝对式光电编码器

绝对式光电编码器 (一)绝对式光电编码器的结构与原理 绝对式光电编码器的核心部件是编码祝.纳码盘内透叫区及不透明区组成。这些:透明区 反不透明K按定编码构成,编码盘L码道的条数就是数码的位数。阁13 [u(a)所不为—— 个4垃自然::进制编码册的编码盘。钽电容长涂黑部分力个透明R,输:U为“117,则主白部分为透叨 K。输i11为“o”.它毛4条码道,对应诲一条码道有一个光电冗件木接收透过编码双的光线。当 编仍痞;与被测物转抽赵转动时.片采用n位编码盘.则能分辨的角度为: o——36()。/2” 自然二进制码虽然简单.但存在着使用上的问题.这是巾于团束转换点处位置不分叫而引 起的粗大娱差。例如,在出7转换到8的位量时光束要通过编码盘?)111利1000的交界处(或 称汉越区)。山1编悦捻的制造工艺和光敏元件女装的误差.有可能使汝数头的最内圈(而位) 定价值世上的光电几件比其余的超前或落后一点.这构导致可能出现两种极洲的读数值,即 1111和oooo,从而引起读数的粗大误差.这种误差是绝刘不能允许的。

为了避免这种误差.uJ采用格雷码(G,3y code)图案的编码投,表13 3结出丁格 箭码和 自然::进制码的比较。山此表uJ以看出,格雷码具有代码从任何值转换到相邻值时字节各位 数户仅有一位发生状态变化的特点;闹自然二进制码则不同,代码经常有2—3位甚至4位数 值间N史化的情况。希迪电子这样,采用格雷码的方法即使发生前述的错移.由于它在迎位时相邻界面 团案的转换仅仅发小一个最小量化中仿(最小分辨率)的此变,因而不会产生粗大误差。这种 编码力法称作单位距离性码,是常采用的方菇。 绝对式光电编码器刘府每一条码道有——个光电元件,当码道处于不向角度时,经光电转换 的输出就呈现山不同的数码、如田13—10(b)所不。它的优点是没有触点磨损,因而允许转速 高.员外届缝隙宽度LJJ做得更小,所以精度也很高,其缺点是结构复杂、价格高、光源寿命短。 国内已有14他编码器的定型产品。

基于位置编码的位移检测系统及检测方法与相关技术

本技术涉及一种基于位置编码的位移检测系统及检测方法,由固定有位置编码尺的工作台、光学成像系统、面阵CCD传感器、图像采集卡、PC机和电源模块组成。本技术运用面阵CCD传感器采集工作台上位置编码尺在移动方向上起止位置的两幅编码图像,对编码图像进行校正、滤波、边缘提取等图像处理,以及解码和定位计算,获取工作台的位移。本技术通过成像系统和CCD传感器进行非接触式位移测量,结构简单,易于小型化;编码简单,抗干扰能力强、易于加工和安装;以编码位“1”值刻线的不同宽度表示不同的编码周期,从而扩大了位移测量范围,且仍能保证位移测量的精度。位移检测系统具有制造成本低廉,操作简单,测量精度高的特点。 权利要求书 1.一种基于位置编码的位移检测系统,由工作台、光学成像系统、面阵CCD传感器、图像采集卡、PC机和电源模块组成,其特征在于: 工作台侧面固定有位置编码尺,位置编码尺尺面和工作台的移动方向平行,其上刻线垂直于工作台的移动方向; 光学成像系统固定在工作台侧方,光学成像系统的光轴垂直于工作台上的位置编码尺尺面,并使之处于光学成像系统的物平面,即光学成像系统将位置编码尺尺面成像在像平面; 面阵CCD传感器安装在光学成像系统的像平面位置,其横向与工作台移动方向平行,即位

置编码尺上刻线的像平行面阵CCD传感器的纵向;面阵CCD传感器通过接口与图像采集卡连接; 2.按照权利要求1所述的一种基于位置编码的位移检测系统,其特征在于:在编码尺上以位置码的起始位置表示不同的空间位置,在编码尺上以宽度L分割成连续的编码位,在每个 编码位上选“0”或“1”两种编码,以空白即无刻线,表示编码“0”;以黑色刻线表示编码“1”,此刻线为“1”值刻线,“1”值刻线起始边与编码位的起始边对齐;宽度为b。 n个连续的编码位组成一个位置码,其码值为n个编码位对应的二进制值所组成的编码值Ci,它对应的标称值Xi表示该位置码与零位置码起始位置间的距离与L的比值,以T个位置码为一个周期,每个周期内的编码值序列相同,每个周期对应相同测量长度0~LT,每个周期所需码位长度为LT+n-1,g个周期码尺的编码长度为gLT+n-1。不同周期内的编码刻线的宽度bj 不同,其满足: a≤b1≤L/g (1) bj=jb1 (2) 其中:a为图像中每个像素的横向尺寸对应的物方尺寸;j为当前编码对应的周期值,j=1、2、…、g;g为码尺上编码的周期个数。 编码值Ci的定义:设初始码为C0,则任一位置码的编码值Ci为: Ci=2Ci-1%2n+t (3) 其中i=1,2,…,T-1,T<2n,T为一个周期内位置码的个数;%为取余运算符;t=0或1,其取值要保证Ci对应的n个编码位中至少有一个编码“1”,且一个周期内的T个编码值不重复并首尾相连,即初始码C0与终止码CT的关系为: C0=2CT%2n+t (4)

位置检测装置

位置检测装置 一、测试目的 位置检测装置 位置检测装置是数控系统的重要组成部分,在闭环或半闭环控制的数控机床中,必须利用位置检测装置把机床运动部件的实际位移量随时检测出来,与给定的控制值(指令信号)进行比较,从而控制驱动元件正确运转,使工作台(或刀具)按规定的轨迹和坐标移动。一、数控机床对检测装置的基本要求: 1)稳定可靠、抗干扰能力强。数控机床的工作环境存在油污、潮湿、灰尘、冲击振动等,检测装置要能够在这样的恶劣环境下工作稳定,并且受环境温度影响小,能够抵抗较强的电磁干扰。 2)满足精度和速度的要求。为保证数控机床的精度和效率,检测装置必须具有足够的精度和检测速度,位置检测装置分辨率应高于数控机床的分辨率一个数量级。 3)安装维护方便、成本低廉。受机床结构和应用环境的限制,要求位置检测装置体积小巧,便于安装调试。尽量选用价格低廉,性能价格比高的检测装置。 数控机床加工精度,在很大程度上取决于数控机床位置检测装置的精度,因此,位置检测装置是数控机床的关键部件之一,它对于提高数控机床的加工精度有决定性的作用。 二、组成部分 位置检测装置的主要性能指标:

1. 精度符合输出量与输入量之间特定函数关系的准确程度称作精度,数控机床用传感器要满足高精度和高速实时测量的要求。 2. 分辨率位置检测装置能检测的最小位置变化量称作分辨率。分辨率应适应机床精度和伺服系统的要求。 分辨率的高低,对系统的性能和运行平稳性具有很大的影响。检测装置的分辨率一般按机床加工精度的1 /3~1/10选取,也就是说,位置检测装置的分辨率要高于机床加工精度。 3. 灵敏度输出信号的变化量相对于输入信号变化量的比值为灵敏度。实时测量装置不但要灵敏度高,而 且输出、输入关系中各点的灵敏度应该是一致的。 4. 迟滞对某一输入量,传感器的正行程的输出量与反行程的输出量的不一致,称为迟滞。数控伺服系统 的传感器要求迟滞小。 5. 测量范围和量程传感器的测量范围要满足系统的要求,并留有余地。 6. 零漂与温漂零漂与温漂是在输入量没有变化时,随时间和温度的变化,位置检测装置的输出量发生了 变化。传感器的漂移量是其重要性能标志,零漂和温漂反映了随时间和温度的改变,传感器测量精度的微小变化。

相关文档
最新文档