结构力学(电子版)很直观(精)
结构力学复习要点-知识大纲.pdf
结构力学大纲总的说来,学习结构力学必须注意以下三个问题:1、平面杆件体系的几何构成分析,只有具备了基本的几何构成分析能力,才会判断一个杆件系统是否结构,是静定结构还是超静定结构,哪些是多余约束。
几何构成分析是“搭”杆件,而结构计算是“拆”杆件,知道怎样“搭”结构才能正确、简便地“拆”结构,计算结构内力和变形。
2、在结构力学的学习中必须牢固建立“平衡”的思想,使“平衡”成为一种潜意识,结构整体是平衡的,任何一个结点、一个杆件、几个杆件的集合体都是平衡的,都可用截面法取出隔离体建立平衡方程。
必须熟练地运用平面力系的平衡方程,平衡方程记住并不困难,重要的是熟练灵活地运用。
3、静定结构内力分析必须过关,并且比较熟练,静定结构的内力分析是最基本的技能。
整个结构力学一环扣一环,静定结构内力分析是静定结构位移计算的基础,而静定结构内力和位移计算又是力法的基础,力法又是位移法的基础,位移法又是力矩分配法的基础,固定荷载下结构计算又是移动荷载下结构计算的基础。
第一章绪论本章复习内容:结构、结构计算简图、铰结点、刚结点、滚轴支座、铰支座、定向支座、固定支座等基本概念。
1、首先必须深刻理解结构、结构计算简图的概念。
结构力学中的概念,都可在理解的基础上用自己的语言表达,不必死记教材上的原话,所谓理解概念,就是弄清其目的、条件、实现目的的手段、适用场合等。
结构是建筑物中承载的骨架部分,本课程研究的是狭义的结构,即杆件结构。
实际的结构是很复杂的,完全按照结构的实际情况进行力学分析是不可能的(可以断言,即使许多年后科学更发达,100%按照结构的实际情况进行力学分析仍然是不可能的!因为结构的复杂性是无穷尽的,科学的发展是无止境的),也是不必要的(次要因素的影响较小,抓住主要因素即可满足工程误差要求)。
因此,对实际结构去掉不重要的细节,抓住其本质的特点,得到一个理想化的力学模型,用一个简化的图形来代替实际结构,就是结构计算简图。
【经典】结构力学ppt课件
§2-3 几何不变体系的基本组成规则
二元体:两根不在一直线上的链杆连接成一个新结点的构 造称为二元体。
二元体规则 在一个体系上增加或拆除二元体,不会改变原有体系的几何构造性质。
铰结点
链杆
链杆 体系
§2-3 几何不变体系的基本组成规则
分析图示铰结体系
以铰结三角形123为基础,增加一个二元体得结点4, 1234为几何不变体系;如此依次增加二元体,最后的体系为几何不变体系,没 有多余联系。
瞬变体系
可变体系
瞬变体系
§2-7 几何构造与静定性的关系
体系
几何不变体系 (形状、位置不变)
几何可变体系 (形状、位置可变)
无多余联系 有多余联系
可变体系 瞬变体系
静定结构 超静定结构
§2-7 几何构造与静定性的关系 分析图a所示体系
分析图b所示体系
无多余联系的几何不变体系 由平衡方程→三个支反力 →截面内力→静定结构 有多余联系的几何不变体系 由平衡方程不能求全部反力
§2-1 概述
一般结构必须是 几何不变体系
几何不变体系—在不考虑材料应变的条件下,体系的位置 和形状是不能改变的。(图a)
几何可变体系—在不考虑材料应变的条件下,体系的位置和 形状是可以改变的。(图b)
§2-2 平面体系的计算自由度 自由度:确定体系位置所需的独立坐标数
一个点的自由度=2
一个刚片的自由度=2
第一章 绪论
§1-1 结构力学的研究对象和任务 §1-2 荷载的分类 §1-3 结构的计算简图 §1-4 支座和结点的类型 §1-5 结构的分类
§1-1 结构力学的研究对象和任务
结构:工程中担负预定任务、支承荷载的建筑物。 如:房屋、塔架、桥梁、隧道、挡土墙、水坝等。
(完整word版)结构力学讲义
第一章绪论§1.1 结构和结构的分类一、结构(structure)由建筑材料筑成,能承受、传递荷载而起骨架作用的构筑物称为工程结构。
如:梁柱结构、桥梁、涵洞、水坝、挡土墙等等。
二、结构的分类:按几何形状结构可分为:1、杆系结构(structure of bar system) :构件的横截面尺寸<<长度尺寸;2、板壳结构(plate and shell structure) :构件的厚度<<表面尺寸。
3、实体结构(massive structure) :结构的长、宽、厚三个尺寸相仿。
三、杆系结构的分类:按连接方法,杆系结构可分为:§1.2 结构力学的研究对象、任务和方法一、各力学课程的比较:二、结构力学的任务:1、研究荷载等因素在结构中所产生的内力(强度计算);2、计算荷载等因素所产生的变形(刚度计算);3、分析结构的稳定性(稳定性计算);4、探讨结构的组成规律及合理形式。
进行强度、稳定性计算的目的,在于保证结构满足安全和经济的要求。
计算刚度的目的,在于保证结构不至于发生过大的变形,以至于影响正常使用。
研究组成规律目的,在于保证结构各部分,不至于发生相对的刚体运动,而能承受荷载维持平衡。
探讨结构合理的形式,是为了有效地利用材料,使其性能得到充分发挥。
三、研究方法:在小变形、材料满足虎克定律的假设下综合考虑:1、静力平衡;2、几何连续;3、物理关系三方面的条件,建立各种计算方法。
§1.3 结构的计算简图(computing model of structure )一、选取结构的计算简图必要性、重要性:将实际结构作适当地简化,忽略次要因素,显示其基本的特点。
这种代替实际结构的简化图形,称为结构的计算简图。
合理地选取结构的计算简图是结构计算中的一项极其重要而又必须首先解决的问题。
二、选取结构的计算简图的原则:1、能反映结构的实际受力特点,使计算结果接近实际情况。
结构力学讲义ppt课件
x
结点自由度
y
φ
x
y
x
刚片自由度
2)一个刚片在平面内有三个自由度,因为确定 该刚片在平面内的位置需要三个独立的几何参
数x、y、φ。
4. 约束
凡是能减少体系自由度的装置就称为约束。
6
约束的种类分为:
1)链杆
简单链杆 仅连结两个结点的杆件称为简单 链杆。一根简单链杆能减少一个自由度,故一 根简单链杆相当于一个约束。
FyA
特点: 1) 结构在支座截面可以绕圆柱铰A转动 ; 2) x、y方向的反力通过铰A的中心。
29
3. 辊轴支座
A
A
FyA
特点: 1) 杆端A产生垂直于链杆方向的线位移; 2) 反力沿链杆方向作用,大小未知。
30
4. 滑动支座(定向支座)
A 实际构造
A
MA
FyA
A
MA
FyA
特点: 1)杆端A无转角,不能产生沿链杆方向的线 位移,可以产生垂直于链杆方向的线位移;
16
A
I
II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
17
二、举例
解题思路: 基础看作一个大刚片;要区分被约束的刚片及
提供的约束;在被约束对象之间找约束;除复 杂链杆和复杂铰外,约束不能重复使用。
高等教育出版社
4
第一章 绪 论
§1-1 结构力学的内容和学习方法
§1-2 结构计算简图
5
§1-1 结构力学的内容和学习方法
一、结构
建筑物或构筑物中 承受、传递荷载而起 骨架作用的部分称为 结构。如:房屋中的 框架结构、桥梁、大 坝等。
结构力学第七章力矩分配法
§7-1 引言
➢ 力矩分配法是基于位移法的逐步逼近精确解的 近似方法。
➢ 力矩分配法可以避免解联立方程组,其计算精 度可按要求来控制。在工程中曾经广泛应用。
➢ 从数学上说,是一种异步迭代法。
➢ 单独使用时只能用于无侧移(线位移)的结构。
➢ 力矩分配法的理论基础是位移法,力矩分配法 中对杆端转角、杆端弯矩、固端弯矩的正负号 规定,与位移法相同(顺时针旋转为正号)。
1
远端铰支时: 3i A i B
C=0
1
远端定向时: i A i B
C=-1
与远端支承 情况有关
§7-2 力矩分配法的基本原理
例7-1 结构的A端、B端,C端的支撑及各杆刚度如图
所示,求SBA、SBC、SBD及CBA、CBC、CBD。
(a)
B
C
A EI
EI
EI l
D
l
l
(b) A
B EI
EI
θB C
结点B作用的力偶,按各杆的分配系数分配给各杆的近端;
可见:各杆B 端的弯矩与各杆B 端的转动刚度成正比。 例7-1 结构的A端、B端,C端的支撑及各杆刚度如图所示,求SBA、SBC、SBD及CBA、CBC、CBD。
近端弯矩MBA、MBC为
§7-2 力矩分配法的基本原理
利用结点B的力矩平衡条件∑MB=0,得
A
B
k=EI/l 3 l
A
θ =1
B
Δ =θ l
FyB=k
SAB
A
B
FyB EI/l
解:当A 端转动θ=1时,因AB杆是刚性转动,所以B 产
生向下的竖向位移Δ=l×θ=l ,弹簧反力FyB=kΔ=EI/l2 。则
结构力学电子版很直观
MCB=MCA
结点处若无外力偶,则该结点处两杆端弯矩等值, 并画在同一侧(内侧或外侧)
静定构造弯矩图练习2
q
C
B
L
qL2/2
qL2/2 qL2/8
A
L
XA YA MA
XA=0
M图
MB=0
MCB=MCA=-qL2/2
MA=qL2/2
静定构造弯矩图练习3
3F
C
B D
L
F
A
L
L
FL FL
3FL/2
M图
q
qL
B
C
L
RB
A
XA YA L
D
L
XA=-qL YA=qL/2 RB= 3qL/2
qL/2 N图
NBC= 0 NCA= -YA = -qL/2
静定构造内力图练习1 (M图) qL2/2
q
qL2/8
C
B
qL2/2
qL2/8
L
XAA
L
YA MA
∑X= XA =0 ∑Y= YA– qL=0, mA(F)=qL·L/2 – mA =0
三刚片规则练习2
D
B
A
C
三刚片AD、DC、基础 由铰A、D和B、 C处两链杆(虚铰)两两相连且不共线
为无多出约束旳几何不变体系
三刚片规则练习3
BC
D
A
E
三刚片AC、CE、基础 由铰A、C和D、 E处两链杆(虚铰)两两相连 B处链杆为一多出约束
为有一种多出约束旳几何不变体系
二. 两刚片规则
两个刚片用一种铰和一根不经过该铰旳链杆相连, 为无多出约束旳几何不变体系
F
F
结构力学选择原题带答案(精.选)
问题反馈【教师释疑】正确答案:【去除基础,再去除二元体后,小三角形、大三角形用三根链杆相连,故体系为无多余约束的几何不变体系。
】2、试对图示体系进行几何构造分析。
答题说明:简单给出分析过程。
最后给出结论。
问题反馈【教师释疑】正确答案:【先去掉基础在分析上部体系,上部体系为两刚片用一个铰一根杆相连,故该体系为无多余约束的几何不变体系。
】3、对图示体系进行几何组成分析。
答题说明:简单给出分析过程。
最后给出结论。
问题反馈【教师释疑】正确答案:【依次去除二元体A、B、C、D、E、F、G后剩下大地,故该体系为无多余约束的几何不变体系。
】4、试对图示体系进行几何构造分析。
问题反馈【教师释疑】正确答案:【依次去除二元体DGF,FHE,DFE,ADC,CEB后,B点少一个约束。
该体系为有一个自由度的几何常变体系】1、找出图示桁架中的零杆。
答题说明:按你的分析结果,给出零杆总数和零杆编号(以两端结点编号表示)。
问题反馈【教师释疑】正确答案:【 23、34、49、89、59、96、65、57共8根零杆。
】2、找出图示桁架中的零杆。
答题说明:按你的分析结果,给出零杆总数和零杆编号(以两端结点编号表示)。
问题反馈【教师释疑】正确答案:【 13、12、27、25、56、64、67杆为零杆。
共7根零杆。
】3、找出图示桁架中的零杆。
答题说明:按你的分析结果,给出零杆总数和零杆编号(以两端结点编号表示)。
问题反馈【教师释疑】正确答案:【 EA、EB、AF、AC、BG、GD共有6根零杆。
】1、图乘法的应用条件是什么?问题反馈【教师释疑】正确答案:【图乘法的应用条件:1)杆轴线为直线,2)杆端的EI为常数3)MP和M 图中至少有一个为直线图形。
】弯矩影响线与弯矩土有什么区别?问题反馈【教师释疑】正确答案:【①弯矩影响线的每一个竖标均表示同一个截面上弯矩的大小,不同的竖标只是反映单位荷载位置的不同而已。
②弯矩图的竖标则表示对应截面弯矩的大小,不同的竖标表示不同的截面上弯矩的大小。
结构力学1-3章讲稿
第一章绪论(约3学时)§1-1结构力学的研究对象和任务一、结构和结构的分类力:物体之间的相互作用;力学:理论力学,弹性力学,材料力学,结构力学,塑性力学,粘塑性力学,液体力学,断裂力学等结构:用建筑材料组成在建筑物中承担荷载并起骨架作用的部分,称为结构。
如梁、柱、楼板、桥梁、堤坝及码头等。
结构力学:构件:结构中的各个组成部分称为构件。
结构的类型:可从不同方面进行分类从结构型式划分:砖混结构、框架结构、剪力墙结构、框剪结构、框筒结构;从建筑材料划分:砖石结构、木结构、混凝土结构、钢筋混凝土结构、钢结构、组合结构等;从空间角度划分:平面结构、空间结构等以上结构从几何角度来分,有:(1)杆系结构:由杆件组成,杆件的长度远大于其横截面的宽度和高度,这是本课的研究内容。
建筑结构中的梁、柱、桥梁、框架结构等(2)板壳结构:厚度尺寸远小于长度和宽度,即薄壁结构;板、壳、墙体等。
弹性力学(3)实体结构:长、宽、高三个几何尺寸属于同一数量级;基础、坝体等。
弹性力学二、结构力学研究对象:平面杆系结构材料力学:研究单个杆件的强度、刚度及稳定性问题;结构力学:以杆件结构为研究对象;弹性力学:对杆件作更精确的分析,并以板、壳、块体等实体结构为研究对象。
注:结构力学:常指狭义的方面,即平面杆件结构力学。
三、结构力学的任务(从结构设计的内容引出)1、土木工程项目建设过程1) 业主投资:可行性研究、报建立项、城建规划土地批文、招标投标2) 设计:方案、(工艺)、建筑、结构、设备(水暖电火自控)[初步、技术、施工]3) 施工(承包人、材料供应、运输、保险、质检、定额、银行)、投入运行4) 全过程控制:监理2、设计部分指建筑、结构、设备施工图及相应的设计说明书,供施工需要。
结构设计过程与步骤:(1)选择合理承重体系及构件几何尺寸;(2)引入简化假定,取计算简图,进行结构分析;(3)依据结构分析结果,进行结构设计和构造处理3、强度、刚度和稳定性为了使结构既能安全、正常地工作,又能符合经济的要求,就要对其进行强度、刚度和稳定性的计算。
结构力学-图乘法
实例分析:圆轴扭转内力计算
第一段
M1 = (T1 + T2) × L/2
第二段
M2 = (T2 + T1) × L/2
实例分析:圆轴扭转内力计算
01
4. 比较M1和M2的大小,取较大 者作为圆轴内的最大扭矩。
02
5. 根据扭矩的正负号,绘制扭矩 图。
Part
04
组合变形图乘法
组合变形基本概念及分类
者联系起来,从而求解结构位移。
图乘法适用条件及限制
适用条件Βιβλιοθήκη 01载荷作用下,结构的变形是线性的,即变 形量与载荷成正比。
03
02
结构变形符合小变形假设,即变形量与结构 尺寸相比很小。
04 限制
图乘法只适用于线性弹性问题,对于非线 性问题或塑性变形问题不适用。
05
06
在应用图乘法时,需要保证图形函数的准 确性,否则会影响计算结果的精度。
Part
02
弯曲内力图乘法
弯曲内力基本概念
01
02
03
弯曲内力
指构件在受到外力作用时, 其内部产生的抵抗弯曲变 形的力。
剪力
作用于构件横截面上的内 力,其方向与构件轴线垂 直。
弯矩
作用于构件横截面上的内 力偶矩,其大小等于该截 面左侧或右侧所有外力对 截面形心的力矩之和。
弯曲内力图乘法求解步骤
图乘法优点总结
直观性
图乘法通过图形表示结构 中的力学元素和它们之间 的关系,使得分析结果更 直观,易于理解和解释。
高效性
相较于数值分析方法,图 乘法能够更快地给出结构 分析的近似解,适用于初 步设计和快速评估。
适用性广
图乘法可应用于各种不同 类型的结构,包括静定结 构和超静定结构,具有较 广泛的适用性。
结构力学主要知识点归纳
结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A 、杆件的简化:常以其轴线代表B 、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点.C 、体系简化:常简化为集中荷载及线分布荷载D 、体系简化:将空间结果简化为平面结构2、结构分类:A 、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B 、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定. ②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。
二、平面体系的机动分析1、体系种类A 、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。
B 、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置.常具体划分为常变体系和瞬变体系.2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目.3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。
A 、W>0,表明缺少足够联系,结构为几何可变;B 、W=0,没有多余联系;C 、W 〈0,有多余联系,是否为几何不变仍不确定。
5、几何不变体系的基本组成规则:A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系.C 、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系.6、虚铰:连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰。
结构力学(龙驭球)第6章_力法
C
B 8 kN m
X3
B X1 X2
A
A
精品课件
24
例6-1:试作图示结构的内力图。I1:I2=2:1
1 1 M E 1M I1d s2 8 E 8 I m 131 4 E 4 I m 235 7 E 6 I m 13
1PM E 1M IPds5120 E kIN 1.m 2 精品课件 25
80 X1 = 9 kN
➢土木工程专业的力学可分为两大类,即“结构力学类”和“弹性力学 类”。
“结构力学类”包括理论力学、材料力学和结构力学,其分析方法具有 强烈的工程特征,简化模型是有骨架的体系(质点、杆件或杆系), 其力法基本未知量一般是“力”,方程形式一般是线性方程。
“弹性力学类”包括弹塑性力学和岩土力学,其思维方式类似于高等数 学体系的建构,由微单元体(高等数学中的微分体)入手分析,简化 模型通常是无骨架的连续介质,其力法基本未知量一般是“应力”, 方程形式通常是微分方程。
矩明显增大。
精品课梁件 最大弯矩可进一步减小。
37
§6-5 力法解对称结构 内容回顾
n次超静定结构的力法典型方程:
11X1 12X2 21X1 22X2
n1X1 n2X2
1nXn 1P 0
2nXn
2P
0
nnXn nP 0
精品课件
38
§6-5 力法解对称结构
1. 结构的对称性: 例1:
1. 结构的几何形式和支承情况对某轴对称 2. 杆件的截面和材料性质也对此轴对称(EI等)
➢如果一个问题中既有力的未知量,也有位移的未知量,力的部分考虑
位移约束和变形协调,位移的部分考虑力的平衡,这样一种分析方案
称为混合法。
结构力学课件—结构动力学
中南大学
退出
返回
17:04
§14-1 概述
二、动力荷载的分类
1. 周期荷载
结构力学
周期荷载—— 随时间周期地变化的荷载。其中最简单、最重要的是 简谐荷载(按弦或余弦函数规律变化)。 F
r
m
F (t) F t
θ t
o
简谐荷载
l/ 2
l/ 2
非简谐性周期荷载
F (t)
例:打桩时落锤撞击所产生的荷载。
o
退出
返回
17:04
§14-3 单自由度结构的自由振动
结构力学
(2)柔度法。即列位移方程。当质点m振动时,把惯性力看作静力荷载作用在体 系的质量上,则在其作用下结构在质点处的位移y应当为:
y F111 my11
即
my k11 y 0
同刚度法所得方程
此二阶线性常系数齐次微分方程的通解为:
振动微分方程的建立方法:
(1)刚度法。即列动力平衡方程。设质点m在振动的任一时刻位移为y,取质点 m为隔离体,不考虑质点运动时受到的阻力,则作用于质点m上 的力有: (a) 弹簧恢复力
Fc k11 y
(b) 惯性力
该力有将质点拉回静力平衡位置的趋势,负号表示其方 向恒与位移y的方向相反,即永远指向静力平衡位置。
产生自由振动的原因:结构在振动初始时刻受到干扰。 初始干扰的形式: (1)结构具有初始位移 m (2)结构具有初始速度 Δ st 静平衡位置 (3)上述二者同时存在
yd
结构力学
自由振动:结构在振动进程中不受外部干扰力作用的振动形式。
k11
m
FS (t )
yd
W
FI ( t )
1. 不考虑阻尼时的自由振动
《结构力学》静定结构的位移计算
03
在实际应用中,可以根据结构特点、计算精度和计算资源等因素综合考虑选择 合适的数值方法。
THANKS FOR WATCHING
感谢您的观看
桥梁横向位移限制
对于大跨度桥梁,需要限制其在风荷载、地震等横向力作用下的横 向位移,以保证桥梁的稳定性和行车安全。
支座位移控制
桥梁支座的位移也需要进行控制,以避免支座过度磨损或脱空等现 象,确保桥梁的正常使用。
建筑工程中变形缝设置要求
伸缩缝设置
为避免建筑物因温度变化、地基沉降等因素而产生裂缝或 破坏,需要在建筑物的适当位置设置伸缩缝,使建筑物能 够自由伸缩。
计算方法
采用分段叠加法,将组合结构分成若 干段,分别计算各段的位移再求和; 或采用有限元法直接求解整体位移。
需考虑不同材料或截面的变形协调问 题。
03 图乘法计算静定结构位移
图乘法基本原理及适用条件
基本原理
图乘法是基于结构力学的虚功原理,通过图形面积与形心位置的乘积来简化计 算结构位移的一种方法。
均布荷载作用
荷载沿梁长均匀分布,引 起梁产生均匀弯曲变形。
位移计算
采用图乘法或积分法求解, 考虑荷载、跨度、截面惯 性矩等因素。
悬臂梁在集中力作用下位移
悬臂梁基本概念
一端固定,另一端自由的 梁,承受集中力、均布荷 载等。
集中力作用
在悬臂梁自由端施加集中 力,引起梁产生弯曲和剪 切变形。
位移计算
采用叠加原理,分别计算 弯曲和剪切变形引起的位 移,再求和。
制造误差对结构位移的影响不同。
影响系数
02
利用影响系数可以计算制造误差引起的结构位移,影响系数与
结构形式和荷载情况有关。
敏感性分析
结构力学主要定理
§11-1概述1.变形功与变形能弹性杆受拉力P作用(图11-1),当P从零开始到终值缓慢加载时,力P在其作用方向上的相应位移也由零增至而做功,称为变形功。
(11-1)与此同时弹性杆被拉长而具有做功的能力,表明杆件内储存了变形能。
单位体积储存的应变能称为应变比能(11-2)整个杆件的变形能为(11-3)如果略去拉伸过程中的动能及其它能量的变化与损失,由能量守恒原理,杆件的变形能U在数值上应等于外力做的功W,即有U=W (11-4)这是一个对变形体都适用的普遍原理称为功能原理,弹性固体变形是可逆的,即当外力解除后,弹性体将恢复其原来形状,释放出变形能而做功。
但当超出了弹性范围,具有塑性变形的固体,变形能不能全部转变为功,因为变形体产生塑性变形时要消耗一部分能量,留下残余变形。
2.应变余功与余能变形体受外力作用时的余功定义为其中P1是外力从零增加到的终值,仿照功与变形能相等的关系,将余功相应的能称为余能,用U c表示。
余功与余能相等,即可仿照前面,定义单位体积余应变能(或应变余能),称为余应变比能由此整个结构余应变能可写成应指出:余功、余应变能、余应变比能具有功的量纲,是变形体的另一能量参数,但都没有具体的物理概念,只是常力所做的功减去变力所做功余下的那部分功。
3.能量原理固体力学中运用功与能有关的基本原理统称为能量原理,由此发展出来的方法称为能量法。
能量原理是在总体上从功与能的角度考察变形体系统的受力、应力与变形的原理与方法,是进一步学习固体力学的基础,也是当今应用甚广的有限元法求解力学问题的重要基础。
4.本章内容本章只涉及能量原理在材料力学中常用的部分内容,如:变形能、互等定理、卡氏定理、虚功原理、单位载荷法及图乘法,更为深入的,如最小势能原理,最小余能原理等变分原理,可参考其它专著。
§11-2 杆件变形能计算杆件不同受力情况下的变形能。
1.轴向拉伸或压缩线弹性杆件(图11-3)拉、压杆应变比能则整个杆的变形能或(11-5)(11-6)其中,N是内力(轴力),A是截面面积,l是杆长。
第六章力法结构力学精品文档
D1 =d11X1d12X2d13X3D1P =0 D2 =d21X1d22X2d23X3D2P =0 D3 =d31X1d32X2d33X3D3P =0
力法步骤:
1.确定基本体系
4.求出系数和自由项
2.写出位移条件,力法方程 5.解力法方程
3.作单位弯矩图,荷载弯矩图; 6.叠加法作弯矩图
1ql2 8
1 2
= ql3 = ql3 24E1I1 24E2I2k
D2P =0
X1=1 1 E1I1 l
1B
C
E2I2 l
A
M 1图
B
E1I1 l C
X2=1
A
E2I2 l
M 2图
1
X1=1 1 E1I1 l
1B
C
E2I2 l
A
M 1图
B
E1I1 l C
E2I2 l
X2=1
A
1 M 2图
I1
I2 I2=k I1
I2
6m
8m
d X• 超D静定=0结构由荷载产生的内力与
11 1
1P
D1P各度= E杆的1I1刚绝2度对8的值31相无60对关6比。=值5E1有2I10关,与各杆刚
d =1
11 EI
686 66 26 2 2 3 kEI
288k 144 =
kEI 1
1
1
X1
δ21X1+ δ22X2 +Δ2P=0
×X2
Δ1P
含义:基本体系在多余未知力和荷载共同作用下,产生的多余未知
力方向上的位移应等于原结构相应的位移,实质上是位移条件。
主系数δ ii表示基本体系由Xi=1产生的Xi方向上的位移