一元一次方程的应用全集

合集下载

一元一次方程的应用优秀10篇

一元一次方程的应用优秀10篇

一元一次方程的应用优秀10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!一元一次方程的应用优秀10篇元一次方程的应用篇一第16课 4.4一元一次方程的应用之追及问题教学目的1、使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。

一元一次方程的实际应用

一元一次方程的实际应用

一元一次方程的实际应用
1.电路分析:解决电路中由电阻、电容、电感等的次数和相位关系的一元一次方程。

2.工程测量:如标准气体混合物分子量的测定,需要使用一元一次方程。

3.机械力学:求解运动学问题时,常使用到一元一次方程来表示位置、速度和加速度之间的关系。

4.化学反应动力学:反应方程要么是一对多对应的多项式方程,要么是复杂的微分方程。

而在特定情况下,可以将多项式化为一元一次方程来解决。

5.商业问题:例如企业常使用销售量与销售价格之间的函数来进行风险评估、产品定价或者制定预测性预算。

这些函数也可以表达成一元一次方程。

一元一次方程应用题公式大全

一元一次方程应用题公式大全

一元一次方程应用题公式大全一、行程问题。

1. 基本公式。

- 路程 = 速度×时间(s = vt)。

- 速度=s÷ t,时间=s÷ v。

2. 相遇问题。

- 公式:s_总=v_1t + v_2t=(v_1+v_2)t(s_总表示总路程,v_1、v_2分别表示两者的速度,t表示相遇时间)。

- 例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲的速度是3千米/小时,乙的速度是2千米/小时,几小时后两人相遇?- 解析:设t小时后两人相遇。

根据相遇问题公式s_总=(v_1+v_2)t,这里s_总 = 20千米,v_1=3千米/小时,v_2=2千米/小时。

则(3 + 2)t=20,5t = 20,解得t = 4小时。

3. 追及问题。

- 公式:s_追及=v_1t - v_2t=(v_1-v_2)t(s_追及表示追及路程,v_1表示快者速度,v_2表示慢者速度,t表示追及时间)。

- 例题:甲、乙两人相距5千米,甲以6千米/小时的速度追赶乙,乙以4千米/小时的速度逃跑,甲几小时能追上乙?- 解析:设甲t小时能追上乙。

根据追及问题公式s_追及=(v_1-v_2)t,这里s_追及=5千米,v_1=6千米/小时,v_2=4千米/小时。

则(6 - 4)t=5,2t = 5,解得t = 2.5小时。

二、工程问题。

- 工作总量 = 工作效率×工作时间(W = p× t)。

- 工作效率=W÷ t,工作时间=W÷ p。

通常把工作总量看成单位“1”。

2. 合作问题。

- 公式:1=(p_1+p_2)t(p_1、p_2分别表示两者的工作效率,t表示合作时间)。

- 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要几天完成?- 解析:设两人合作需要t天完成。

甲的工作效率p_1=(1)/(10),乙的工作效率p_2=(1)/(15)。

根据合作问题公式1 = ((1)/(10)+(1)/(15))t,(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),则(1)/(6)t = 1,解得t = 6天。

一元一次方程在实际问题中的应用

一元一次方程在实际问题中的应用

一元一次方程在实际问题中的应用一元一次方程(或简称一次方程)是数学中一种基础的代数方程,它可以用来解决实际中的各种问题。

一次方程通常具有以下形式:ax + b = 0,其中 a 和 b 是已知的常数,x 是未知数。

在这篇文章中,我们将探讨一元一次方程在实际问题中的应用,并说明其重要性。

一元一次方程在日常生活中的应用非常广泛。

无论是在物理学、经济学还是工程学等领域,一次方程都扮演着至关重要的角色。

我们将通过几个实际问题的案例来说明这一点。

案例一:购买水果假设你在一个农贸市场上购买水果,卖家告诉你说:“每个苹果2元,你需要支付总共10元。

”现在我们可以使用一元一次方程来计算出你购买了多少个苹果。

设你购买了x 个苹果,则根据题目中的条件,我们可以得到以下方程:2x = 10。

通过解这个方程,我们可以得出 x = 5。

因此,你购买了5个苹果。

案例二:汽车行驶假设你的汽车每小时行驶50千米,并且你准备开车行驶200千米。

我们可以使用一元一次方程来计算行驶所需的时间。

设行驶时间为 t,根据速度与时间的关系,我们可以得到方程:50t = 200。

通过解这个方程,我们可以得出 t = 4。

因此,你需要4小时才能行驶200千米。

通过以上两个案例,我们可以看到一元一次方程在实际问题解决中的应用。

它们可以帮助我们解决各种数值问题,并提供了一种有效的数学工具。

除了以上案例,一元一次方程还可以用于解决更复杂的实际问题。

例如,在生产过程中的生产成本和产量之间可能存在着一定的关系。

我们可以通过建立一次方程,来计算出某个产量所对应的生产成本。

这对于企业的成本控制和效益评估非常重要。

此外,一次方程还可以用于解决金融领域的问题。

比如,在债务还款中,我们可以通过建立一次方程,来计算出每月应该还款的金额,以便合理安排个人财务。

总结起来,一元一次方程在解决实际问题中起着重要的作用。

它们帮助我们在数学上建立模型,计算未知数的值,解决各种数值问题。

七年级数学一元一次方程解决问题应用题全集

七年级数学一元一次方程解决问题应用题全集

七年级数学一元一次方程应用题解答题全集【配套问题】1、某服装厂生产一种运动服,已知每3m长的布料可做上衣2件或裤子3条,一件上衣一条裤子为一套,计划用800m长的布料生产服装,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?2、某车间有22名工人,每人每天可以生产1200个螺柱或2000个螺母,要求每天生产的螺柱和螺母刚好配套.(1)若1个螺柱需要配2个螺母,应安排生产螺柱和螺母的工人各多少名?(2)若3个螺柱需要配5个螺母,则安排生产螺母的工人有名.3、某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?4、一张圆桌由一个桌面和四条桌腿组成.如果1m3木料可以制作圆桌的桌面50个,或制作桌腿300条,那么5m3的木料如何分配可以使桌面和桌腿正好配套?最多能制作成多少张圆桌?【工程问题】1、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?2、已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合5天后,甲另有事,乙再单独做几天才能完成?3、一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?4、甲、乙两工程队共同承包了一段长9200米的某“村村通”道路硬化工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成460米,乙队平均每天比甲队多完成230米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?【销售打折问题】1、某服装店,打折销售服装,若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)每件服装的标价多少元?每件服装的成本价多少元?(2)为了尽快减少库仔,又要保证不亏本,商家最多能打几折?2、2020年,某商场开展“双十一”促销活动,将M,N两种电器捆绑售卖,M电器降价20%,N电器降价30%,已知M,N两种电器的原销售单价之和为2500元,小明参加活动购买M,N电器各一件,共付1900元.(1)M,N两种电器原销售单价各是多少元?(2)若商场在这次促销活动中M电器盈利25%,N电器亏损20%,你认为商场在这次促销活动中是盈利还是亏损了?M,N两种电器捆绑售卖一件盈利或亏损了多少元?3、某文具店今年1月份购进一批笔记本,共2290本.每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,则可全部售出;且每本售价每增长0.5元,销量就减少15本.(1)若该种笔记本在2月份的销售量为2200本,则2月份售价多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量,进行了销售调整,售价比2月份在(1)的条件下的售价减少了m%,结果3月份的销量比2月份在(1)的条件下的销售量增加了50%,3月份的销售利润达到6600元,求m的值.【课后作业】1、某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x2、一项工程,A独做10天完成,B独做15天完成,若A先做5天,再A、B合做,完成全部工程的,共需()A.8天B.7天C.6天D.5天3、超市正在热销某种商品,其标价为每件125元.若这种商品打8折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一方程为()A.125×0.8﹣x=15B.125﹣x×0.8=15C.(125﹣x)×0.8=15D.125﹣x=15×0.84、商场经销甲、乙两种商品,甲种商品每件售价70元,利润率为40%,乙种商品每件进价60元,售价90元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价用去2700元,求购进甲种商品多少件?1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

一元一次方程的应用

一元一次方程的应用

一元一次方程的应用1. 苹果的购买:假设每个苹果的价格是p,你买了x个苹果,花了y 元。

这个购买过程可以用方程px = y来表示,其中p是苹果的单价。

通过解这个方程,可以计算出每个苹果的价格或购买的数量。

2. 电费计算:假设每度电的价格是p,你使用了x度电,支付了y元的电费。

这个计算过程可以用方程px = y来表示,通过解这个方程,可以计算出每度电的价格或使用的数量。

3. 路程和速度的关系:假设一个人以每小时v的速度行驶了x小时,那么他所行驶的路程可以用方程vx = d来表示,其中d是行驶的总路程。

通过解这个方程,可以计算出速度或行驶的时间。

4. 汽车行驶的时间:假设一个汽车以每小时的速度v行驶了x千米,行驶的时间可以用方程vx = t来表示,其中t是行驶的时间。

通过解这个方程,可以计算出汽车的速度或行驶的距离。

5. 工作量计算:假设一项工作需要x个小时完成,每小时工作的效率是p个单位,那么完成这项工作需要的总工作量可以用方程px = w来表示,其中w是工作的总量。

通过解这个方程,可以计算出工作的效率或完成工作所需的时间。

6. 线性销售模型:假设一种商品每件的价格是p,销售了x件,总销售额为y元。

这个销售过程可以用方程px = y来表示。

通过解这个方程,可以计算出每件商品的价格或销售的数量。

7. 比例关系:假设一个问题中存在两个量x和y,它们之间存在比例关系,可以用方程yx = t来表示,其中t是比例系数。

通过解这个方程,可以计算出两个量的比例关系。

以上这些是一元一次方程在现实生活中的一些应用场景,我们可以通过解这些方程来计算出各种参数的值或者确认各种关系。

整合了数学和实际问题,使得人们可以更好地理解和解决实际生活中的各种情况。

一元一次方程的综合应用

一元一次方程的综合应用

一元一次方程的综合应用在数学学科中,一元一次方程是我们常见的数学模型之一。

它可以描述很多实际问题,并在解决中发挥重要作用。

本文将探讨一元一次方程在现实生活中的综合应用。

1. 零食购买问题假设某个学生在经过数学学科的学习后,决定研究他每天购买零食的花费。

设每袋零食的价格为x元,他每天购买的袋数为y袋,总花费为m元。

我们可以得到以下一元一次方程:m = xy这个方程描述了总花费与袋数和每袋价格之间的关系。

通过解这个方程,学生可以计算出每天购买的袋数和每袋价格,从而更好地管理自己的消费。

2. 声音传播速度问题在物理学中,声音的传播速度可以通过一元一次方程进行计算。

假设声音在空气中的传播速度为v(m/s),声音在某个介质中传播的距离为d(m),我们可以得到以下一元一次方程:d = vt这个方程描述了声音传播的距离与传播速度和时间之间的关系。

通过解这个方程,我们可以计算出声音在不同介质中的传播速度,从而更好地理解声音的特性和应用。

3. 速度、时间和距离问题一元一次方程在解决速度、时间和距离问题方面也有广泛的应用。

假设某辆车以v(m/s)的速度行驶t(s)时间后,行驶的距离为d (m),我们可以得到以下一元一次方程:d = vt这个方程描述了行驶距离与速度和时间之间的关系。

通过解这个方程,我们可以计算出车辆的速度、行驶的时间和距离,从而更好地掌握车辆运动的规律。

4. 人口增长问题在社会学和人口学中,一元一次方程用于研究人口增长和变化的趋势。

假设某地的人口数量为P,经过t年后,人口数量为Q,我们可以得到以下一元一次方程:Q = P + kt这个方程描述了人口数量与时间之间的关系,其中k代表每年的人口增长率。

通过解这个方程,我们可以预测未来的人口数量,从而对城市规划、社会政策等方面提供参考。

总结:一元一次方程在现实生活中的应用非常广泛,本文仅列举了零食购买问题、声音传播速度问题、速度、时间和距离问题以及人口增长问题作为例子进行说明。

一元一次方程应用题汇总精选全文完整版

一元一次方程应用题汇总精选全文完整版

可编辑修改精选全文完整版一元一次方程应用题归类聚集:(一)行程问题:1.从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,那么列方程为________________。

2.甲、乙两人在相距18千米的两地同时动身,相向而行,1小时48分相遇,若是甲比乙早动身40分钟,那么在乙动身1小时30分时两人相遇,求甲、乙两人的速度。

3. 某人从家里骑自行车到学校。

假设每小时行15千米,可比预定的时刻早到15分钟;假设每小时行9千米,可比预定的时刻晚到15分钟;求从家里到学校的路程有多少千米?800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟.5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相碰到两车尾相离通过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。

若是一列火车从他们背后开来,它通过行人的时刻是22秒,通过骑自行车人的时刻是26秒。

(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。

7.休息日我和妈妈从家里动身一同去外婆家,咱们走了1小时后,爸爸发觉带给外婆的礼物忘在家里,便立刻带上礼物以每小时6千米的速度去追,若是我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上咱们吗?8.一次远足活动中,一部份人步行,另一部份乘一辆汽车,两部份人同地动身。

汽车速度60千米/小时,咱们的速度是5千米/小时,步行者比汽车提早1小时动身,这辆汽车抵达目的地后,再转头接步行这部份人。

动身地到目的地的距离是60千米。

问:步行者在动身后经多少时刻与转头接他们的汽车相遇(汽车掉头的时刻忽略不计)?时钟问题:10.在6点和7点间,时钟分针和时针重合?行船问题:12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。

小学一元一次方程应用题100例附答案(完整版)

小学一元一次方程应用题100例附答案(完整版)

小学一元一次方程应用题100例附答案(完整版)1. 小明买了5 个练习本,每个练习本x 元,一共花了10 元,求每个练习本多少钱?-方程:5x = 10-答案:x = 2 (元)2. 学校图书馆有科技书和故事书共80 本,科技书的数量是故事书的3 倍,设故事书有x 本,求故事书的数量。

-方程:x + 3x = 80-答案:x = 20 (本)3. 一辆汽车以每小时60 千米的速度行驶,行驶了x 小时,一共行驶了300 千米,求行驶的时间。

-方程:60x = 300-答案:x = 5 (小时)4. 果园里苹果树比梨树多20 棵,梨树有x 棵,苹果树有50 棵,求梨树的数量。

-方程:50 - x = 20-答案:x = 30 (棵)5. 小明有一些零花钱,买文具用去10 元,还剩下x 元,原来一共有30 元,求剩下的钱。

-方程:x + 10 = 30-答案:x = 20 (元)6. 一个长方形的长是宽的2 倍,宽是x 厘米,周长是30 厘米,求宽的长度。

-方程:2(x + 2x) = 30-答案:x = 5 (厘米)7. 老师给学生分糖果,如果每人分5 颗,还剩下10 颗;如果每人分7 颗,正好分完。

设学生有x 人,求学生人数。

-方程:5x + 10 = 7x-答案:x = 5 (人)8. 一本书有200 页,小明已经看了x 页,还剩下80 页没看,求小明已经看的页数。

-方程:x + 80 = 200-答案:x = 120 (页)9. 甲乙两地相距400 千米,一辆汽车从甲地开往乙地,速度是每小时x 千米,行驶了5 小时后到达乙地,求汽车的速度。

-方程:5x = 400-答案:x = 80 (千米/小时)10. 学校买了一批篮球,每个篮球80 元,一共花了x 元,买了5 个篮球,求一共花的钱。

-答案:x = 400 (元)11. 仓库里有一批货物,运走了x 吨,还剩下30 吨,这批货物原来有50 吨,求运走的货物重量。

一元一次方程的应用全集

一元一次方程的应用全集

一元一次方程的应用全集一、和、差、倍、分类例1某数的3倍减2等于这个数与4的和,求这个数。

例2某面粉仓库存放的面粉运出15﹪后,还剩余42500千克,这个仓库原来有多少面粉?例3把黄豆发成豆芽后,重量可以增加7.5倍,要得到3400千克这样的豆芽,需要多少千克黄豆?二、形积变化类例4圆柱甲的底面直径为40厘米,圆柱乙的底面直径和高都为60厘米,已知圆柱甲的体积是乙的3倍,求圆柱甲的高。

例5要锻造直径为60 mm,高为20 mm的圆柱形零件毛坯,需要截取直径为40 mm的圆钢多长?例6某铜铁厂要锻造长、宽、高分别为260mm、150 mm、130 mm的长方体毛坯,需要截取截面积为130 130 mm2的方钢多长?例7用汽车将一批货物运往某地,去时每小时行45公里,由原路回来时,因空车每小时行50公里,结果比去时少用了1小时赶回原地,问去时和回来时各用了多少时间。

例8甲、乙两站之间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米。

(1)两车同时开出,相向而行,多少小时后相遇?(2)快车先开30分,两车相向而行,慢车行驶了多少小时后两车相遇?四、行程问题之追及问题例9 一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长。

通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少时间可以追上学生队伍?例10兄弟两人由家里去学校,弟每小时走6里,哥每小时走8里,哥晚出发10分钟,结果两人同时到校,学校离家有多远?五、行程问题之圆周运动例11运动场地跑道一圈长400米,甲练习自行车,平均每分钟骑490米,乙练习跑步,平均每分钟跑250米,两人从同一处同时同向出发,经过多少分钟两人首次相遇?例12甲、乙两人环湖竞走,湖的一周长是400米,乙的速度是每分钟80米,甲的速度是乙的1.25倍,现在甲在乙的前面100米,多少分钟后两人相遇?例13一条轮船在两个码头间航行,顺水需要4小时,逆水航行需5小时,水流速度是每小时2公里,求轮船在静水中的速度。

一元一次方程例子

一元一次方程例子

一元一次方程例子
1. 嘿,你知道吗?比如买苹果,一个苹果一元钱,你买了 5 个苹果,
那一共花了多少钱呀?这就是个简单的一元一次方程的例子呀!这不就是
1×5=x 嘛!
2. 哎呀呀,像坐公交车,每个人的车费是 2 元,那你和你的三个小伙伴一
起坐车,总共要花多少元?这不就是2×4=x 呀,是不是很好理解呀?
3. 哇塞,想想看哦,你去买棒棒糖,一根棒棒糖 3 元钱,你带了 10 元钱,那你能买几根呢?这不就是 3x=10 嘛,是不是挺有意思呀?
4. 嘿,就拿买文具来说吧!一支笔 5 元,你花了 30 元,那你买了几支笔呀?这不就是 5x=30 吗,很容易懂吧?
5. 哎哟,比如说你去打印文件,每页打印费是 1 元,你打印完花了 15 元,那你打印了多少页呢?这就是1×x=15 呀!
6. 哇哦,像去看电影,一张电影票 8 元,你和你的朋友一共花了 40 元,那你们有几个人去看电影啦?这不就是 8x=40 嘛,超级有趣呢!
我觉得一元一次方程在生活中真的无处不在呀,它能帮我们解决好多实际问题呢!。

一元一次方程的应用(分类)

一元一次方程的应用(分类)

06 一元一次方程在浓度问题 中的应用
溶液稀释与浓缩问题
稀释问题
通过向原溶液中加入溶剂(如水)来降低溶液的浓度。稀释前后,溶质的质量不变,即稀释前溶质质 量=稀释后溶质质量。
浓缩问题
通过蒸发溶剂或加入溶质来提高溶液的浓度。浓缩前后,溶质的质量不变,即浓缩前溶质质量=浓缩 后溶质质量。
溶质质量分数与溶液质量关系
通过大量的练习和总结, 提高解一元一次方程的速 度和准确性,形成自己的 解题思路和技巧。
THANKS FOR WATCHING
感谢您的观看
02 一元一次方程的基本解法
等式性质与移项法则
等式性质
等式两边同时加上(或减去)同 一个数,等式仍然成立。
移项法则
将等式两边的某项移到另一边, 需要改变该项的符号。
合并同类项与系数化为
合并同类项
将等式两边的同类项合并,简化等式 。
系数化为1
通过等式两边同时除以未知数的系数 ,将未知数系数化为1。
行程问题中的等量关系
路程=速度×时间。这是行程问题中最 基本的等量关系,适用于匀速和变速 直线运动。
在解决行程问题时,可以根据题目条 件列出关于路程、速度和时间的一元 一次方程,通过解方程找到未知量。
05 一元一次方程在工程问题 中的应用
工程进度与工作总量问题
工程进度问题
通过设定工作总量为单位“1”,根据完成工作的比例关系建立一元一次方程,求解 工程进度。
工作总量问题
根据已知的工作时间和工作效率,利用公式“工作总量=工作时间×工作效率”建立 一元一次方程,求解工作总量。
工作效率与工作时间问题
工作效率问题
通过设定工作总量为单位“1”,根据完成工作的比例关系建立 一元一次方程,求解工作效率。

解一元一次方程的实际应用

解一元一次方程的实际应用

解一元一次方程的实际应用一元一次方程作为初中数学中最基础的内容之一,是数学学习的重要起点。

它不仅在数学领域有着广泛的应用,而且在实际生活中也扮演着重要的角色。

本文将从几个实际应用的角度来探讨一元一次方程的解法及其在实际中的应用。

一、物理问题中的一元一次方程物理问题中的一元一次方程是最常见的应用之一。

例如,在运动学中,我们经常需要求解物体的速度、时间和距离之间的关系。

假设一个物体以匀速v的速度运动t秒后,它的位移为s。

根据运动学公式s = vt,我们可以得到一个一元一次方程。

如果已知物体的位移和速度,我们可以通过求解一元一次方程来计算出物体运动的时间。

另外,在力学中,弹簧的伸长量与施加的力之间存在着一定的关系。

假设一个弹簧的伸长量为x,施加在弹簧上的力为F。

根据胡克定律,我们可以得到一个一元一次方程F = kx,其中k是弹簧的弹性系数。

如果已知弹簧的弹性系数和伸长量,我们可以通过求解一元一次方程来计算出施加在弹簧上的力。

二、商业问题中的一元一次方程商业问题中的一元一次方程也是常见的应用之一。

例如,在销售领域,我们经常需要计算销售额和商品价格之间的关系。

假设某商品的售价为p元,销售额为s 元。

根据销售公式s = np,其中n是销售数量,我们可以得到一个一元一次方程。

如果已知销售额和商品价格,我们可以通过求解一元一次方程来计算出销售数量。

另外,在成本分析中,我们需要计算成本和产量之间的关系。

假设某产品的成本为c元,产量为q个。

根据成本公式c = mq,其中m是单位成本,我们可以得到一个一元一次方程。

如果已知成本和产量,我们可以通过求解一元一次方程来计算出单位成本。

三、金融问题中的一元一次方程金融问题中的一元一次方程也有着广泛的应用。

例如,在利息计算中,我们需要计算本金、利率和利息之间的关系。

假设某笔本金为P元,利率为r%,计算一定时间后的利息为I元。

根据利息公式I = Prt/100,我们可以得到一个一元一次方程。

(完整版)一元一次方程应用题专题

(完整版)一元一次方程应用题专题

(完整版)一元一次方程应用题专题
引言
一元一次方程是数学中最基本的方程之一。

在实际生活和工作中,我们经常遇到各种与一元一次方程有关的问题,例如物品购买、速度计算等。

本文将探讨一些实际应用中的一元一次方程题目。

应用题一:物品购买
假设你去商场购买了一批物品,其中某些物品的单价为x元,
数量为n个。

你花了y元购买了这些物品,现在你想知道每个物品
的单价和数量是多少。

解题思路:
设物品的单价为x元,数量为n个。

根据题目中的条件可列出
方程:
nx = y
我们可以通过解这个方程来求解x和n的值。

应用题二:速度计算
假设小明骑自行车以v1 km/h的速度从A地到B地,骑摩托车以v2 km/h的速度从B地到C地。

已知A地到B地的距离为d1公里,B地到C地的距离为d2公里。

现在我们想知道小明从A地到C地的总时间。

解题思路:
设从A地到B地的时间为t1小时,从B地到C地的时间为t2小时。

根据题目中的条件可列出方程:
t1 = d1/v1
t2 = d2/v2
我们可以通过解这两个方程来求解t1和t2的值,从而得到小明从A地到C地的总时间。

结论
通过以上两个应用题的解答,我们可以看到一元一次方程在实际生活中的应用范围非常广泛。

掌握一元一次方程的解题方法,可以帮助我们解决各种实际问题,提高解决问题的能力。

参考文献
[1] 清华大学附属中学数学组, 高中数学第三卷-一元一次方程. 北京: 清华大学出版社, 2009: 1-20.。

一元一次方程的应用(通用16篇)

一元一次方程的应用(通用16篇)

一元一次方程的应用(通用16篇)一元一次方程的应用篇1教学设计示例教学目标1.使同学初步把握一元一次方程解简洁应用题的方法和步骤;并会列出一元一次方程解简洁的应用题;2.培育同学观看力量,提高他们分析问题和解决问题的力量;3.使同学初步养成正确思索问题的良好习惯.教学重点和难点一元一次方程解简洁的应用题的方法和步骤.课堂教学过程设计一、从同学原有的认知结构提出问题在学校算术中,我们学习了用算术方法解决实际问题的有关学问,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由同学回答,老师板书)解法1:(4+2)÷(3-1)=3.答:某数为3.(其次,用代数方法来解,老师引导,同学口述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术方法不易思索,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中供应的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样查找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、师生共同分析、讨论一元一次方程解简洁应用题的方法和步骤例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,所以 x=50 000.答:原来有 50 000千克面粉.此时,让同学争论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 老师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;(2)例2的解方程过程较为简捷,同学应留意仿照.依据例2的分析与解答过程,首先请同学们思索列一元一次方程解应用题的方法和步骤;然后,实行提问的方式,进行反馈;最终,依据同学总结的状况,老师总结如下:(1)认真审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;(2)依据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);(3)依据相等关系,正确列出方程.即所列的方程应满意两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.例3 (投影)初一2班第一小组同学去苹果园参与劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少同学,共摘了多少个苹果?(仿按例2的分析方法分析本题,如同学在某处感到困难,老师应做适当点拨.解答过程请一名同学板演,老师巡察,准时订正同学在书写本题时可能消失的各种错误.并严格规范书写格式)解:设第一小组有x个同学,依题意,得3x+9=5x-(5-4),解这个方程: 2x=10,所以 x=5.其苹果数为3× 5+9=24.答:第一小组有5名同学,共摘苹果24个.同学板演后,引导同学探讨此题是否可有其他解法,并列出方程.(设第一小组共摘了x个苹果,则依题意,得)三、课堂练习1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元.求1978年末的储蓄存款.3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数.四、师生共同小结首先,让同学回答如下问题:1.本节课学习了哪些内容?2.列一元一次方程解应用题的方法和步骤是什么?3.在运用上述方法和步骤时应留意什么?依据同学的回答状况,老师总结如下:(1)代数方法的基本步骤是:全面把握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;(2)以上步骤同学应在理解的基础上记忆.五、作业1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?3.某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多150台.这家工厂前年10月生产电视机多少台?4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数一元一次方程的应用篇2教学设计示例教学目标1.使同学初步把握一元一次方程解简洁应用题的方法和步骤;并会列出一元一次方程解简洁的应用题;2.培育同学观看力量,提高他们分析问题和解决问题的力量;3.使同学初步养成正确思索问题的良好习惯.教学重点和难点一元一次方程解简洁的应用题的方法和步骤.课堂教学过程设计一、从同学原有的认知结构提出问题在学校算术中,我们学习了用算术方法解决实际问题的有关学问,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由同学回答,老师板书)解法1:(4+2)÷(3-1)=3.答:某数为3.(其次,用代数方法来解,老师引导,同学口述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术方法不易思索,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中供应的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样查找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、师生共同分析、讨论一元一次方程解简洁应用题的方法和步骤例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,所以 x=50 000.答:原来有 50 000千克面粉.此时,让同学争论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 老师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;(2)例2的解方程过程较为简捷,同学应留意仿照.依据例2的分析与解答过程,首先请同学们思索列一元一次方程解应用题的方法和步骤;然后,实行提问的方式,进行反馈;最终,依据同学总结的状况,老师总结如下:(1)认真审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;(2)依据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);(3)依据相等关系,正确列出方程.即所列的方程应满意两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.例3 (投影)初一2班第一小组同学去苹果园参与劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少同学,共摘了多少个苹果?(仿按例2的分析方法分析本题,如同学在某处感到困难,老师应做适当点拨.解答过程请一名同学板演,老师巡察,准时订正同学在书写本题时可能消失的各种错误.并严格规范书写格式)解:设第一小组有x个同学,依题意,得3x+9=5x-(5-4),解这个方程: 2x=10,所以 x=5.其苹果数为3× 5+9=24.答:第一小组有5名同学,共摘苹果24个.同学板演后,引导同学探讨此题是否可有其他解法,并列出方程.(设第一小组共摘了x个苹果,则依题意,得)三、课堂练习1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元.求1978年末的储蓄存款.3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数.四、师生共同小结首先,让同学回答如下问题:1.本节课学习了哪些内容?2.列一元一次方程解应用题的方法和步骤是什么?3.在运用上述方法和步骤时应留意什么?依据同学的回答状况,老师总结如下:(1)代数方法的基本步骤是:全面把握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;(2)以上步骤同学应在理解的基础上记忆.五、作业1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?3.某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多150台.这家工厂前年10月生产电视机多少台?4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数.一元一次方程的应用篇3教学设计示例教学目标1.使同学初步把握一元一次方程解简洁应用题的方法和步骤;并会列出一元一次方程解简洁的应用题;2.培育同学观看力量,提高他们分析问题和解决问题的力量;3.使同学初步养成正确思索问题的良好习惯.教学重点和难点一元一次方程解简洁的应用题的方法和步骤.课堂教学过程设计一、从同学原有的认知结构提出问题在学校算术中,我们学习了用算术方法解决实际问题的有关学问,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由同学回答,老师板书)解法1:(4+2)÷(3-1)=3.答:某数为3.(其次,用代数方法来解,老师引导,同学口述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术方法不易思索,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中供应的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样查找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、师生共同分析、讨论一元一次方程解简洁应用题的方法和步骤例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,所以 x=50 000.答:原来有 50 000千克面粉.此时,让同学争论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 老师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;(2)例2的解方程过程较为简捷,同学应留意仿照.依据例2的分析与解答过程,首先请同学们思索列一元一次方程解应用题的方法和步骤;然后,实行提问的方式,进行反馈;最终,依据同学总结的状况,老师总结如下:(1)认真审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;(2)依据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);(3)依据相等关系,正确列出方程.即所列的方程应满意两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.例3 (投影)初一2班第一小组同学去苹果园参与劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少同学,共摘了多少个苹果?(仿按例2的分析方法分析本题,如同学在某处感到困难,老师应做适当点拨.解答过程请一名同学板演,老师巡察,准时订正同学在书写本题时可能消失的各种错误.并严格规范书写格式)解:设第一小组有x个同学,依题意,得3x+9=5x-(5-4),解这个方程: 2x=10,所以 x=5.其苹果数为3× 5+9=24.答:第一小组有5名同学,共摘苹果24个.同学板演后,引导同学探讨此题是否可有其他解法,并列出方程.(设第一小组共摘了x个苹果,则依题意,得)三、课堂练习1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元.求1978年末的储蓄存款.3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数.四、师生共同小结首先,让同学回答如下问题:1.本节课学习了哪些内容?2.列一元一次方程解应用题的方法和步骤是什么?3.在运用上述方法和步骤时应留意什么?依据同学的回答状况,老师总结如下:(1)代数方法的基本步骤是:全面把握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;(2)以上步骤同学应在理解的基础上记忆.五、作业1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?3.某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多150台.这家工厂前年10月生产电视机多少台?4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数一元一次方程的应用篇4教学内容:人见教版初一代数[目的要求]:1. 使同学能分析问题中的相等关系,会列出一元一次方程,解简洁的调配问题的应用题;2. 使同学能从应用题所求的两个未知数中选设一个,通过列方程求得这个未知数的值后,再利用它与另一个未知数以及某些已知数的关系,求得另一个未知数的值。

一元一次方程的应用【优秀8篇】

一元一次方程的应用【优秀8篇】

一元一次方程的应用【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!一元一次方程的应用【优秀8篇】元一次方程的应用篇一讲到一元一次方程去括号的应用,即用一元一次方程解决工程问题。

一元一次方程应用汇总及答案解析

一元一次方程应用汇总及答案解析

一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。

解:等量关系 甲行的总路程+乙行的路程=总路程 (18千米)设乙的速度是x 千米/时,则列出方程是: 18211)1(211321=++⎪⎭⎫ ⎝⎛+x x3、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟老师提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 4、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t 分钟后第一次相遇,t 等于 分钟。

老师提醒:此题为环形跑道上,同时同地同向的追击问题(且为第一次相遇)等量关系:快者跑的路程-慢者跑的路程=800 (俗称多跑一圈) 320t -280t =800 t =205、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?老师提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程的应用全集
一、和、差、倍、分类
例1某数的3倍减2等于这个数与4的和,求这个数。

例2某面粉仓库存放的面粉运出15﹪后,还剩余42500千克,这个仓库原来有多少面粉?
例3把黄豆发成豆芽后,重量可以增加7.5倍,要得到3400千克这样的豆芽,需要多少千克黄豆?
二、形积变化类
例4圆柱甲的底面直径为40厘米,圆柱乙的底面直径和高都为60厘米,已知圆柱甲的体积是乙的3倍,求圆柱甲的高。

例5要锻造直径为60 mm,高为20 mm的圆柱形零件毛坯,需要截取直径为40 mm的圆钢多长?
例6某铜铁厂要锻造长、宽、高分别为260mm、150 mm、130 mm的长方体毛坯,需要截取截面积为130130 mm2的方钢多长?
例7用汽车将一批货物运往某地,去时每小时行45公里,由原路回来时,因空车每小时行50公里,结果比去时少用了1小时赶回原地,问去时和回来时各用了多少时间。

例8甲、乙两站之间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米。

(1)两车同时开出,相向而行,多少小时后相遇?
(2)快车先开30分,两车相向而行,慢车行驶了多少小时后两车相遇?
四、行程问题之追及问题
例9 一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长。

通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少时间可以追上学生队伍?
例10兄弟两人由家里去学校,弟每小时走6里,哥每小时走8里,哥晚出发10分钟,结果两人同时到校,学校离家有多远?
五、行程问题之圆周运动
例11运动场地跑道一圈长400米,甲练习自行车,平均每分钟骑490米,乙练习跑步,平均每分钟跑250米,两人从同一处同时同向出发,经过多少分钟两人首次相遇?
例12甲、乙两人环湖竞走,湖的一周长是400米,乙的速度是每分钟80米,甲的速度是乙的
1.25倍,现在甲在乙的前面100米,多少分钟后两人相遇?
例13一条轮船在两个码头间航行,顺水需要4小时,逆水航行需5小时,水流速度是每小时2公里,求轮船在静水中的速度。

例14一架飞机在两个城市间飞行,无风时每小时飞行552公里,在一次往返飞行中,飞机顺风飞行用了 5.5小时,逆风飞行用了6小时,求这次飞行的风速。

七、劳力调配类
例15在甲处劳动的有27人,在乙处劳动的有19人,现调20人来支援,使甲处劳动的人数是乙处劳动人数的2倍,应调往甲、乙两处各多少人?
例16某工厂第一车间人数是第二车间人数的4
5
还少30人,若从第二车间调10人到第一车间,
则第一车间的人数是第二车间的3
4
,求两车间原来各有多少人。

八、比例分配类
例17把面积是16亩的一块地分成两部分,使它们的面积的比等于3﹕5,则每一部分的面积是多少?
例18甲、乙、丙三个人同做某种零件,已知在相同的时间内,甲、乙两的完成零件个数之比为3﹕4,乙与丙完成零件的个数比为5﹕4,现在甲、乙、丙三人一起做了1581个零件,问甲、乙、丙三人各做了多少个零件?
九、数字类
例19有六个连续正整数,其中较大的三个数之和等于较小的三个数之和的2倍,求这六个数。

例20一个两位数,十位上的数字比个位上数字小1,十位上的数字与个位上数字的和是这个两
位数的1
5
,求这个数。

例21设有一个六位数1abcde,乘以3后为1
abcde,求这个六位数。

十、工程问题
例22一个车工在使用新车刀后,每小时可比原来每小时多车8个零件,7小时车的零件比原来8小时车的零件还多38个,问这个车工使用新车刀后,每小时可车多少个零件?
例23一水池装有甲、乙、丙三个水管,甲、乙是进水管,丙是放水管,甲单独开需6小时注满一池水,乙单独开需8小时注满一池水,丙独开需24小时放完一池水,现三管齐开,几小
时可注满一池水?
十一、利润率问题
例24商店对某种商品作调价,按原价的8折出售,此时商品的利润率是10﹪,此商品的进价为1600元,商品的原价是多少?
例25某产品按原价提高40%后打八折销售,每件商品赚270元,问该商品原标价多少元?现销售价是多少?
例26某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
十二、余缺问题
例27汽车运送一批货物,若每辆车装3吨,则剩5吨;若每辆车装4吨,则可少用5辆车,问共有汽车多少辆,货物多少吨?
例28某人要在规定时间内骑车到达某地,若每小时行15千米,则可早到15分钟;若每小时行9千米,则要迟到15分钟,现打算提前10分钟到达,问此人骑车速度应为多少?
十三、配套问题
例29包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片和一张长方形铁片可配套成一个密封圆桶,问如何安排工人生产圆形或长
方形铁片能合理地将铁片配套?
例30某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
例31某车间有29名工人生产螺栓和螺母,每人每小时平均能生产螺栓15个或螺母21个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(两个螺栓配三个螺母)?
十四、时钟问题
例32求在5点和6点之间时钟的时针和分针重合的时刻。

例33求在8点和9点之间时钟的时针和分针重合的时刻。

例34求在2点20分时时钟的时针和分针所成的最小正角是多少度?
例35求在5点和6点之间时钟的时针和分针成一条直线的时刻。

十五、浓度问题
例36两种酒精,甲种浓度为60%,乙种浓度为90%,现在要配制70%的酒精300克,每种酒精各需多少?
例37在含盐20﹪的盐水中加入10千克水,变成含盐16﹪的盐水,原来的盐水是多少千克?
例38有含盐15%的盐水30千克,(1)要使盐水含盐10%,需加水多少千克?(2)要使盐水含盐20%,需加盐多少千克?。

相关文档
最新文档