第三章温度传感器
温度传感器原理
![温度传感器原理](https://img.taocdn.com/s3/m/8fffec9cdd88d0d233d46a19.png)
一、温度传感器热电阻的应用原理温度传感器热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定。
其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。
1.温度传感器热电阻测温原理及材料温度传感器热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。
温度传感器热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造温度传感器热电阻。
2.温度传感器热电阻的结构(1)精通型温度传感器热电阻工业常用温度传感器热电阻感温元件(电阻体)的结构及特点见表2-1-11。
从温度传感器热电阻的测温原理可知,被测温度的变化是直接通过温度传感器热电阻阻值的变化来测量的,因此,温度传感器热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。
为消除引线电阻的影响同般采用三线制或四线制,有关具体内容参见本篇第三章第一节.(2)铠装温度传感器热电阻铠装温度传感器热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。
与普通型温度传感器热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。
(3)端面温度传感器热电阻端面温度传感器热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。
它与一般轴向温度传感器热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。
(4)隔爆型温度传感器热电阻隔爆型温度传感器热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。
隔爆型温度传感器热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。
高中物理第三章传感器2温度传感器和光传感器课件教科版选修3
![高中物理第三章传感器2温度传感器和光传感器课件教科版选修3](https://img.taocdn.com/s3/m/688df6cf4431b90d6d85c773.png)
(2)烟雾进入罩内后对光有散射作用,使部分光线照射 到光电三极管上,其电阻变小。与传感器连接的电路检 测出这种变化,就会发出警报。
【特别提醒】 (1)热敏电阻随温度的升高,电阻有可能减小,也有可能 增大。 (2)并非所有半导体材料都可以当成光敏电阻或热敏电 阻使用。
【过关训练】 1.如图所示是某居住小区门口利用光敏电阻设计的行 人监控装置,R1为光敏电阻、R2为定值电阻,A、B接监 控装置。则 ( )
【素养解读】
核心 素养 素养 角度
素养任务
科学 问题 利用图像探究热敏电阻与温度的关 探究 解释 系
科学 科学 根据闭合电路欧姆定律分析求出温 思维 推理 度的数值
【核心归纳】 1.探究热敏电阻: (1)实验器材:热敏电阻、多用电表、 铁架台、烧杯、冷水、热水、导线等。 (2)实验步骤: ①按图连接好电路,将热敏电阻绝缘处理。
答案:见正确解答
【核心归纳】 1.探究光敏电阻的特性: (1)实验器材:电压直流电源、滑动变阻器、小灯泡、 多用电表、光敏电阻、导线、黑纸。
(2)实验步骤: ①将光敏电阻、多用电表、小灯泡、滑动变阻器按如 图所示电路连接好,并将多用电表置于“×100”挡。
②先测出在室内自然光的照射下光敏电阻的阻值,并记 录数据。 ③打开电源,让小灯泡发光,调节小灯泡的亮度使之逐 渐变亮,观察表盘指针显示电阻阻值的情况,并记录。 ④用黑纸遮光,观察表盘指针显示电阻阻值的情况,并 记录。
二、光传感器 1.作用:光传感器是转换_光__信__号__的传感器。 2.原理:有些金属或半导体材料,在电路中受到光照时, 产生_电__流__或_电__压__,实现光信号向电信号的转化。 3.应用:_自__动__门__、光电式烟尘浓度计、光电式转速 表。
《温度传感器》课件
![《温度传感器》课件](https://img.taocdn.com/s3/m/0a3e66fa68dc5022aaea998fcc22bcd127ff425f.png)
04
温度传感器的选型与使用注意事项
温度传感器的选型原则
根据测量范围选择
根据所需测量的温度范围选择合 适的温度传感器,如热电偶适用 于高温测量,而热敏电阻则适用
于中低温测量。
根据精度要求选择
根据测量精度要求选择合适的温度 传感器,如高精度测量需要使用热 电偶或热电阻等高精度温度传感器 。
根据环境因素选择
温度传感器的分类
总结词:种类介绍
详细描述:温度传感器有多种类型,常见的有热电阻、热电偶、集成温度传感器等。不同类型的温度传感器有不同的特点和 适用范围。
温度传感器的工作原理
总结词:工作机制
详细描述:温度传感器的工作原理基于热电效应、热电阻效应等物理效应,通过感知物体温度变化产 生的物理量变化,转换为电信号输出。
02
常见温度传感器介绍
热电阻型温度传感器
总结词
基于热电阻原理,通过测量电阻值变化来感知温度变化。
详细描述
热电阻型温度传感器利用金属导体随温度变化的电阻值来测 量温度。常见的热电阻材料有铜、镍、铂等,其中铂电阻精 度高,稳定性好,广泛应用于工业和科研领域。
热电偶型温度传感器
总结词
基于热电效应原理,通过测量热电势来反映温度变化。
农业与园艺领域
总结词
农业与园艺领域中,温度传感器对于作物生长、动物 养殖和农业设施的运行具有重要意义。
详细描述
在农业领域,温度传感器可以监测温室、畜禽舍、渔塘 等场所的温度变化,帮助养殖户和农民及时调整环境温 度,保证动植物的正常生长和生产效益。在园艺领域, 温度传感器可以用于监测植物生长环境的温度变化,如 花房、植物培养室等场所的温度控制,促进植物健康生 长和提高园艺产品的品质。此外,温度传感器还可以用 于农业设施的温度监测和控制,如农业机械、灌溉系统 等设备的运行状态和温度管理。
第三章 传感器
![第三章 传感器](https://img.taocdn.com/s3/m/1ec1e27c168884868762d6db.png)
第三章常用的传感器§3.1传感器的分类一、传感器的定义通俗的讲,传感器就是将被测信息转换成某种信号的器件。
也就是将被测物理量转换成于之相对应的、容易检测、传输或处理的信号的装置,称之为传感器。
传感器通常直接作用于被测量。
传感器是对信号进行感受与传送的装置,它是测试装置的输入环节,因此传感器的性能直接影响着整个测试装置的工作可靠性。
近来,随着测量、控制及信息技术的发展,传感器作为这个领域内的一个重要构成因素,被视为90年代的重要技术之一受到了普遍的重视。
深入研究传感器的原理和应用,研制新型传感器,对于社会生产、科学技术和日常生活中的自动测量和自动控制的发展,以及在科学技术领域里实现现代化都有重要意义。
二、传感器的组成传感器一般由敏感元件、传感元件和测量电路三个主要部分组成,有时还加上辅助电源。
通常可用图表示如下:图4-1 传感器的组成由于其用途的不同或是结构原理的不同,其繁简程度相差很大。
因此,传感器的组成将依不同情况而有差异。
敏感元件——传感器的核心,它直接感受被测量(一般为非电量)并转换成信号形成,即输出与被测量成确定关系的其它量的元件,如膜片、热电偶,波纹管等。
传感元件——又称变换器,是传感器的重要组成部分。
传感元件可以直接感受被测量(一般为非电量)而输出与被测量成确定关系的电量。
如热电偶和热敏电阻等。
传感元件也可以不只感受被测量,而只是感受与被测两或确定关系的其它非电量;如应变式压力传感器的电阻片,并不直接感受压力,只是感受与被测压力成确定关系的应变,然后输出电量,在多数情况下,使用的就是这种传感元件。
测量电路——能把传感元件输出的电信号转换为便于显示、记录、控制和处理的有用电信号的电路。
测量电路视传感元件的类型而定。
三、传感器的分类在生产和科研中应用的传感器种类很多,一种被测量有时可以用集中传感器来测量,用一种传感器往往可以测量多种物理量。
为了对传感器有一个概括的认识,对传感器进行研究是很必要的。
温度传感器原理课件
![温度传感器原理课件](https://img.taocdn.com/s3/m/7f7c018f9fc3d5bbfd0a79563c1ec5da50e2d692.png)
• 温度传感器概述 • 电阻式温度传感器 • 热电偶温度传感器 • 红外温度传感器 • 比较与选择策略 • 实验与案例分析 • 总结与展望
01
温度传感器概述
定义与分类
定义
温度传感器是一种将温度变量转 换为可输出信号的传感器,用于 测量物体或环境的温度。
分类
按照测量方式可分为接触式和非 接触式;按照工作原理可分为热 电偶、热电阻、半导体温度传感 器等。
讨论多功能传感器融合技术的发展趋势, 如温度、湿度、光照等传感器融合技术在 环境监测等领域的应用。
THANKS
感谢观看
05
比较与选择策略
不同类型传感器之间比较
热电偶传感器 利用热电效应测量温度,具有测量范围广、精度高的特点, 但响应速度较慢,且易受电磁干扰影响。
热电阻传感器 利用材料电阻随温度变化的特性测量温度,具有较高的精 度和稳定性,但线性度较差,需进行非线性补偿。
红外温度传感器 通过测量目标物体发射的红外辐射来测量温度,具有非接 触式测量、响应速度快、抗干扰能力强的优点,但受环境 因素影响较大,精度相对较低。
优缺点分析
优点
热电偶温度传感器具有测量范围宽(-270~+2000℃)、精度高、稳定性好、响应时间快等优点。此 外,热电偶结构简单,制造方便,成本较低。
缺点
热电偶的冷端补偿问题会影响测量精度。同时,热电偶对连接线的材质和长度有一定要求,否则会产 生附加误差。此外,热电偶的长期稳定性和复现性较差。
04
02
电阻式温度传感器
Байду номын сангаас
原理与结构
原理
利用物质电阻随温度变化的特性进行 测量。温度升高时,电阻值增加;温 度降低时,电阻值减小。
传感器原理温度传感器资料课件
![传感器原理温度传感器资料课件](https://img.taocdn.com/s3/m/f8b89f844128915f804d2b160b4e767f5acf8099.png)
IC温度传感器
总结词
集成度高,精度高,稳定性好。
详细描述
IC温度传感器是一种集成化的温度传感器,利用半导体材料的热敏特性实现温度测量。具有集成度高、精度高、 稳定性好、体积小等优点,广泛应用于各种电子设备和系统中。
04 温度传感器应用
温度传感器在家用电器中的应用
01
02
03
冰箱
温度传感器用于检测和控 制冰箱内的温度,确保食 物的保鲜效果。
车辆安全系统
温度传感器用于检测车辆 周围的环境温度,为车辆 的安全系统提供参考数据 。
温度传感器在环境监测中的应用
大气环境监测
温度传感器用于监测大气温度,帮助 气象部门预测天气变化。
水质监测
土壤温度监测
温度传感器用于监测土壤温度,帮助 农业部门了解土壤状况,指导农业生 产。
温度传感器可以检测水体的温度,为 环境保护部门提供水质监测数据。
详细描述
热电阻温度传感器利用导体电阻随温度变化的原理,将温度 变化转换为电阻值的变化,具有测量精度高、稳定性好、输 出信号大等优点,常用于工业和医疗领域的温度测量。
热敏电阻温度传感器
总结词
基于半导体的热敏特性,响应速度快,测量精度高。
详细描述
热敏电阻温度传感器利用半导体的热敏特性,将温度变化转换为电阻值的变化, 具有响应速度快、测量精度高、体积小等优点,常用于电子设备和家用电器中的 温度检测。
03 常见温度传感器介绍
热电偶温度传感器
总结词
基于热电效应原理,测量温度范围广,稳定性好。
详细描述
热电偶温度传感器利用热电效应原理,将温度变化转换为电信号,具有测量范 围广、稳定性好、输出信号强等优点,常用于工业和科研领域的高温测量。
小学信息技术第三册传感器1选修教案苏科版
![小学信息技术第三册传感器1选修教案苏科版](https://img.taocdn.com/s3/m/52f77a1c326c1eb91a37f111f18583d049640fb3.png)
在上完这节课后,我对教学过程进行了深入的反思。首先,我发现学生们对传感器这一新技术表现出浓厚的兴趣。在导入新课环节,通过让学生分享生活中见到的传感器应用,成功激发了他们的好奇心。这一点让我深感欣慰,也说明贴近生活的教学方式能更好地吸引学生的注意力。
然而,在讲解光敏传感器和温度传感器的原理时,我发现部分学生对这些抽象概念的理解存在困难。为此,我及时调整了教学方法,通过展示实物和具体实例,让学生更直观地理解传感器的工作原理。在今后的教学中,我还需要继续探索更多有效的教学策略,帮助学生克服学习难点。
1.采用更多贴近生活的实例,帮助学生理解抽象概念。
2.加强对学生团队合作能力的培养,提高实践操作环节的教学效果。
3.注重课后作业的布置与检查,提高学生的自主学习能力。
4.优化板书设计,使之更加简洁明了,同时注重艺术性和趣味性。
重点题型整理
1.题目:简述光敏传感器的工作原理。
答案:光敏传感器的工作原理是利用光敏元件(如光敏电阻、光敏二极管等)的电阻或电流随光照强度变化而变化的特性。当光照强度增加时,光敏元件的电阻减小,电流增大;反之,光照强度减小时,光敏元件的电阻增大,电流减小。
4.结合生活实例,探讨传感器在现实生活中的应用。
依据苏科版教材,我们将重点学习以下章节:
1.第三章第二节:光敏传感器。
2.第三章第三节:温度传感器。
核心素养目标分析
本节课的核心素养目标主要包括以下方面:
1.信息素养:培养学生理解传感器信息采集的基本原理,学会运用传感器技术获取、处理和分析信息,提高解决问题的能力。
-在板书旁边绘制简单的传感器示意图,增强直观性。
-设计有趣的互动环节,如让学生在黑板上画出自己设计的传感器应用,并标注关键部件。
温度传感器 ppt课件
![温度传感器 ppt课件](https://img.taocdn.com/s3/m/537f7d1ea0116c175e0e483c.png)
无危险性,无公害等。
返回首页
3.5.1 温度传感器概述
返回首页
3. 温度传感器的种类及特点
接触式温度传感器 非接触式温度传感器
接触式温度传感器的特点:传感器直接与被测物体接触进行温度 测量,由于被测物体的热量传递给传感器,降低了被测物体温度, 特别是被测物体热容量较小时,测量精度较低。因此采用这种方 式要测得物体的真实温度的前提条件是被测物体的热容量要足够 大。
非接触式温度传感器主要是利用被测物体热辐射而发出红外线, 从而测量物体的温度,可进行遥测。其制造成本较高,测量精度 却较低。优点是:不从被测物体上吸收热量;不会干扰被测对象 的温度场;连续测量不会产生消耗;反应快等。
n= 5/9 (m-32) ℃
几种温标的对比
正常体温 为37 C , 相当于华 氏温度多 少度?
返回首页
3.5.1 温度传感器概述
返回首页
二、温度传感器的特Байду номын сангаас与分类 1 温度传感器的物理原理
随物体的热膨胀相对变化而引起的体积变化; 蒸气压的温度变化; 电极的温度变化 热电偶产生的电动势; 光电效应 热电效应 介电常数、导磁率的温度变化; 物质的变色、融解; 强性振动温度变化; 热放射; 热噪声。
完全地确定温标。1954年,国际计量会议选定水的三相点为
273.16,并以它的1/273.16定为一度,这样热力学温标就完全
确定了,即T=273.16(Q1/Q2)。
3.5.1 温度传感器概述
返回首页
2.国际实用温标
为解决国际上温度标准的统一及实用,经协商决定,建立一种既 能体现热力学温度又使用方便、容易实现的温标,即国际实用温 标International Practical Temperature Scale of 1968(简称 IPTS-68),又称国际温标。
第三章 1 传感器-2 温度传感器和光传感器
![第三章 1 传感器-2 温度传感器和光传感器](https://img.taocdn.com/s3/m/c6d9b44d26d3240c844769eae009581b6bd9bd84.png)
1传感器2温度传感器和光传感器[学习目标] 1.知道什么是传感器,知道其将非电信息转换成电信息的意义.2.了解热敏电阻、敏感元件的特性.3.了解几种温度传感器及光传感器的原理.1.传感器(1)定义:把被测的非电信息,按一定规律转换成与之对应的电信息的器件或装置.(2)组成:一般由敏感元件和处理电路组成.①敏感元件:将要测量的非电信息变换成易于测量的物理量,形成电信号.②处理电路:将敏感元件输出的电信号转换成便于显示、记录、处理和控制的电学量.(3)敏感元件的原理①物理类:基于力、热、光、电磁和声等物理效应;②化学类:基于化学反应的原理;③生物类:基于酶、抗体和激素等分子识别功能.2.温度传感器(1)分类①热双金属片温度传感器.②热电阻传感器.③热敏电阻传感器:a.NTC型:电阻值随温度升高而减小.b.PTC型:电阻值随温度升高而增大.(2)作用将温度变化转换为电学量变化,通过测量传感器元件的电学量随温度的变化来实现温度的测量.3.光传感器(1)原理:某些金属或半导体材料,在电路中受到光照时,产生电流或电压,实现光信号向电信号的转化.(2)作用:感知光线的变化或场景变换,使机器作出反应.(1)传感器可以把非电学量转化为电学量.(√)(2)热敏电阻的阻值随温度的升高而增大.(×)(3)干簧管可以感知磁场,接入电路,相当于开关的作用.(√)(4)光敏电阻的阻值随光线的强弱而变化,光照越强电阻越小.(√)一、传感器当你走进一座大楼时,大堂的自动门是如何“看到”你而自动打开的?答案人体发出的红外线被传感器接收后传给自动控制装置的电动机,实现自动开关门.1.传感器的原理:非电学量→传感器(敏感元件、处理电路)→电学量2.在分析传感器时要明确:(1)核心元件是什么;(2)是怎样将非电学量转化为电学量的;(3)是如何显示或控制开关的.例1关于传感器,下列说法正确的是()A.所有传感器都是由半导体材料制成的B.金属材料也可以制成传感器C.传感器主要是通过感知电压的变化来传递信号的D.水银温度计是一种传感器答案 B解析传感器材料分半导体材料、陶瓷材料、金属材料和有机材料,所以A错误;金属材料也可以制成传感器,所以B正确;传感器是通过将非电学量转换成电学量来传递信号的,所以C错误;水银温度计根据热胀冷缩来测量温度,不是传感器,所以D错误.例2如图1所示是某种汽车上的一种自动测定油箱内油面高度的装置.R是滑动变阻器,它的金属滑片是杠杆的一端,从油量表(由电流表改装而成)指针所指的刻度,就可以知道油箱内油面的高度,当滑动变阻器的金属片向下移动时()图1A.电路中的电流减小,油箱内油面降低B.电路中的电流减小,油箱内油面升高C.电路中的电流增大,油箱内油面降低D.电路中的电流增大,油箱内油面升高答案 D解析油面升高,金属片向下移动,R接入电路中的电阻减小,电路中电流增大,所以选项D正确.二、温度传感器如图2所示,将多用电表的选择开关置于欧姆挡,再将多用电表的两支表笔与负温度系数的热敏电阻R T(温度升高,电阻减小)的两端相连,这时表针恰好指在刻度盘的正中央.若在R T 上擦一些酒精,表针将如何偏转?若用吹风机将热风吹向热敏电阻,表针将如何偏转?图2答案由于酒精挥发,热敏电阻R T温度降低,电阻值增大,表针将向左偏;用吹风机将热风吹向热敏电阻,热敏电阻R T温度升高,电阻值减小,表针将向右偏.1.温度传感器的作用:将温度的变化转换为电学量的变化.2.常见的温度传感器(1)热双金属片温度传感器①原理:两种膨胀系数相差较大的不同金属片制成一体,温度升高时,双金属片变形,可控制电路的通断.②应用:日光灯启动器,电机、电冰箱保护等.(2)热电阻传感器①原理:用金属丝制作的感温电阻叫热电阻,当外界温度t发生变化时,其电阻值按R=R0(1+θt)的规律变化(θ为温度系数,R0为t=0 ℃时导体的电阻).②应用:测温度、测流量等.(3)热敏电阻传感器①原理:半导体热敏电阻的阻值随温度的变化而变化.②应用:测温、温度控制或过热保护等.③分类:正温度系数的热敏电阻(PTC),它的电阻随温度升高而增大.负温度系数的热敏电阻(NTC),它的电阻随温度的升高而减小.例3(多选)在温控电路中,通过热敏电阻阻值随温度的变化可实现对电路相关物理量的控制.如图3所示电路,R1为定值电阻,R2为半导体热敏电阻(温度越高,电阻越小),C为电容器.当环境温度降低时()图3A.电容器C的带电荷量增大B.电压表的读数增大C.电容器C两极板间的电场强度减小D.R1消耗的功率增大答案AB解析当环境温度降低时,R2变大,电路的总电阻变大,由I=ER总知I变小,又U=E-Ir,电压表的读数U增大,B正确;又由P1=I2R1可知,R1消耗的功率P1变小,D错误;电容器两极板间的电压U2=U-U1,U1=IR1,可知U1变小,U2变大,由场强E′=U2d,Q=CU2可知,Q、E′都增大,故A正确,C错误.三、光传感器如图4所示为光电式烟尘浓度计的原理图,请阅读教材,然后简述其工作原理.图4答案光源1发出的光线经半透半反镜3,分成两束强度相等的光线.一路光线直接到达光电转换电路7上,产生作为被测烟尘浓度的参比信号.另一路光线经反射镜4穿过被测烟尘5到达光电转换电路6上,其中一部分光线被烟尘吸收或散射而衰减,烟尘浓度越高,光线的衰减量越大,到达光电转换电路6的光就越弱.两路光线分别转换成电压信号U1、U2,如果U1=U2,说明被测的光路上没有烟尘;相反,如果U1、U2相差较大,说明烟尘较大,因此可用两者之比,算出被测烟尘的浓度.光敏电阻是由半导体材料制成的.它的阻值随光照强度的变化而变化,光照越强,电阻越小;光照越弱,电阻越大.例4(多选)如图5所示,R1、R2为定值电阻,L为小灯泡,R3为光敏电阻,当入射光强度增大时()图5A.电压表的示数增大B.R2中电流减小C.小灯泡的功率增大D.电路的路端电压增大答案ABC解析当入射光强度增大时,R3阻值减小,外电路总电阻减小,由闭合电路欧姆定律知,干路电流增大,R1两端电压增大,从而电压表的示数增大,同时内电压增大,故电路的路端电压减小,A项正确,D项错误.因路端电压减小,而R1两端电压增大,故R2两端电压必减小,则R2中电流减小,故B项正确.结合干路电流增大知流过小灯泡的电流必增大,故小灯泡的功率增大,C项正确.1.(对传感器的理解)许多办公楼及宿舍楼的楼梯上的电灯到了晚上能够自动做到“人来即亮,人走即灭”,其神奇功能在于控制灯的“开关”传感器,下面有关该传感器的说法中正确的是()A.该传感器能够测量的物理量是位移和温度B.该传感器能够测量的物理量是位移和光强C.该传感器能够测量的物理量是光强和声音D.该传感器能够测量的物理量是压力和位移答案 C解析楼道中安装了自动灯光控制系统,白天灯不亮,和光传感器有关;晚上有人经过时,灯自动亮起来,与声音有关,是声传感器,所以该传感器能够测量的物理量是光强和声音,C正确.2.(对传感器的理解)关于传感器工作的一般流程,下列说法正确的是()A.非电信息→敏感元件→处理电路→电信息B.电信息→处理电路→敏感元件→非电信息C.非电信息→敏感元件→电信息→处理电路D.非电信息→处理电路→敏感元件→电信息答案 A3.(光敏电阻的特性)如图6所示,R3是光敏电阻(光照增强时电阻变小),当开关S闭合后,在没有光照射时,a、b两点等电势.当用光照射电阻R3时,则(电源内阻不计)()图6A.a点电势高于b点电势B.a点电势低于b点电势C.a点电势等于b点电势D.a点电势和b点电势的大小无法比较答案 A解析当用光照射电阻R3时,R3电阻变小,R3两端电压减小,故a点电势升高,因其他电阻的阻值不变,所以a点电势高于b点电势,故A正确.4.(热敏电阻的特性)某温控电路的原理如图7所示,R M是负温度系数的热敏电阻,R是滑动变阻器,某种仪器要求在15 ℃~27 ℃的环境中工作.当环境温度偏高或偏低时,控制器会自动启动降温或升温设备.下列说法中正确的是()图7A.环境温度降低,R M的阻值减小B.环境温度升高,U ab变大C.滑片P向下移动时,U ab变大D.调节滑片P的位置能改变降温和升温设备启动时的临界温度答案 D解析环境温度降低时,R M的阻值变大,A错误;环境温度升高,R M的阻值减小,U ab变小,B错误;滑片向下移动,回路电流减小,U ab变小,C错误;调节滑片位置能改变降温和升温设备启动时的临界温度,D正确.考点一传感器及工作原理1.(多选)下列说法正确的是()A.传感器担负着信息采集的任务B.干簧管是一种能够感知磁场的传感器C.传感器不是电视遥控接收器的主要元件D.传感器是把力、温度、光、声、化学成分转换为电信号的主要工具答案ABD解析传感器的任务就是采集信息,选项A正确;干簧管的主要构造是由平时不接触的两个极易被磁化的软铁片组成的,它们靠近磁场时被磁化后相互吸引而接触,选项B正确;电视遥控接收器中使用了红外线传感器,选项C错误;由传感器的定义知,选项D正确.2.(多选)关于干簧管,下列说法正确的是()A.干簧管接入电路中相当于电阻的作用B.干簧管是根据热胀冷缩的原理制成的C.干簧管接入电路中相当于开关的作用D.干簧管是作为电控元件以实现自动控制的答案CD解析干簧管能感知磁场,是因为当两个簧片所处位置有磁场时,两个簧片被磁化而接通,所以是做开关来使用的,当磁场靠近或远离的时候,就会实现闭合或断开,故C、D正确,A、B错误.3.如图1所示,是电容式话筒的示意图,它是利用电容制成的传感器,话筒的振动膜前面有薄薄的金属层,膜后距膜几十微米处有一金属板,振动膜上的金属层和这个金属板构成电容器的两极.在两极间加一电压U,人对着话筒说话时,振动膜前后振动,使电容发生变化,从而使声音信号被话筒转化为电信号,其中导致电容变化的原因是电容器两板间的()图1A.距离变化B.正对面积变化C.电介质变化D.电压变化答案 A解析振动膜前后振动,使振动膜上的金属层与金属板间的距离发生变化,从而将声音信号转化为电信号,故A正确.4.街道旁的路灯利用半导体的电学特性制成了白天自动熄灭,夜晚自动点亮的装置,该装置的工作原理是应用了半导体的()A.光敏性B.压敏性C.热敏性D.三个特性同时应用答案 A解析要求灯夜晚亮,白天熄,可知光的强弱导致电路电流变化,所以电路中利用光传感器使电阻变化,实现自动控制,即是应用半导体的光敏性,A正确,B、C、D错误.5.(多选)电容式传感器是将非电信号转变为电信号的装置.由于电容器的电容C取决于极板正对面积S、极板间距离d以及极板间的电介质这几个因素,当某一物理量发生变化时就能引起上述某个因素的变化,从而引起电容的变化,如图2所示是四个电容式传感器的示意图,关于这四个传感器的作用,下列说法正确的是()图2A.甲图的传感器可以用来测量角度B.乙图的传感器可以用来测量液面的高度C.丙图的传感器可以用来测量压力D.丁图的传感器只能用来测量速度答案ABC考点二光敏电阻、热敏电阻的认识及应用6.如图3所示,将一光敏电阻接入多用电表两表笔上,将多用电表的选择开关置于欧姆挡,用光照射光敏电阻时,表针的偏转角为θ;现用手掌挡住部分光线,表针的偏转角为θ′,则可判断()图3A.θ′=θB.θ′<θC.θ′>θD.不能确定答案 B7.在信息技术高速发展、电子计算机广泛应用的今天,担负着信息采集任务的传感器在自动控制、信息处理技术中发挥着越来越重要的作用,其中热电传感器是利用热敏电阻将热信号转换成电信号的元件.某学习小组的同学在用多用电表研究热敏电阻特性的实验时,安装好如图4所示装置.向杯内加入冷水,温度计的示数为20 ℃,多用电表选择适当的倍率,读出热敏电阻的阻值R1,然后向杯内加入热水,温度计的示数为60 ℃,发现多用电表的指针偏转角度较大,则下列说法正确的是()图4A.应选用电流挡,温度升高换用大量程测量B.应选用电流挡,温度升高换用小量程测量C.应选用欧姆挡,温度升高时换用倍率大的挡D.应选用欧姆挡,温度升高时换用倍率小的挡答案 D解析多用电表与热敏电阻构成的回路中未接入电源,故不能用电流挡,A、B错误;当温度升高时多用电表指针偏转角度较大,说明热敏电阻的阻值变小了,应该换用倍率小的挡,C错误,D正确.8.如图5所示的电路中,电源两端的电压恒定,L为小灯泡,R为光敏电阻,R和L之间用挡板(未画出)隔开,LED为发光二极管(电流越大,发出的光越强),且R与LED间距不变,下列说法中正确的是()图5A.当滑动触头P向左移动时,L消耗的功率增大B.当滑动触头P向左移动时,L消耗的功率减小C.当滑动触头P向右移动时,L消耗的功率可能不变D.无论怎样移动滑动触头P,L消耗的功率都不变答案 A解析滑动触头P左移,滑动变阻器接入电路的电阻减小,流过二极管的电流增大,从而发光增强,使光敏电阻R的阻值减小,流过灯泡的电流增大,L消耗的功率增大.同理,当滑动触头P向右移动时,L消耗的功率减小.9.(多选)计算机光驱的主要部分是激光头,它可以发射脉冲激光信号,激光扫描光盘信息时,激光头利用光敏自动计数器将反射回来的脉冲信号传输给信号处理系统,再通过计算机显示出相应信息.光敏电阻自动计数器的示意图如图6所示,其中R1为光敏电阻,R2为定值电阻,此光电计数器的基本工作原理是()图6A.当有光照射R1时,处理系统获得高电压B.当有光照射R1时,处理系统获得低电压C.信号处理系统每获得一次低电压就计数一次D.信号处理系统每获得一次高电压就计数一次答案AD解析当有光照射R1时,R1的电阻减小,处理系统获得高电压;信号处理系统每获得一次高电压就计数一次.10.如图7所示,R1为定值电阻,R2为负温度系数的热敏电阻(负温度系数热敏电阻是指阻值随温度的升高而减小的热敏电阻),L为小灯泡,电源内阻不计,当温度降低时()图7A.R1两端的电压增大B.电流表的示数增大C.小灯泡的亮度变强D.小灯泡的亮度变弱答案 C解析R2与灯泡L并联后与R1串联,然后与电流表、电源构成闭合电路,当温度降低时,热敏电阻R2的电阻值增大,外电路总电阻增大,则总电流减小,即电流表的示数减小,R1两端的电压减小,灯泡L两端电压增大,灯泡亮度变强,故C正确,A、B、D错误.11.如图8所示为某传感装置内部部分电路图,R T为正温度系数热敏电阻,其特性为随着温度的升高阻值增大;R1为光敏电阻,其特性为随着光照强度的增强阻值减小;R2和R3均为定值电阻,电源电动势为E,内阻为r,V为理想电压表.若发现电压表示数增大,可能的原因是()图8①热敏电阻温度降低,其他条件不变②热敏电阻温度升高,其他条件不变③光照减弱,其他条件不变④光照增强,其他条件不变A.①③B.①④C.②③D.②④答案 A解析热敏电阻温度降低时,其阻值减小,外电路总电阻减小,总电流增大,路端电压随之减小,通过光敏电阻的电流减小,通过R3的电流增大,电压表的读数增大,符合题意,故①正确.同理可得热敏电阻温度升高,其他条件不变,电压表的示数减小,不符合题意,故②错误.光照减弱,光敏电阻的阻值增大,外电路总电阻增大,路端电压增大,则电压表的示数增大,故③正确.光照增强,光敏电阻的阻值减小,外电路总电阻减小,路端电压减小,则电压表的示数减小,故④错误.故A选项正确.12.(多选)如图9所示,理想变压器的原线圈与定值电阻r串联,副线圈接热敏电阻R T(温度升高,阻值减小),在正弦交流电源的电压U0不变的情况下,下列说法正确的是()图9A.当R T的温度升高时,原线圈两端的电压一定减小B.当R T的温度升高时,原线圈中的电流一定减小C.当R T的温度降低时,r消耗的功率一定减小D .当R T 的温度降低时,r 消耗的功率一定增大答案 AC解析 设变压器原线圈的匝数为n 1,副线圈的匝数为n 2,当R T 的温度升高时,其阻值减小,副线圈的电流I 2增大,根据I 1I 2=n 2n 1,可知原线圈的电流I 1增大,根据U 0=I 1r +U 1,可知原线圈两端的电压U 1减小,故A 正确,B 错误;同理,当R T 的温度降低时,其阻值增大,副线圈的电流I 2减小,根据I 1I 2=n 2n 1,可知原线圈的电流I 1减小,根据P =I 12r ,可知r 消耗的功率一定减小,故C 正确,D 错误.13. (多选)如图10所示,电源的电动势为E ,内阻为r ,R 1、R 2、R 3为定值电阻,R 4为光敏电阻(光敏电阻被光照射时阻值变小),C 为电容器.闭合开关S ,电路稳定后,用光照射R 4,下列说法正确的是( )图10A .电压表示数增大B .电源的效率增大C .电容器所带电荷量增加D .R 2上消耗的功率增大答案 CD解析 因有光照射时,光敏电阻的阻值减小,故总电阻减小;由闭合电路的欧姆定律可知,干路电流增大,由U =E -Ir 可知路端电压减小,所以电压表示数减小,故A 错误;电源的效率η=P 出P 总×100%=EI -I 2r EI ×100%=(1-Ir E )×100%,电流增大,则电源效率减小,故B 错误;电容器的电压与R 2两端的电压相等,因R 4电阻变小,总电阻变小,总电流增大,路端电压变小,通过R 1的电流减小,则通过R 2的电流增大,所以电容器的电压增大,根据Q =CU 可知,电容器所带电荷量一定增加,故C 正确;通过R 2的电流增大,根据P =I 2R 可知,R 2上消耗的功率增大,故D 正确.。
高中物理第三章传感器1传感器2温传感器和光传感器
![高中物理第三章传感器1传感器2温传感器和光传感器](https://img.taocdn.com/s3/m/bf64cbaff01dc281e43af0b9.png)
第三十页,共四十四页。
含有热敏电阻、光敏电阻电路的动态分析步骤 (1)明确热敏电阻(或光敏电阻)的阻值随温度(或光线强弱)是增大还是减 小. (2)分析整个回路的电阻的增减,电流的增减. (3)分析部分电路的电压、电流如何变化.
2021/12/13
第三十一页,共四十四页。
[针对训练] 3.半导体的电阻率随温度的升高而减小,经常利用半导体的这一特性来 制作传感器,如图 3-1-6 所示是一火警报警器的部分电路示意图,其中 R3 为 用半导体热敏材料制成的传感器.值班室的显示器为电路中的电流表,a、b 之间接报警器.当传感器 R3 所在处出现火情时,显示器的电流 I、报警器两 端的电压 U 的变化情况是 ( )
2021/12/13
第二十四页,共四十四页。
对温度传感器、光传感的理解(lǐjiě)及应用
1.光传感器和温度传感器的不同
传感器
光传感器
温度传感器
定义
能够感受光信号,并按一定规律 将温度变化转换为电学量变化
转换成电信号的装置
的装置
ห้องสมุดไป่ตู้
类型
主要有光敏电阻、光敏晶体管、 主要有热敏电阻、热电偶等
光电池等
2021/12/13
2021/12/13
第六页,共四十四页。
②热电阻传感器 a.敏感元件:用金属丝制作的__感_温___电阻.(又叫热电阻) b.热电阻阻值与温度 t 的关系 R=__R_0_(1_+ ___θ_t)__. (R0 为 t=0 ℃时导体电阻,θ 为温度系数)
2021/12/13
第七页,共四十四页。
③热敏电阻传感器 a.敏感元件:___半_导__体____热敏电阻. b.热敏电阻的分类: 一种是随温度升高而电阻__减_小___的热敏电阻,用 NTC 符号表示;另一类 随温度升高而电阻__增__大__(z_ēn_ɡ的dà)热敏电阻,用 PTC 符号表示. c.特点及用途: 热 敏 电 阻 对 温 度 变 化 的 响 应 _很__敏_感__(_mǐ,ngǎn常) 用 于 _测__温__ 、 温 度 _控__制_(_kò或ngzhì) __过__热_保__护____.
《温度传感器》PPT课件
![《温度传感器》PPT课件](https://img.taocdn.com/s3/m/f77d100af8c75fbfc67db243.png)
精选ppt
16
(3)测试方法
测量不同温度条件下发动机冷却液温度传感器的 输出电压,观察电压是否满足其特性曲线,即传 感器输出电压与温度的关系曲线。
精选ppt
17
•发动机冷却液温度传感器电压特性曲线
精选ppt
18
第二步:传感器与发动机控制模块之间连接 电路的测试
5V VO
精选ppt
19
•第三步、传感器单件测试(就车检测)
对于负热敏系数的温度传感器来说,随 着温度的上升,传感器的电阻值将下降, 传感器两端的电压降也将下降,发动机 控制模块就是根据该电压的变化来识别 发动机冷却液的温度。
精选ppt
12
4、传感器的电阻特性
随着温度的
电阻
上升,传感 器的电阻值 不断减小。
精选ppt
13
5、传感器的电压特性
电压
随着温度的
升,传感器的电阻将增大; (2)负热敏系统的温度传感器:即随着温度的上
升,传感器的电阻将减小;来自精选ppt10
3、温度传感器的工作过程
精选ppt
11
对于正热敏系数的温度传感器来说,随 着温度的上升,传感器的电阻值将上升, 传感器两端的电压降也将上升,发动机 控制模块就是根据该电压的变化来识别 发动机冷却液的温度。
精选ppt
20
•第三步、传感器单件测试(拆卸测试)
精选ppt
21
•发动机冷却液温度传感器的电阻标准曲线
精选ppt
22
上升,传感
器的电压值
不断减小。
精选ppt
14
测试篇
精选ppt
15
第一步:传感器输出信号的测试
(1)测试所需的仪器设备:
温度传感器ppt.. 共23页
![温度传感器ppt.. 共23页](https://img.taocdn.com/s3/m/61502832f5335a8102d220d6.png)
温度传感器的前景及发展方向
温度传感器技术朝着高精度、高可靠性 、宽测量范围、微型化及微功耗方向发展. 并不断开发出一些能在特殊环境下工作的 温度传感器,如可在高低温(一200一 2000℃)、化学腐 蚀性强、电磁干扰严重 的恶劣环境中工作的光纤温度传感器。
Thank you
标准化热电偶的主要性能和特点
热敏电阻温度传感器
热敏电阻是利用半导体(某些金属氧化物如 NiO,MnO2, CuO,TiO2)的电阻值随温度显著变化这一 特性制成的一种热敏元件,其特点是电阻率随温度而 显著变化,一般测温范围:-50 ~ +300℃。
壳体
引线
热敏电阻
(a)玻璃罩珠状
(b)片状
(c)垫圈状
数字输出IC温度传感器:带有一个内置参但可以采用自动关闭和单次转换模式 使其在需要测量之前将IC设置为低功耗状态,从 而将自身发热降到最低。
温度传感器的应用
感测应用: 温度传感器的热转换方式经常被用来测量物理量(如流
量、辐 射、气体压力、气体种类、湿度、热化学反应等)。 这些传感器的测量值都是以热 形式为媒介并以电信号的 方式输出。
温度传感器的应用
生物医学应用: 生物医学的应用必须使用特殊的温度传感器,其中最
重要 的特性是要求低功耗、长期稳定性好、可靠性高以 及在32~44℃之间,精确度小 于0.1℃。
温度传感器的应用
太空应用: 热敏电阻以及硅PN结已经使用于太空温度测量。具有
数字输出功能的智 能温度传感器可应用于未来的卫星设
温度传感器
组员: 赵芮爽 2019210045 白世文 2019210046 侯永涛 2019210047 翟德强 2019210048 宋 莹 2019210049
苏科版信息技术九年级上册温度传感器课件
![苏科版信息技术九年级上册温度传感器课件](https://img.taocdn.com/s3/m/b08c09b8a48da0116c175f0e7cd184254a351b57.png)
▪ 对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪 声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling) 电容也称退耦电容,是把输出信号的干扰作为滤除对象。
• 图a)为电桥或动圈式计量仪器图 b) 为带放大器的动圈式计量仪器 放大器两输入端的电压为: V={(RRx-RR3)/[(Rx+R)(R+R1)]}U
▪ 图c)为电子自动平衡式计量仪器 , 图d)为数字式温度计
设RP上端的电压为RPU,下端电压为 RPD, 图C)中放大器两边的电压为: UA=[(2RPD+Rx-R-RP)/(2RP+2R+Rx)]U
热电阻传感器的二线式接法
▪ 右图所示电路为采用2线式连接方式, 这种接线方式不能消除连线电阻随温度 变化引起的误差,为此,应确保连线电 阻值远低于测温的热电阻值。一定要将 外部的电阻值调整到计量仪器说明书中 提供的标称值。外部电阻是指接在计量 仪器的测量端子外侧的导线及测温热电 阻体内导线所组成的电路的电阻,不包 括由热电阻体构成的电阻元件的电阻。 采用热电阻进行高精度的温度测量时, 不希望采用2线式连接方式,即使采用 也要使用电阻补偿导线
检流计两边的电压为: UG ={(RxR-RRP)/[(R+Rx)(R+RP)]}U
采用电阻补偿导线的2线式连接方式
▪ 采用这种2线式接法和三线式接法有同 样的效果
▪ 图a)为电桥或动圈式测温计,图b) 为电子自动平衡式计量仪器
3线式铂热电阻实用电路
传感器原理其它温度传感器课件
![传感器原理其它温度传感器课件](https://img.taocdn.com/s3/m/24fff84dfe00bed5b9f3f90f76c66137ee064f2a.png)
4
1.4 其它温度传感器
1.4.2 热敏电容
工作原理:
c s d
(BaSr)TiO3 (钛酸锶钡)系列陶瓷电容器的静电容
(介电常数)随温度T变化。
高介电常数的陶瓷材料:
钛酸锶 [SrTiO3,k=200)] 钛酸锶钡 [(BaSr)TiO3,k=200] 锆钛酸铅 [Pb(Zr,Ti)O3,k=1000],(锆gao)
定干涉来求出温度。
v用途:
测量变化很快的温度T和大范围的平均温度。
传感器原理其它温度传感器课件
11
1.4 其它温度传感器
1.4.6 谐振式温度计
n
k m
v原理:
材料的弹性和密度随温度T变化,谐振器的谐振频率 是温度T的函数,这是一种高精度的测温方法。
v应用:
石英晶体谐振器的分辨率为0.001℃ ,用于500℃以
-40 -20 0 20 40 60 80 温 度 (0℃ )
表面波温度传感器的频温特性
传感器原理其它温度传感器课件
ቤተ መጻሕፍቲ ባይዱ
10
1.4 其它温度传感器
1.4.5 超声波温度传感器
v工作原理:
气体中传播声速取决于气体的种类、压力、密度
及温度T。
v方法:
石英振子发出的超声波在被测气体中传播,其频
率随气体温度T变化,经反射板反射后形成干涉,测
7
1.4 其它温度传感器
1.4.4 表面波温度传感器
工作原理:
根据温度引起的振荡频率的偏移量来测量温度。 SAW振荡器:由压电材料基片和沉积在基片上的 差指换能器组成。
f0
VR L
(nE ) 2
VR为SAW传播速度,L为两个IDT(发射接收电极)之间 的距离,φE为放大器相移量,n为正整数(与电极 形状及L值有关)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体积热膨胀
物 理 现 象
1.气体温度计 2. 玻璃制水银温度计 3.玻璃制有机液体温度计 4.双金属温度计 5.液体压力温度计 6. 气体压力温度计
电阻变化 温差电现象
导磁率变化 电容变化 压电效应
铂测温电阻、热敏电阻 热电偶
1. 热铁氧体 2. Fe-Ni-Cu合金
BaSrTiO3陶瓷
石英晶体振动器 超声波温度计 示温涂料 液晶 半导体二极管 晶体管半导体集成电路温度传感器 可控硅 辐射温度传感器 光学高温计
接触式温度传感器特点:传感器直接与被测物体接触进 行温度测量,由于被测物体的热量传递给传感器,降低 了被测物体温度,特别是被测物体热容量较小时,测量 精度较低。因此采用这种方式要测得物体的真实温度的 前提条件是被测物体的热容量要足够大。 非接触式温度传感器主要是利用被测物体热辐射而发出 红外线,从而测量物体的温度,可进行遥测。其制造成 本较高,测量精度却较低。优点是:不从被测物体上吸 收热量;不会干扰被测对象的温度场;连续测量不会产 生消耗;反应快等。
17
(-)接触式温度传感器
1.常用热电阻 范围:-260~+850℃;精度:0.001℃。改进后可连 续工作2000h,失效率小于1%,使用期为10年。 2.管缆热电阻 测温范围为-20~+500℃,最高上限 为1000℃,精度为0.5级。
3.陶瓷热电阻 测量范围为–200~+500℃,精度为0.3、 0.15级。 4.超低温热电阻 两种碳电阻,可分别测量–268.8~ 253℃-272.9~272.99℃的温度。 5.热敏电阻器 适于在高灵敏度的微小温度测量场合 使用。经济性好、价格便宜。
19
(三)温度传感器的主要发展方向
1. 超高温与超低温传感器,如+3000℃以上和–250℃以 下的温度传感器。 2. 提高温度传感器的精度和可靠性。 3. 研制家用电器、汽车及农畜业所需要的价廉的温度传 感器。 4. 发展新型产品,扩展和完善管缆热电偶与热敏电阻; 发展薄膜热电偶;研究节省镍材和贵金属以及厚膜 铂的热电阻;研制系列晶体管测温元件、快速高灵 敏CA型热电偶以及各类非接触式温度传感器。 5. 发展适应特殊测温要求的温度传感器。 6. 发展数字化、集成化和自动化的温度传感器。
18
(二)非接触式温度传感器
l.辐射高温计 用来测量 1000℃以上高温。分四种: 光学高温计、比色高温计、辐射高温计和光电高温计。 2.光谱高温计 前苏联研制的YCI—I型自动测温通用 光谱高温计,其测量范围为400~6000℃,是采用电子化自 动跟踪系统,保证有足够准确的精度进行自动测量。 3.超声波温度传感器 特点是响应快(约为10ms左右) ,方向性强。目前国外有可测到5000℉的产品。 4.激光温度传感器 适用于远程和特殊环境下的温度 测量。如NBS公司用氦氖激光源的激光做光反射计可测 很高的温度,精度为1%。美国麻省理工学院正在研制 一种激光温度计,最高温度可达8000℃,专门用于核聚 变研究。瑞士Browa Borer研究中心用激光温度传感器 可测几千开(K)的高温。
20
第二节 热电偶温度传感器
温差热电偶(简称热电偶)是目前温度测量中使用最 普遍的传感元件之一。它除具有结构简单,测量范围 宽、准确度高、热惯性小,输出信号为电信号便于远 传或信号转换等优点外,还能用来测量流体的温度、 测量固体以及固体壁面的温度。微型热电偶还可用于 快速及动态温度的测量。
★热电偶的工作原理 ★热电偶回路的性质 ★热电偶的常用材料与结构 ★冷端处理及补偿 ★热电偶的选择、安装使用和校验
7
3.摄氏温标Celsius temperature scale
是工程上最通用的温度标尺。摄氏温标是在标准大气 压(即101325Pa)下将水的冰点与沸点中间划分一百个等 份,每一等份称为摄氏一度(摄氏度,℃),一般用小写 字母t表示。与热力学温标单位开尔文并用。 摄氏温标与国际实用温标温度之间的关系: t=T-273.15 ℃
温度传感器分类()
分类 特 征 传 感 器 名 称
测 温
线性型
测温电阻器、晶体管、热电偶 测温范围宽 半导体集成电路传感器、 可控硅、石英晶体振动器、 输出小 压力式温度计、玻璃制温度计 测温范围窄 输出大 特定温度 输出大
特 指数型 性 函数
开关型 特性
热敏电阻
感温铁氧体、双金属温度计
14
温度传感器分类(3)
15
绝对值 测定用
此外,还有微波测温温度传感器、噪声 测温温度传感器、温度图测温温度传感器、 热流计、射流测温计、核磁共振测温计、 穆斯保尔效应测温计、约瑟夫逊效应测温 计、低温超导转换测温计、光纤温度传感 器等。这些温度传感器有的已获得应用, 有的尚在研制中。
16
三、温度传感器的发展概况
公元1600年,伽里略研制出气体温度计。一百年 后,研制成酒精温度计和水银温度计。随着现 代工业技术发展的需要,相继研制出金属丝电 阻、温差电动式元件、双金属式温度传感器。 1950年以后,相继研制成半导体热敏电阻器。最 近,随着原材料、加工技术的飞速发展、又陆 续研制出各种类型的温度传感器。 接触式温度传感器 非接触式温度传感器
■理解热电效应定义,掌握热电偶三定律及相关计算, 热电偶冷端补偿原因及补偿方法
■掌握热敏电阻不同类型的特点、特性曲线及应用场合 ■掌握电流型、电压型、数字型三种集成温度传感器特 点、工作原理和使用方法
■了解其他温度传感器工作原理
2
第一节 概 论
温度是反映物体冷热状态的物理参数。
温度是与人类生活息息相关的物理量。 温度检测始于2000多年前。 工业、农业、商业、科研、国防、医学及环保等部门 都与温度有着密切的关系。
第三章 温度传感器
CH3 Temperature Sensor
概 论conspectus/summarize 热电偶温度传感器thermocouple 热敏电阻温度传感器thermistor IC温度传感器integrate circuit 其他温度传感器
1
学习要点
■了解温度传感器的作用、地位、分类和发展趋势
T1 Q1 T2 Q2
Q1——热源给予热机的传热量
Q2——热机传给冷源的传热量
如果在式中再规定一个条件,就可以通过卡诺循环中的 传热量来完全地确定温标。1954年,国际计量会议选 定水的三相点为273.16,并以它的1/273.16定为一度, 这样热力学温标就完全确定了,即T=273.16(Q1/Q2)。
5
2.国际实用温标
International Practical Temperature Scale
为解决国际上温度标准的同意及实用问题,国际上 协商决定,建立一种既能体现热力学温度(即能保证一 定的准确度),又使用方便、容易实现的温标,即国际 实用温标 (简称IPTS-68),又称国际温标。 1968年国际实用温标规定热力学温度是基本温度, 用t表示,其单位是开尔文,符号为K。1K定义为水三 相点热力学温度的1/273.16,水的三相点是指纯水在固 态、液态及气态三项平衡时的温度,热力学温标规定三 相点温度为273.16 K,这是建立温标的惟一基准点。 注意:摄氏温度的分度值与开氏温度分度值相同,即温 度间隔1K=1℃。T0是在标准大气压下冰的融化温度, T0 = 273.15 K。水的三相点温度比冰点高出0.01 K。
热力学温标thermodynamic temperature scale 国际实用温标International practical temperature scale 摄氏温标 Celsius temperature scale 华氏温标Fahrenheit temperature scale
12
超声波传播速度变化 物质 颜色 P–N结电动势 晶体管特性变化 可控硅动作特性变化 热、光辐射
种 类
温度传感器分类(1)
分 类 超高温用 传感器 高温用 传感器 中高温用 传感器 中温用 传感器 低温用 传感器 极低温用 传感器 特 征 传 感 器 名 称 光学高温计、辐射传感器 1500℃以上
分 类
温度 标准用 特 征 测定精度 ±0.1~ ±0.5℃ 测定精度 ±0.5~ ±5℃ 传 感 器 名 称 铂测温电阻、石英晶体振动 器、玻璃制温度计、气体温 度计、光学高温计
测 定 精
热电偶、测温电阻器、热敏电 阻、双金属温度计、压力式温 度 度计、玻璃制温度计、辐射传 管理温度 相对值±1~ 感器、晶体管、二极管、半导 体集成电路传感器、可控硅 测定用 ±5℃
工业生产自动化流程,温度测量点要占全部测量点的 一半左右。
因此,人类离不开温度,当然也离不开温度传感器。 温度传感器是实现温度检测和控制的重要器件。在种类 繁多的传感器中,温度传感器是应用最广泛、发展最快 的传感器之一。
3
一、温度的基本概念
热平衡:温度是描述热平衡系统冷热程度的物 理量。 分子物理学:温度反映了物体内部分子无规则 运动的剧烈程度。 能量:温度是描述系统不同自由度间能量分配 状况的物理量。 温标:表示温度大小的尺度是温度的标尺。
测和
处理,且随温度呈线性变化 ▲除温度以外,特性对其它物理量的灵敏度要低 ▲特性随时间变化要小 ▲重复性好,没有滞后和老化 ▲灵敏度高,坚固耐用,体积小,对检测对象的 影响要小 ▲机械性能好,耐化学腐蚀,耐热性能好 ▲能大批量生产,价格便宜 ▲无危险性,无公害等
10
3. 温度传感器的种类及特点 接触式温度传感器 非接触式温度传感器
21
一、工作原理
两种不同的导体或半导体A和B组合成闭合回路, 若导体A和B的连接处温度不同(设 T > T0 ), 则在此闭合回路中就有电流产生,也就是说回 路中有电动势存在,这种现象叫做热电效应。 这种现象早在1821年首先由西拜克(See-back) 发现,所以又称西拜克效应。 回路中所产生的电动 势,叫热电势。热电 势 thermo-electric force 由两部分组成,即温 热端 冷端 差电势和接触电势。