数字信号处理期末考试试题以及参考答案

合集下载

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案1.序列x(n)=cos(nπ/46)+sin(nπ/46)的周期为24.2.采样间隔T=0.02s,对连续信号xa(t)=cos(40πt)进行采样,采样所得的时域离散信号x(n)的周期为5.3.某线性移不变离散系统的单位抽样响应为h(n)=3nu(n),该系统是因果不稳定系统。

4.采样信号的采样频率为fs,采样周期为Ts,采样信号的频谱是原模拟信号频谱的周期函数,周期为fs,折叠频率为fs/2.5.关于序列的傅里叶变换X(ejω)说法中,正确的是X(ejω)关于ω是周期的,周期为2π。

6.已知序列x(n)=2δ(n-1)+δ(n)-δ(n+1),则X(ejω)ω=π的值为2.7.某序列的DFT表达式为X(k)=Σx(n)Wn=N-1nk,由此可看出,该序列的时域长度是N,变换后数字域上相邻两个频率样点之间的间隔为2π/M。

8.设实连续信号x(t)中含有频率40Hz的余弦信号,现用fs=120Hz的采样频率对其进行采样,并利用N=1024点DFT分析信号的频谱,得到频谱的谱峰出现在第341条谱线附近。

9.已知x(n)={1,2,3,4},x((n+1) mod 6)=1,则x((-n) mod6)={2,1,0,0,4,3}。

10.下列表示错误的是(N应为序列长度):(W_N(N-n)k-nkN/2=-W_Nn(k-N/2))2抽样点间的最大时间间隔T105s2fh在一个记录中的最小抽样点数N2fhT500个点。

3.(5分)简述FIR滤波器和IIR滤波器的区别。

答:FIR滤波器是一种只有前向通道的滤波器,其输出仅由输入和滤波器的系数决定,没有反馈路径。

而IIR滤波器则包含反馈路径,其输出不仅由输入和系数决定,还与滤波器的前一次输出有关。

因此,XXX滤波器具有线性相位和稳定性,而IIR滤波器则可能具有非线性相位和不稳定性。

4.(5分)简述FFT算法的基本思想和应用场景。

数字信号处理期末试卷及答案

数字信号处理期末试卷及答案

A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。

A.非周期序列B.周期6π=N C.周期π6=N D 。

周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。

A.a Z <B.a Z ≤C.a Z >D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

A.70≤≤nB.197≤≤nC.1912≤≤n D 。

190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。

A.16>N B 。

16=N C.16<N D.16≠N5。

已知序列Z 变换的收敛域为|z |<1,则该序列为 .A 。

有限长序列B 。

右边序列 C.左边序列 D 。

双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号.2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理.3、对两序列x(n)和y(n ),其线性相关定义为 。

4、快速傅里叶变换(FFT)算法基本可分为两大类,分别是: ; 。

5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。

三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点.(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。

dsp大学期末考试试题及答案

dsp大学期末考试试题及答案

dsp大学期末考试试题及答案一、选择题(每题2分,共20分)1. DSP(数字信号处理)的全称是什么?A. Digital Signal ProcessingB. Digital Sound ProcessingC. Data Signal ProcessingD. Digital Storage Processing答案:A2. 在DSP系统中,以下哪个不是数字滤波器的类型?A. 低通滤波器B. 高通滤波器C. 带通滤波器D. 线性滤波器答案:D3. 下列哪个算法不是用于数字信号处理的?A. FFT(快速傅里叶变换)B. DCT(离散余弦变换)C. JPEG(联合图像专家组)D. MDCT(修改离散余弦变换)答案:C4. 在DSP中,以下哪个是用于实现信号采样的设备?A. ADC(模数转换器)B. DAC(数模转换器)C. CPLD(复杂可编程逻辑器件)D. FPGA(现场可编程门阵列)答案:A5. 下列哪个参数不是描述数字信号的?A. 幅度B. 频率C. 相位D. 电阻答案:D6. 在DSP中,以下哪个指标用于衡量信号的频域特性?A. 幅度谱B. 相位谱C. 功率谱D. 所有选项答案:D7. 下列哪个选项不是DSP系统设计的关键考虑因素?A. 处理速度B. 内存容量C. 电源电压D. 信号带宽答案:C8. 在DSP编程中,以下哪个不是常用的编程语言?A. C语言B. C++语言C. MATLABD. VHDL答案:C9. 下列哪个不是DSP系统的应用领域?A. 音频处理B. 图像处理C. 无线通信D. 机械制造答案:D10. 在DSP系统中,以下哪个是用于实现信号放大的组件?A. 运算放大器B. 滤波器C. 调制器D. 编码器答案:A二、填空题(每题2分,共20分)1. DSP技术在______和______处理中具有广泛应用。

答案:数字信号;模拟信号2. 一个典型的DSP系统包括______、______和______。

数字信号处理期末试题附答案

数字信号处理期末试题附答案

数字信号处理卷一一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案一、单项选择题(每题2分,共20分)1. 数字信号处理中,离散时间信号的采样频率是模拟信号频率的()倍。

A. 2B. 1C. 1/2D. 1/4答案:A2. 在数字信号处理中,下列哪个不是傅里叶变换的性质?()A. 线性B. 时域和频域的对称性C. 能量守恒D. 时移性答案:C3. 下列哪种滤波器可以同时具有低通和高通的特性?()A. 低通滤波器B. 高通滤波器C. 带通滤波器D. 带阻滤波器答案:C4. 在数字信号处理中,下列哪个算法是用于信号的频域分析?()A. 快速傅里叶变换(FFT)B. 离散余弦变换(DCT)C. 离散沃尔什变换(DWT)D. 离散哈特利变换(DHT)答案:A5. 以下哪种方法不是数字信号处理中的滤波方法?()A. 有限冲激响应(FIR)滤波B. 无限冲激响应(IIR)滤波C. 卡尔曼滤波D. 线性预测编码答案:D二、填空题(每空1分,共20分)1. 数字信号处理中,离散时间信号的采样过程称为________。

答案:采样2. 在数字信号处理中,信号的频域表示通常通过________变换获得。

答案:傅里叶3. 一个理想的低通滤波器的频率响应在截止频率以下为________,截止频率以上为________。

答案:1;04. 快速傅里叶变换(FFT)是一种高效的________算法。

答案:傅里叶5. 在数字滤波器设计中,窗函数法可以用于设计________滤波器。

答案:FIR三、简答题(每题10分,共30分)1. 简述数字信号处理中,离散时间信号与连续时间信号的主要区别。

答案:离散时间信号是指在时间上离散的信号,其值仅在特定的时间点上定义,而连续时间信号则在时间上连续。

离散时间信号通常通过采样连续时间信号获得,而连续时间信号则在时间上没有间隔。

2. 描述数字滤波器的两种主要类型及其特点。

答案:数字滤波器主要分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案)

________ 次复乘法,运算效率为__
_。
6、FFT利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、FIR滤波器的单位取样响应
是圆周偶对称的,N=6,
,其幅度特性有什么特性? ,相位有何特 性? 。 9、数字滤波网络系统函数为

4、 已知

的反变换
。 3、
,变换区间
,则
。 4、




的8点循环卷积,则

5、用来计算N=16点DFT直接计算需要_
2FFT算法,需要
次复乘法
6、基2DIF-FFT 算法的特点是
7、有限脉冲响应系统的基本网络结构有
8、线性相位FIR滤波器的零点分布特点是
9、IIR系统的系统函数为
次复加法,采用基
转换为
时应使s平面的左半平面映射到z平面的

A.单位圆内 B.单位圆外 C.单位圆上 D.单位圆与实轴的交

6、 分析问答题(每题5分,共2题)
3、 某线性时不变因果稳定系统单位取样响应为
(长度为N),则该系统的频率特性、复频域特性、离散频率特性分 别怎样表示,三者之间是什么关系? 4、 用
对连续信号进行谱分析时,主要关心哪两个问题以及怎样解决二者的 矛盾?
十一、(7分)信号 包含一个原始信号 和两个回波信号: 求一个能从 恢复 的可实现的滤波器.
附录:
矩形窗(rectangular window) 汉宁窗(Hann window) 汉明窗(Hamming window) 布莱克曼窗(Blackman window)
表1 一些常用的窗函数
表2 一些常用窗函数的特性

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)全数字信号处理期末试卷(含答案)⼀、单项选择题(在每⼩题的四个备选答案中,选出⼀个正确答案,并将正确答案的序号填在括号。

1.若⼀模拟信号为带限,且对其抽样满⾜奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想⾼通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输⼊序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲⽤圆周卷积计算两者的线性卷积,则圆周卷积的长度⾄少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,⽽不发⽣时域混叠现象,则频域抽样点数N 需满⾜的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正⽐。

A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型 B.级联型 C.并联型 D.频率抽样型7.第⼆种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称 8.适合带阻滤波器设计的是:() A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案)填空题(每题2分,共10题)1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、 2、)()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为 。

3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。

4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。

5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。

6、FFT 利用 来减少运算量。

7、数字信号处理的三种基本运算是: 。

8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。

9、数字滤波网络系统函数为∑=--=NK kk z a z H 111)(,该网络中共有 条反馈支路。

10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。

一、选择题(每题3分,共6题)1、 1、 )63()(π-=n j en x ,该序列是 。

A.非周期序列 B.周期6π=NC.周期π6=ND. 周期π2=N2、 2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为 。

A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

数字信号处理期末试卷含答案全

数字信号处理期末试卷含答案全

数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( ) (n)=x 3(n) (n)=x(n)x(n+2) (n)=x(n)+2(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+N+N-1+N+1(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。

≥M ≤M ≤2M ≥2M5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。

2 C6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数 D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案1. 说明数字信号处理的基本概念和应用领域。

数字信号处理(Digital Signal Processing,简称DSP)是利用计算机和数字技术对信号进行处理的一种方法。

与传统的模拟信号处理相比,数字信号处理具有精度高、灵活度大以及易于集成等优势。

它广泛应用于通信、音频处理、图像处理、雷达信号处理等领域。

2. 解释采样定理的原理,并举例说明其应用。

采样定理是数字信号处理的基础理论,它规定了采样频率必须满足一定条件,以保证从连续信号中恢复出完整的原始信息。

根据采样定理,采样频率必须大于信号最高频率的两倍,即Nyquist采样频率。

例如,对于音频信号处理,人耳可以接受的最高频率为20kHz,因此需要以至少40kHz的采样频率进行采样,才能保证恢复出高质量的音频信号。

3. 描述离散时间信号和离散序列的特点,并给出示例。

离散时间信号是在离散时间点上获取的信号,相邻时间点之间存在离散性。

离散时间信号可以用离散序列来表示,离散序列是按照离散时间点取样的数字信号。

例如,某地区每天的气温是一个离散时间信号,每天不同的时间点测量一次气温,将其离散化后可以得到一个离散序列,表示该地区每天的气温变化。

4. 详述时域和频域分析在数字信号处理中的作用。

时域分析是对信号在时间上进行分析,通过观察信号的波形和幅度变化,可以了解信号的时序特性、周期性以及脉冲等特征。

频域分析是将信号变换到频率域进行分析,通过观察信号的频谱和频率特征,可以了解信号的频率分布、频率成分以及谐波情况等。

在数字信号处理中,时域分析和频域分析是互补的工具。

通过时域分析可以了解信号的时间特性,而频域分析则更适合对信号的频率特性进行研究,两者结合可以全面分析信号的性质和特点。

5. 介绍常见的数字滤波器类型,并分别阐述其特点和应用场景。

常见的数字滤波器类型有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

- 低通滤波器:可以通过滤除高频噪声、保留低频信号来平滑信号。

完整word版,数字信号处理期末试题及答案汇总,推荐文档

完整word版,数字信号处理期末试题及答案汇总,推荐文档

数字信号处理卷一一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理试题及参考答案

数字信号处理试题及参考答案

数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。

(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。

①Ωs ②.Ωc③.Ωc/2 ④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。

①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。

①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。

①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。

①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。

①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。

①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ④ )。

数字信号处理期末试卷含答案

数字信号处理期末试卷含答案

数字信号处理期末试卷(含答案) 数字信号处理期末试卷(含答案)一、选择题1.下列哪一项不是数字信号处理的应用领域? A. 图像处理 B. 语音识别 C.控制系统 D. 电路设计答案:D2.数字信号处理系统的输入信号一般是: A. 模拟信号 B. 数字信号 C. 混合信号 D. 无线信号答案:A3.下列哪一项可以实现信号的离散化? A. 采样 B. 傅里叶变换 C. 滤波 D.量化答案:A4.数字信号处理中的“频域”是指信号的: A. 幅度 B. 相位 C. 频率 D. 时间答案:C5.下列哪一项是数字信号处理的基本操作? A. 加法 B. 减法 C. 乘法 D. 除法答案:A二、填空题1.数字信号处理的基本步骤包括信号的采样、________、滤波和解调等。

答案:量化2.采样定理规定了采样频率应该是信号最高频率的________。

答案:两倍3.傅里叶变换可以将信号从时域变换到________。

答案:频域4.信号的频率和________有关。

答案:周期5.数字信号处理系统的输出信号一般是________信号。

答案:数字三、计算题1.对于一个模拟信号,采样频率为8 kHz,信号的最高频率为3 kHz,求采样定理是否满足?答案:采样定理要求采样频率大于信号最高频率的两倍,即8 kHz > 3 kHz * 2 = 6 kHz,因此采样定理满足。

2.对于一个信号的傅里叶变换结果为X(f) = 2δ(f - 5) + 3δ(f + 2),求该信号的时域表示。

答案:根据傅里叶变换的逆变换公式,可以得到时域表示为x(t) = 2e^(j2π5t) + 3e^(j2π(-2)t)。

3.对于一个数字信号,采样频率为10 kHz,信号的频率为2 kHz,求该信号的周期。

答案:数字信号的周期可以用采样频率除以信号频率来计算,即10 kHz / 2 kHz = 5。

四、简答题1.请简要介绍数字信号处理的基本原理。

答案:数字信号处理是将模拟信号转换为数字信号,并在数字域中对信号进行处理和分析的过程。

(完整)数字信号处理期末试卷及答案..,推荐文档

(完整)数字信号处理期末试卷及答案..,推荐文档

A一、选择题(每题 3 分,共 5 题)j ( n-)1、x(n) =e 36,该序列是。

A.非周期序列B.周期N =6C.周期N = 6D. 周期N = 22、序列x(n) =-a n u(-n -1) ,则X (Z ) 的收敛域为。

A.Z <aB.Z ≤aC.Z >aD.Z ≥a3、对x(n) (0 ≤n ≤ 7) 和y(n) (0 ≤n ≤ 19) 分别作 20 点 DFT,得X (k ) 和Y (k ) ,F (k ) =X (k ) ⋅Y(k ), k = 0, 1, 19 ,f (n) =IDFT[F (k )], n = 0, 1, 19 ,n 在范围内时,f (n) 是x(n) 和y(n) 的线性卷积。

A. 0≤n ≤ 7B. 7 ≤n ≤19C.12 ≤n ≤19D. 0 ≤n ≤ 194、x1 (n) =R10 (n) ,x2 (n) =R7 (n) ,用 DFT 计算二者的线性卷积,为使计算量尽可能的少,应使 DFT 的长度N 满足。

A. N > 16B. N = 16C. N < 16D. N ≠ 165.已知序列 Z 变换的收敛域为|z|<1,则该序列为。

A.有限长序列B.右边序列C.左边序列D.双边序列二、填空题(每题 3 分,共 5 题)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是信号,再进行幅度量化后就是信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须,这就是奈奎斯特抽样定理。

3、对两序列 x(n)和 y(n),其线性相关定义为。

4、快速傅里叶变换(FFT)算法基本可分为两大类,分别是:;。

5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,,和四种。

⎧a n 三、x(n) =⎨-b n n ≥ 0求该序列的 Z 变换、收敛域、零点和极点。

(10 分)n ≤-1⎩∑ ∞四、求 X (Z ) =1(1- z -1)(1- 2z -1),1 < z < 2 的反变换。

数字信号处理期末试卷(含问题详解)全

数字信号处理期末试卷(含问题详解)全

数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。

A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。

数字信号处理期末试题及答案

数字信号处理期末试题及答案

一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)全数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。

A.NB.N 2C.N 3D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ):A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称 8.适合带阻滤波器设计的是:() A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器;二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。

数字信号处理期末试题及答案汇总

数字信号处理期末试题及答案汇总

数字信号处理卷一一、填空题每空1分, 共10分1.序列()sin(3/5)x n n π=的周期为 ;2.线性时不变系统的性质有 律、 律、 律;3.对4()()x n R n =的Z 变换为 ,其收敛域为 ;4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 ;5.序列xn=1,-2,0,3;n=0,1,2,3, 圆周左移2位得到的序列为 ;6.设LTI 系统输入为xn ,系统单位序列响应为hn,则系统零状态输出yn= ;7.因果序列xn,在Z →∞时,XZ= ;二、单项选择题每题2分, 共20分1.δn 的Z 变换是 A.1B.δωC.2πδωD.2π2.序列x 1n 的长度为4,序列x 2n 的长度为3,则它们线性卷积的长度是 A. 3B. 4C. 6D. 73.LTI 系统,输入xn 时,输出yn ;输入为3xn-2,输出为A. yn-2B.3yn-2C.3ynD.yn4.下面描述中最适合离散傅立叶变换DFT 的是A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统A.yn=x n+2B. yn= cosn+1x nC. yn=x 2nD.yn=x - n7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号Xk恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应hn,在n<0时,hn=A.0B.∞C. -∞D.1三、判断题每题1分, 共10分1.序列的傅立叶变换是频率ω的周期函数,周期是2π; 2.xn= sinω0n所代表的序列不一定是周期的; 3.FIR离散系统的系统函数是z的多项式形式; 4.yn=cosxn所代表的系统是非线性系统;5.FIR滤波器较IIR滤波器的最大优点是可以方便地实现线性相位; 6.用双线性变换法设计IIR滤波器,模拟角频转换为数字角频是线性转换; 7.对正弦信号进行采样得到的正弦序列一定是周期序列; 8.常系数差分方程表示的系统为线性移不变系统; 9.FIR离散系统都具有严格的线性相位; 10.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱的周期延拓;四、简答题每题5分,共20分1.用DFT对连续信号进行谱分析的误差问题有哪些2.画出模拟信号数字化处理框图,并简要说明框图中每一部分的功能作用;3.简述用双线性法设计IIR数字低通滤波器设计的步骤;4.8点序列的按时间抽取的DIT 基-2 FFT 如何表示五、计算题 共40分1.已知2(),2(1)(2)z X z z z z =>+-,求xn;6分2.写出差分方程表示系统的直接型和级联..型结构;8分 )1(31)()2(81)1(43)(-+=-+--n x n x n y n y n y3.计算下面序列的N 点DFT;1)0()()(N m m n n x <<-=δ4分 2)0()(2N m en x mn N j <<=π 4分4.设序列xn={1,3,2,1;n=0,1,2,3 },另一序列hn ={1,2,1,2;n=0,1,2,3},1求两序列的线性卷积 y L n ; 4分2求两序列的6点循环卷积y C n; 4分3说明循环卷积能代替线性卷积的条件;2分5.设系统由下面差分方程描述: )1()2()1()(--+-=n x n y n y n y1求系统函数Hz ;2分2限定系统稳定..,写出Hz 的收敛域,并求出其单位脉冲响应hn;6分一、填空题本题共10个空,每空1分,共10分1.102.交换律,结合律、分配律3.411,0 1zzz---> -4.k N j eZ π2=5.{0,3,1,-2; n=0,1,2,3}6.()()()y n x n h n=*7. x0二、单项选择题本题共10个小题,每小题2分,共20分1.A2.C3.B4.D5.A6.B7.C8.D9.A 10.A三、判断题本题共10个小题,每小题1分,共10分1—5全对 6—10 全错四、简答题本题共4个小题,每小题5分,共20分1.答:混叠失真;截断效应频谱泄漏;栅栏效应2.答:第1部分:滤除模拟信号高频部分;第2部分:模拟信号经抽样变为离散信号;第3部分:按照预制要求对数字信号处理加工;第4部分:数字信号变为模拟信号;第5部分:滤除高频部分,平滑模拟信号;3.答:确定数字滤波器的技术指标;将数字滤波器的技术指标转变成模拟滤波器的技术指标;按模拟滤波器的技术指标设计模拟低通滤波器;将模拟低通滤波器转换成数字低通滤波器;4.答:五、计算题本题共5个小题,共40分1.解:由题部分分式展开()(1)(2)12F z z A B z z z z z ==++-+- 求系数得 A=1/3 , B=2/3所以 232131)(-++=z z z z z F 3分 收敛域⎪z ⎪>2,故上式第一项为因果序列象函数,第二项为反因果序列象函数, 则 12()(1)()(2)()33k k f k k k εε=-+ 3分 2.解:8分3.解:1 kn N W k X =)( 4分 2⎩⎨⎧≠==mk m k N k X ,0,)( 4分 4.解:1 y L n={1,5,9,10,10,5,2;n=0,1,2…6} 4分2 y C n= {3,5,9,10,10,5;n=0,1,2,4,5} 4分3c ≥L 1+L 2-1 2分5.解:1 1)(2--=z z z z H 2分 2511522z -+<< 2分; )1()251(51)()251(51)(--+---=n u n u n h n n 4分数字信号处理卷二一. 填空题1、一线性时不变系统,输入为 xn时,输出为yn ;则输入为2xn时,输出为 2yn ;输入为xn-3时,输出为 yn-3 ;2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为: fs>=2f max ;3、已知一个长度为N的序列xn,它的离散时间傅立叶变换为X e jw,它的N点离散傅立叶变换XK 是关于Xe jw的 N 点等间隔采样 ;4、有限长序列xn的8点DFT为XK,则XK= ;5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象;6.若数字滤波器的单位脉冲响应hn是奇对称的,长度为N,则它的对称中心是 N-1/2 ; 7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄 ,阻带衰减比较小 ;8、无限长单位冲激响应IIR滤波器的结构上有反馈环路,因此是递归型结构;9、若正弦序列xn=sin30nπ/120是周期的,则周期是N= 8 ;10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断 ,而周期序列可以看成有限长序列的周期延拓 ;12.对长度为N的序列xn圆周移位m位得到的序列用xmn表示,其数学表达式为xmn= xn-mNRNn;的基2-FFT流图;14.线性移不变系统的性质有交换率、结合率和分配律;15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率;16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型, 串联型和并联型四种;17.如果通用计算机的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此计算机上计算210点的基2 FFT需要 10 级蝶形运算,总的运算时间是______μs;二.选择填空题1、δn的z变换是 A ;A. 1B.δwC. 2πδwD. 2π2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f s与信号最高频率f max 关系为: A ;A. f s≥ 2f maxB. f s≤2 f maxC. f s≥ f maxD. f s≤f max3、用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= C ;A.1111zzz--+=-B. 1111zzz---=+s C.11211zzT z---=+D.11211zzT z--+=-4、序列x1n的长度为4,序列x2n的长度为3,则它们线性卷积的长度是 B ,5点圆周卷积的长度是 ;A. 5, 5B. 6, 5C. 6, 6D. 7, 55、无限长单位冲激响应IIR滤波器的结构是 C 型的;A. 非递归B. 反馈C.递归D. 不确定6、若数字滤波器的单位脉冲响应hn是对称的,长度为N,则它的对称中心是 B ;A. N/2B. N-1/2C. N/2-1D. 不确定7、若正弦序列xn=sin30nπ/120是周期的,则周期是N= D ;A. 2πB. 4πC. 2D. 88、一LTI系统,输入为 xn时,输出为yn ;则输入为2xn时,输出为 A ;输入为xn-3时,输出为 ;A. 2yn,yn-3B. 2yn,yn+3C. yn,yn-3D. yn,yn+39、用窗函数法设计FIR数字滤波器时,加矩形窗时所设计出的滤波器,其过渡带比加三角窗时A ,阻带衰减比加三角窗时 ;A.窄,小B. 宽,小C. 宽,大D. 窄,大10、在N=32的基2时间抽取法FFT运算流图中,从xn到Xk需 B 级蝶形运算过程;A. 4 B. 5 C. 6 D. 311.Xn=un的偶对称部分为 A ;A. 1/2+δn/2 B. 1+δn C. 2δn D. un- δn 12. 下列关系正确的为 B ;A.∑=-=nkk nnu) ()(δ B.∑∞=-=) ()(kk nnuδ C.∑-∞=-=nkk nnu)()(δ D.∑∞-∞=-=kk nnu)()(δ13.下面描述中最适合离散傅立叶变换DFT的是 BA.时域为离散序列,频域也为离散序列B.时域为离散有限长序列,频域也为离散有限长序列C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散周期序列,频域也为离散周期序列14.脉冲响应不变法 BA.无混频,线性频率关系B.有混频,线性频率关系C.无混频,非线性频率关系D.有混频,非线性频率关系15.双线性变换法 CA.无混频,线性频率关系B.有混频,线性频率关系C.无混频,非线性频率关系D.有混频,非线性频率关系16.对于序列的傅立叶变换而言,其信号的特点是 DA.时域连续非周期,频域连续非周期B.时域离散周期,频域连续非周期C.时域离散非周期,频域连续非周期D.时域离散非周期,频域连续周期17.设系统的单位抽样响应为hn,则系统因果的充要条件为 CA.当n>0时,hn=0 B.当n>0时,hn≠0C.当n<0时,hn=0 D.当n<0时,hn≠018.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过 A 即可完全不失真恢复原信号;A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器19.若一线性移不变系统当输入为xn=δn时输出为yn=R3n,则当输入为un-un-2时输出为C ;A.R3nB.R2nC.R3n+R3n-1D.R2n+R2n-120.下列哪一个单位抽样响应所表示的系统不是因果系统 DA.hn=δnB.hn=unC.hn=un-un-1D.hn=un-un+121.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括 A ;A.单位圆B.原点C.实轴D.虚轴22.已知序列Z变换的收敛域为|z|<1,则该序列为 C ;A.有限长序列B. 无限长右边序列C.无限长左边序列D. 无限长双边序列23.实序列的傅里叶变换必是 A ;A.共轭对称函数B.共轭反对称函数C.奇函数D.偶函数24.若序列的长度为M,要能够由频域抽样信号Xk恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是 A ;A.N≥MB.N≤MC.N≤2MD.N≥2M25.用按时间抽取FFT计算N点DFT所需的复数乘法次数与 D 成正比;A.NB.N2C.N3D.Nlog2N26.以下对双线性变换的描述中不正确的是 D ;A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s平面的左半平面单值映射到z平面的单位圆内D.以上说法都不对27.以下对FIR和IIR滤波器特性的论述中不正确的是 A ;A.FIR滤波器主要采用递归结构B.IIR滤波器不易做到线性相位C.FIR滤波器总是稳定的D.IIR滤波器主要用来设计规格化的频率特性为分段常数的标准滤波器28、设系统的单位抽样响应为hn=δn-1+δn+1,其频率响应为 AA.He jω=2cosω B. He jω=2sinω C. He jω=cosω D. He jω=sinω29. 若xn为实序列,Xe jω是其离散时间傅立叶变换,则 CA.Xe jω的幅度合幅角都是ω的偶函数 B.Xe jω的幅度是ω的奇函数,幅角是ω的偶函数C.Xe jω的幅度是ω的偶函数,幅角是ω的奇函数 D.Xe jω的幅度合幅角都是ω的奇函数30. 计算两个N1点和N2点序列的线性卷积,其中N1>N2,至少要做 B 点的DFT;A. N1B. N1+N2-1C. N1+N2+1D. N231. yn+0.3yn-1 = xn与 yn = -0.2xn + xn-1是 C ;A. 均为IIRB. 均为FIRC. 前者IIR,后者FIRD. 前者FIR, 后者IIR三.判断题1、在IIR数字滤波器的设计中,用脉冲响应不变法设计时,从模拟角频率向数字角频率转换时,转换关系是线性的; √2.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱的周期延拓; √3、xn=cosw0n所代表的序列一定是周期的; ×4、yn=x2n+3所代表的系统是时不变系统; √5、用窗函数法设计FIR数字滤波器时,改变窗函数的类型可以改变过渡带的宽度; √6、有限长序列的N点DFT相当于该序列的z变换在单位圆上的N点等间隔取样; √7、一个线性时不变离散系统是因果系统的充分必要条件是:系统函数HZ的极点在单位圆内; ×8、有限长序列的数字滤波器都具有严格的线性相位特性; ×9、xn ,yn的线性卷积的长度是xn ,yn的各自长度之和; ×10、用窗函数法进行FIR数字滤波器设计时,加窗会造成吉布斯效应; √12、在IIR数字滤波器的设计中,用双线性变换法设计时,从模拟角频率向数字角频率转换时,转换关系是线性的; ×13.在频域中对频谱进行抽样,在时域中,所得抽样频谱所对应的序列是原序列的周期延拓; √14、有限长序列hn满足奇、偶对称条件时,则滤波器具有严格的线性相位特性; √15、yn=cosxn所代表的系统是线性系统; ×16、xn ,yn的循环卷积的长度与xn ,yn的长度有关;xn ,yn的线性卷积的长度与xn ,yn的长度无关; ×17、在N=8的时间抽取法FFT运算流图中,从xn到xk需3级蝶形运算过程; √18、频率抽样法设计FIR数字滤波器时,基本思想是对理想数字滤波器的频谱作抽样,以此获得实际设计出的滤波器频谱的离散值,对19、窗函数法设计FIR数字滤波器和用频率抽样法设计FIR 数字滤波器的不同之处在于前者在时域中进行,后者在频域中进行;对20、用窗函数法设计FIR数字滤波器时,加大窗函数的长度可以减少过渡带的宽度,改变窗函数的种类可以改变阻带衰减; √21、一个线性时不变的离散系统,它是因果系统的充分必要条件是:系统函数HZ的极点在单位圆外; ×22、一个线性时不变的离散系统,它是稳定系统的充分必要条件是:系统函数HZ的极点在单位圆内; √23.对正弦信号进行采样得到的正弦序列必定是周期序列; ×24.常系数差分方程表示的系统必为线性移不变系统; ×25.序列的傅里叶变换是周期函数; √26.因果稳定系统的系统函数的极点可能在单位圆外; ×27.FIR滤波器较之IIR滤波器的最大优点是可以方便地实现线性相位;√28. 用矩形窗设计FIR滤波器,增加长度N可改善通带波动和阻带衰减; ×29. 采样频率fs=5000Hz,DFT的长度为2000,其谱线间隔为2.5Hz; √数字信号处理卷三一、填空题:每空1分,共18分1、数字频率ω是模拟频率Ω对采样频率s f的归一化,其值是连续连续还是离散 ;2、 双边序列z 变换的收敛域形状为 圆环或空集 ;3、 某序列的DFT 表达式为∑-==10)()(N n knMW n x k X ,由此可以看出,该序列时域的长度为N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 ; 4、 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 ;系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 ;5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=线性卷积,则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点;6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω;用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω; 7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H eH =,则其对应的相位函数为ωωϕ21)(--=N ; 8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 ;二、15分、已知某离散时间系统的差分方程为)1(2)()2(2)1(3)(-+=-+--n x n x n y n y n y系统初始状态为1)1(=-y ,2)2(=-y ,系统激励为)()3()(n u n x n =, 试求:1系统函数)(z H ,系统频率响应)(ωj e H ;2系统的零输入响应)(n y zi 、零状态响应)(n y zs 和全响应)(n y ;解:1系统函数为23223121)(22211+-+=+-+=---z z z z zzz z H系统频率响应232)()(22+-+===ωωωωωωj j j j e z j e e e e z H eH j解一:2对差分方程两端同时作z 变换得)(2)(])2()1()([2])1()([3)(1221z X z z X z y z y z Y z z y z Y z z Y ---+=-+-++-+-即:)(231)21(231)2(2)1(2)1(3)(211211z X z z z z z y y z y z Y ------+-+++------=上式中,第一项为零输入响应的z 域表示式,第二项为零状态响应的z 域表示式,将初始状态及激励的z 变换3)(-=z zz X 代入,得零输入响应、零状态响应的z 域表示式分别为 23223121)(22211+-+-=+---=---z z z z zzz z Y zi3232323121)(22211-⋅+-+=-⋅+-+=---z zz z z z z z z z z z Y zs 将)(),(z Y z Y zs zi 展开成部分分式之和,得2413232)(2--+-=+-+-=z z z z z z z Y zi 32152812331232)(22-+--+-=-⋅+-+=z z z z z z z z z z Y zs 即 2413)(--+-=z z z z z Y zi 321528123)(-+--+-=z zz z z z z Y zs 对上两式分别取z 反变换,得零输入响应、零状态响应分别为)(])2(43[)(k k y k zi ε-= )(])3(215)2(823[)(k k y k k zs ε+-=故系统全响应为)()()(k y k y k y zs zi +=)(])3(215)2(1229[k k k ε+-=解二、2系统特征方程为0232=+-λλ,特征根为:11=λ,22=λ; 故系统零输入响应形式为 k zi c c k y )2()(21+=将初始条件1)1(=-y ,2)2(=-y 带入上式得⎪⎪⎩⎪⎪⎨⎧=+=-=+=-2)41()2(1)21()1(2121c c y c c y zi zi 解之得 31=c ,42-=c , 故系统零输入响应为: k zi k y )2(43)(-= 0≥k系统零状态响应为3232323121)()()(22211-⋅+-+=-⋅+-+==---z zz z z z z z z z z z X z H z Y zs 32152812331232)(22-+--+-=-⋅+-+=z z z z z z z z z z Y zs 即 321528123)(-+--+-=z zz z z z z Y zs 对上式取z 反变换,得零状态响应为 )(])3(215)2(823[)(k k y kk zs ε+-= 故系统全响应为)()()(k y k y k y zs zi +=)(])3(215)2(1229[k k k ε+-=三、回答以下问题:(1) 画出按时域抽取4=N 点基FFT 2的信号流图;(2) 利用流图计算4点序列)4,3,1,2()(=n x 3,2,1,0=n 的DFT ; (3) 试写出利用FFT 计算IFFT 的步骤; 解:10(x 1(x 2(x 3(x )0(X )1()2(X )3(Xkr001102W 02W 02W 12W k l001104W 04W 14W 2304W 04W 04W 24W 34W4点按时间抽取FFT 流图 加权系数 2 ⎩⎨⎧-=-=-==+=+=112)2()0()1(532)2()0()0(00x x Q x x Q ⎩⎨⎧-=-=-==+=+=341)3()1()1(541)3()1()0(11x x Q x x Q1055)0()0()0(10=+=+=Q Q X 31)1()1()1(1140⋅+-=+=j Q W Q X 055)0()0()2(1240=-=+=Q W Q X j Q W Q X 31)1()1()3(1340--=+=即: 3,2,1,0),31,0,31,10()(=--+-=k j j k X 31对)(k X 取共轭,得)(k X *; 2对)(k X *做N 点FFT ; 3对2中结果取共轭并除以N;四、12分已知二阶巴特沃斯模拟低通原型滤波器的传递函数为1414.11)(2++=s s s H a 试用双线性变换法设计一个数字低通滤波器,其3dB 截止频率为πω5.0=c rad,写出数字滤波器的系统函数,并用正准型结构实现之;要预畸,设1=T 解:1预畸2)25.0arctan(2)2arctan(2===ΩπωT T c c 2反归一划4828.241)2(414.1)2(1)()(22++=++==Ω=s s ss s H s H css a3 双线性变换得数字滤波器2212211716.01)21(2929.0344.2656.13)21(4------+++=+++=z z z zz z4用正准型结构实现(n x )(n y五、12分设有一FIR 数字滤波器,其单位冲激响应)(n h 如图1所示:4112828.2)112(44828.24)()(1121121121111211++-⋅++-=++==----+-=-+--=--zz zz s s s H z H z z s zz T s图1试求:1该系统的频率响应)(ωj eH ;2如果记)()()(ωϕωωj j e H eH =,其中,)(ωH 为幅度函数可以取负值,)(ωϕ为相位函数,试求)(ωH 与)(ωϕ;3判断该线性相位FIR 系统是何种类型的数字滤波器 低通、高通、带通、带阻,说明你的判断依据;4画出该FIR 系统的线性相位型网络结构流图; 解:1)2,1,0,1,2()(--=n hωωωωωω4324)4()3()2()1()0()()(j j j j n n j j e h e h e h e h h e n h e H ----=-++++==∑)()1(2223443ωωωωωωj j j j j j eeeeee -------+-=--+=)]sin(2)2sin(4[)()(222222ωωωωωωωωωj j e e e e e e e j j j j j j j +=-+-=-----2)]sin(2)2sin(4[)]sin(2)2sin(4[)()22(22ωωωωωππωω+=+=--j jj j e e e e H)sin(2)2sin(4)(ωωω+=H , ωπωϕ22)(-=3)()sin(2)2sin(4)2sin(2)]2(2sin[4)2(ωωωωπωπωπH H -=--=-+-=- 故 当0=ω时,有)0()0()2(H H H =-=π,即)(ωH 关于0点奇对称,0)0(=H ;当πω=时,有))()(ππH H -=,即)(ωH 关于π点奇对称,0)(=πH 上述条件说明,该滤波器为一个线性相位带通滤波器; 4线性相位结构流图1-)(n x )(n y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009-2010学年第二学期通信工程专业《数字信号处理》(课程)参考答案及评分标准一、选择题(每空1分,共20分)1.序列⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=n n n x 6sin 4cos )(ππ的周期为(A )。

A .24B . 2πC .8D .不是周期的2.有一连续信号)40cos()(t t x a π=,用采样间隔s T 02.0=对)(t x a 进行采样,则采样所得的时域离散信号)(n x 的周期为(C )A .20B . 2πC .5D .不是周期的3.某线性移不变离散系统的单位抽样响应为)(3)(n u n h n =,该系统是(B )系统。

A .因果稳定B .因果不稳定C .非因果稳定D .非因果不稳定4.已知采样信号的采样频率为s f ,采样周期为s T ,采样信号的频谱是原模拟信号频谱的周期函数,周期为(A ),折叠频率为(C )。

A . s fB .s TC .2/s fD .4/s f5.以下关于序列的傅里叶变换)(ωj e X 说法中,正确的是(B )。

A .)(ωj e X 关于ω是周期的,周期为πB .)(ωj e X 关于ω是周期的,周期为π2C .)(ωj e X 关于ω是非周期的D .)(ωj e X 关于ω可能是周期的也可能是非周期的6.已知序列)1()()1(2)(+-+-=n n n n x δδδ,则0)(=ωωj e X 的值为(C )。

A .0B .1C .2D .3 7.某序列的DFT 表达式为∑-==1)()(N n nk MWn x k X ,由此可看出,该序列的时域长度是(A ),变换后数字域上相邻两个频率样点之间的间隔(C )。

A .N B .M C .M /2π D . N /2π8.设实连续信号)(t x 中含有频率40Hz 的余弦信号,现用Hz f s 120=的采样频率对其进行采样,并利用1024=N 点DFT 分析信号的频谱,得到频谱的谱峰出现在第(B )条谱线附近。

A .40 B .341 C .682 D .10249.已知{},3,421)(,=n x ,则()=-)()(66n R n x (A ),()=+)()1(66n R n x (C ) A .{},0,0,4,3,21 B .{},0,0,4,31,2 C .{}1,,3,4,0,02 D .{}0,3,42,,10, 10.下列表示错误的是(B )。

A .n k N N nk N W W )(--=B .nkN nk N W W =*)( C .k n N N nk N W W )(--= D . 12/-=N NW 11.对于L N 2=点的按频率抽取基2FFT 算法,共需要(A )级蝶形运算,每级需要(C )个蝶形运算。

A .LB .2NL C .2ND .L N + 12.在IIR 滤波器中,(C )型结构可以灵活控制零极点特性。

A .直接ⅠB .直接ⅡC .级联D .并联13.考虑到频率混叠现象,用冲激响应不变法设计IIR 数字滤波器不适合于(B )。

A .低通滤波器B .高通、带阻滤波器C .带通滤波器D .任何滤波器14.以下哪种描述不属于双线性变换(A )。

A .ω和Ω是线性关系B .不会产生频谱混叠现象C .s 平面和z 平面是单值映射D .ω和Ω是单值映射15.利用窗函数设计FIR 滤波器,为使滤波器的过渡带变小,可通过(A )有效实现。

A .增加窗口长度B .改变窗口形状C .减少窗口长度D .窗口长度不变16.窗函数法设计FIR 滤波器时,减小通带内波动以及加大阻带衰减只能从(B )上找解决方法。

A .过渡带宽度 B .窗函数形状 C .主瓣宽度 D .滤波器的阶数二、判断题(每题1分,共10分。

各题的答案只能是“对”或“错”,要求分别用“√”或“×”表示) 1.)792sin()()(ππ+=n n x n y 是线性移不变系统。

(×) 2.稳定系统的系统函数的收敛域必须包括单位圆。

(√) 3.同一个z 变换函数,若收敛域不同,对应的序列是不同的。

(√) 4.系统函数)(z H 极点的位置主要影响幅频响应峰点的位置及形状。

(√) 5.有限长序列的DFT 在时域和频域都是离散的。

(√) 6.)(n x 为N 点有限长序列,[])()(n x DFT k X =为周期序列。

(×) 7.在按频率抽取的基-2FFT 算法中,先将)(n x 按n 的奇偶分为两组。

(×) 8.冲激响应不变法的频率变换关系是非线性的。

(×) 9.IIR 滤波器总是稳定的。

(×) 10.窗谱中主瓣与旁瓣的相对比例由窗函数的形状决定。

(√) 三、简答题(共25分)1.(4分)简述DTFT 和z 变换之间,DTFT 与DFT 之间的关系。

答:单位圆上的z 变换是DTFT 。

DFT 是DTFT 在]2,0[π上的N 点抽样。

2.(6分)对实信号进行谱分析,要求谱分辨率Hz F 10≤,信号最高频率kHz f h 5.2=,试确定以下参量:(1)最小记录长度0T ;(2)抽样点间的最大时间间隔T ;(3)在一个记录中的最小抽样点数N 。

答:最小记录长度s FT 1.010==抽样点间的最大时间间隔3102.05000121-⨯===h f T 在一个记录中的最小抽样点数5000==TT N 3.(4分)试写出按时间抽取和按频率抽取的基2-FFT 算法的蝶形运算公式,已知蝶形运算的输入分别用)(1k X 和)(2k X 表示,输出分别用)(1k Y 和)(2k Y 表示,系数用W 表示。

答:DIT :)()()(211k WX k X k Y +=;)()()(212k WX k X k Y -= DIF :)()()(211k X k X k Y +=;[]W k X k X k Y )()()(212-=4.(6分)某一个数字滤波器的流程图如图1所示,已知021==b b ,5.01=a ,5.02-=a ,13-=a ,试问该滤波器属于IIR 滤波器还是FIR 滤波器?是否具有线性相位?简要说明理由。

答:该滤波器属于FIR 滤波器,因为不含反馈回路 具有线性相位,因为满足()()n N h n h ---=15.(5分)试写出下列英文缩写字母的中文含义:IIR ,FIR ,DFT ,DTFT ,FFT 。

答:IIR :无限长单位抽样(冲激)响应 FIR :有限长单位抽样(冲激)响应 DFT :离散傅里叶变换DTFT :离散时间傅里叶变换 FFT :快速傅里叶变换 四、计算题(共45分)1.(6分)设两个线性移不变因果稳定系统的)(1n h 和)(2n h 级联后的总单位抽样响应)(n h 为)(n δ。

已知)1(5.0)()(1--=n n n h δδ,求)(2n h 。

x图1解:)()()(21n h n h n h =*)()()(21z H z H z H =,而115.01)(--=z z H所以5.0,5.011)(12>-=-z zz H )(5.0)(2n u n h n =2.(6分)已知一个时域离散系统的流程图如图2所示,其中m 为一个实常数,(1)试求系统函数)(z H ;(2)若系统是因果的,试求系统函数的收敛域;(3)m 取何值时,该系统是因果稳定的。

解:113141)(--+-=zm z m z H 若系统是因果的,试求系统函数的收敛域3m z >。

3,13<<m m即,该系统是因果稳定的。

3.(8分)设信号)()()(21)(-+-+=n n n n x δδδ,(1)计算)(n x 与)(n x 的线性卷积)(1n y (2)计算)(n x 与)(n x 的8点圆周卷积)(2n y ,并与(1)的结果比较,指出圆周卷积与线性卷积的关系。

解:{},2,3,2,11)(1=n y{},0,0,2,3,2,1,01)(2=n y)(2n y 是)(1n y 以8为周期,周期延拓再取主值区间得到的4.(9分)已知一个有限长序列为{},0,0,0,31)(=n x ,(1)求它的8点DFT )(k X ;(2)已知序列)(n y 的8点DFT 为)()(48k X W k Y k =,求序列)(n y ;(3)已知序列)(n g 的8点DFT 为)()()(k Y k X k G =,求序列)(n gx图2解:(1))4(3)()(-+=n n n x δδ[]70,)1(3131)4(3)()()(48781≤≤-+=+=-+==∑∑=-=k W Wn n W n x k X k k n nk N n nkNδδ{}2,4,2,4,2,4,2,4)(----=k X(2)由)()(48k X W k Y k =可知,)(n y 与)(n x 的关系为{})4()(30,0,0,1,0,0,0,3)())4(()(88-+==-=n n n R n x n y δδ(3))(n g 为)(n x 和)(n y 的8点圆周卷积()()()()k k k k k k k k k k k k W W W W W W W W W W W W k G 0848480808480848484848486109333313131)(+=++++=++=++=)4(10)(6)(-+=n n n g δδ5.(8分)设IIR 数字滤波器的系统函数为21181431311)(---+++=zz z z H ,试求该滤波器的差分方程,并用一阶节的级联型以及一阶节的并联型结构实现之。

(注:级联型和并联型各画一种可能的结构即可)。

解:)2(81)1(43)1(31)()(-----+=n y n y n x n x n y ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++=---111211411311)(z z z z H 级联型或x )x )并联型112113241131)(--+++=z z z H6.(8分)某二阶模拟低通滤波器的传输函数为22233)(cc ca s s s H Ω+Ω+Ω=,试用双线性变换设计一个低通数字滤波器,并用直接Ⅱ型结构实现之,已知低通数字滤波器的3dB 截止频率为kHz f c 1=,系统抽样频率为kHz f s 4=。

(注:TC 2=,T 为抽样周期) 解:T tg T c c 222=⎪⎭⎫ ⎝⎛⋅=Ω'ω;22223232)(⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=T s T s T s H a()2121212111211112222112343434413413423413443421311311123232)()(1111------------+-=+-=+-++++++++=-+++++=+⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==----zz z z zz z z z z z z T s T s T s H z H z z T s z z T s a直接Ⅱ型注:计算结果不正确但思路正确可酌情给分x )1x )。

相关文档
最新文档