4、非线性系统的数学模型

合集下载

(优选)自动控制原理第七章非线性系统

(优选)自动控制原理第七章非线性系统

1, x 0 signx 1, x 0
0
xa
y k( x asignx) x a
3 滞环特性
滞环特性表现为正向与反向特性不是重叠在一起,而是
在输入--输出曲线上出现闭合环路。其静特性曲线如图7-3
所示。其数学表达式为:
y
b
y
k(
x asignx) bsignx
y0 y0
-a
0a
x
(优选)自动控制原理第七章 非线性系统
7.1 典型非线性特性
在控制系统中,若控制装置或元件其输入输出间的静 特性曲线,不是一条直线,则称为非线性特性。如果这 些非线性特性不能采用线性化的方法来处理,称这类非 线性为本质非线性。为简化对问题的分析,通常将这些 本质非线性特性用简单的折线来代替,称为典型非线性 特性。 7.1.1 典型非线性特性的种类
描述函数法是非线性系统的一种近似分析方法。首先利用描 述函数将非线性元件线性化,然后利用线性系统的频率法对系统 进行分析。它是线性理论中的频率法在非线性系统中的推广,不 受系统阶次的限制。
分析内容主要是非线性系统的稳定性和自振荡稳态,一 般不给出时域响应的确切信息。 7.2.1 描述函数的定义
1.描述函数的应用条件
2.死区特性
死区又称不灵敏区,在死区内虽有输入信号,但其输
出为零,其静持性关系如图7-2所示。
y
其数学表达式为
k -a
0a
x
0,| x | a
y
k(x
a),
x
a
k( x a), x a
若引入符号函数
图7-2 死区特性
死区小时,可忽略;大 时,需考虑。工程中,为抗 干扰,有时故意引入。比如 操舵系统。

非线性系统的分析与控制

非线性系统的分析与控制

非线性系统的分析与控制一、引言非线性系统是指系统的输入与输出之间存在着非线性关系的一类系统。

非线性系统由于其复杂性和多样性,已经成为了现代自动控制与系统工程中的一个热门研究领域。

非线性系统的分析与控制是目前自动控制领域研究的重点之一。

本文主要介绍非线性系统的分析和控制方法。

二、非线性系统的描述非线性系统是指系统输入和输出之间存在非线性关系的系统。

非线性系统可以用数学模型来描述。

常见的一些非线性数学模型有:常微分方程、偏微分方程、差分方程、递推方程等。

非线性系统的特性可以归纳为以下几个方面:1.非线性系统的输入和输出之间存在非线性关系,即输出不是输入的线性函数。

2.非线性系统的行为不稳定,其输出随时间而变化。

3.非线性系统的行为是确定的,但是通常不能被解析地表示。

4.一些非线性系统可能会表现出周期性或者混沌现象。

三、非线性系统的分析方法对非线性系统进行分析是了解和掌握其行为的前提。

主要的分析方法有线性化法和相平面法。

1.线性化法线性化法是将非线性系统在某一特定点附近展开成一系列的一阶或者二阶泰勒级数,然后用线性系统来代替非线性系统,进而对非线性系统进行分析。

线性化法的优点是简单易行,但是必须要求非线性系统在特定点附近的行为与线性系统相似,否则线性化法就失效了。

2.相平面法相平面法通过画出非线性系统的相图来表示系统的行为,较常用的是相轨线和极点分析法。

相轨线是用非线性系统的相图来描述其行为。

相图是将系统的状态表示为一个点,它的坐标轴与系统的每个状态变量相关。

极点分析法则是在相平面上找出使系统输出输出的状态点,然后找出与这些状态点相关的所有极点,以确定出系统的稳定性。

四、非线性系统的控制方法目前,非线性系统的控制方法主要包括反馈线性化控制、自适应控制、滑动模式控制和模糊控制等。

1.反馈线性化控制反馈线性化控制方法以线性控制理论为基础,将非线性系统通过反馈线性化方法转化为等效的线性控制系统,以便使用线性控制理论进行控制。

非线性系统建模与仿真分析

非线性系统建模与仿真分析

非线性系统建模与仿真分析随着科学技术的不断发展,非线性系统已经成为了一种非常重要的研究对象,其在各种工程领域中都扮演了不可或缺的角色。

想要对这类系统进行深入的研究,就必须建立相应的数学模型并进行仿真分析。

本文将从非线性系统建模和仿真分析两方面进行探讨。

一、非线性系统建模1. 什么是非线性系统?非线性系统是指系统的输出与输入不成比例的一种系统。

这种系统具有许多特有的性质,如复杂性、不可预测性、多稳定性等。

与线性系统相比,非线性系统具有更为复杂的动态行为,因此非常具有研究价值。

2. 常见的非线性系统模型为了方便建模与仿真,有许多已有的非线性系统模型可供选择。

其中比较常见的模型有以下几种:(1) Van der Pol模型Van der Pol模型是一种具有极限环的非线性系统模型,通常用来描述具有自激振荡行为的系统。

该模型的数学表达式为:$$\ddot{x} - \mu(1-x^2)\dot{x} + x = 0$$其中,$x$为系统的输出,$\mu$为系统的参数。

(2) Lotka-Volterra模型Lotka-Volterra模型是一种典型的非线性系统模型,它被广泛应用于各种生物学领域中,如食物链模型、掠食者-猎物模型等。

该模型的数学表达式为:$$\begin{aligned} \frac{dx}{dt} &= \alpha x - \beta xy \\ \frac{dy}{dt} &= \delta xy - \gamma y\end{aligned}$$其中,$x$和$y$分别代表两个生物群体的数量,$\alpha$、$\beta$、$\gamma$和$\delta$则为模型的参数。

(3) Lorenz方程Lorenz方程是一种非常经典的混沌系统模型,可以用来描述大气中的对流现象。

该模型的数学表达式为:$$\begin{aligned} \frac{dx}{dt} &= \sigma(y-x) \\ \frac{dy}{dt} &= x(\rho-z)-y \\\frac{dz}{dt} &= xy-\beta z\end{aligned}$$其中,$x$、$y$和$z$为系统的三个输出,$\sigma$、$\rho$和$\beta$则为模型的参数。

自动控制原理第八章

自动控制原理第八章
非线性是宇宙间的普遍规律 非线性系统的运动形式多样,种类繁多 线性系统只是在特定条件下的近似描述

2.非线性系统的一般数学模型
f (t , d y dt
n n
,
dy dt
, y ) g (t ,
d r dt
m
m
,
dr dt
, r)
其中,f (· )和g (· )为非线性函数。
2012-6-21 《自动控制原理》 第八章 非线性系统 23
2012-6-21 《自动控制原理》 第八章 非线性系统 5
(1)当初始条件x0<1时,1-x0>0,上式具有负的特
征根,其暂态过程按指数规律衰减,该系统稳定。 (2)当x0=1时,1-x0=0,上式的特征根为零,其暂 态过程为一常量。 (3)当x0>1时,1-x0<0,上式的特征根为正值,系 统暂态过程按指数规律发散,系统不稳定。 系统的暂态过程如图所示。 由于非线性系统的这种性质, 在分析它的运动时不能应用 线性叠加原理。
非线性弹簧输出的幅频特性
2012-6-21 《自动控制原理》 第八章 非线性系统 11
实际中常见的非线性例子
实际的非线性例子:晶体管放大器有一个线性工作范围,
超出这个范围,放大器就会出现饱和现象;有时,工程上
还人为引入饱和特性用以限制过载;
电动机输出轴上总是存在摩擦力矩和负载力矩,只有在输
2012-6-21
《自动控制原理》 第八章 非线性系统
16

系统进入饱和后,等效K↓
% ( 原来系统稳定,此时系 统一定稳定) (原来不稳,非线性系 统最多是等幅振荡) 振荡性 限制跟踪速度,跟踪误 差 ,快速性

第7章 非线性系统的分析

第7章 非线性系统的分析

某一初始条件出发在相平面上按照式(7-13)或式(7-14)绘出的
曲线称为相平面轨迹,简称相轨迹。不同初始条件下构成的
相轨迹,称为相轨迹簇。由相轨迹簇构成的图称为相平面图。
利用相平面图分析系统性能的方法,称为相平面分析法。
图7-6为某个非线性系统的相平面图。图中,相轨迹上的
箭头表示相变量随着时间的增加沿相轨迹运动的方向。
第7章 非线性系统的分析 7.2 相平面分析法
7.2.1 相平面的基本概念 设二阶非线性系统的微分方程为
第7章 非线性系统的分析
第7章 非线性系统的分析
1.相平面和相轨迹
前面已经设定
我们称以x1(或x)为横坐
标、以x2(或 )为纵坐标构成的平面为相平面(注意,纵坐标x2
是横坐标x1的一阶导数),如图7-6所示。x1、x2为相变量。由
7.2.2 线性系统的相轨迹 在学习非线性系统的相平面分析法之前,我们先对非常
熟悉的线性系统做相平面分析。设二阶线性系统的微分方程 为
第7章 非线性系统的分析
也就是说,无论系统特征参数ωn和ξ是何值,系统的奇点是 不变的。此外,式(7-21)的特征方程为
系统的特征根为
对于不同的阻尼比ξ,二阶系统特征根的形式是不同的,而 线性系统的时域响应是由特征根决定的。下面介绍系统特征 根与系统的奇点(0,0)以及相轨迹的关系。
行线性化。我们只研究系统平衡点附近的特性时,就可以采 用平衡点附近的线性化方法,将非线性系统在平衡点附近小 范围线性化。当然,也可以将非线性系统分为几个区域,对每 个区域进行分段线性化。
第7章 非线性系统的分析
2.相平面分析法 相平面分析法简称相平面法,是非线性系统的图解分析 法。其基本思路是:建立一个相平面,在相平面上根据非线性 系统的结构和特性,绘制非线性系统的相轨迹。相轨迹就是 非线性系统中的变量在不同初始条件下的运动轨迹,根据相 轨迹就可以对非线性系统进行分析。该方法只适用于一阶和 二阶非线性微分方程。

机械工程控制基础课件 第2章: 系统的数学模型

机械工程控制基础课件 第2章: 系统的数学模型
统,而闭环控制系统则是指系统中存在反馈环节的控制系统。
控制系统的状态空间模型
要点一
总结词
控制系统的状态空间模型
要点二
详细描述
状态空间模型是一种描述控制系统动态行为的数学模型, 它通过建立系统的状态方程和输出方程来描述系统的动态 特性。在状态空间模型中,系统的状态变量、输入变量和 输出变量都被表示为矩阵和向量的形式,从而能够方便地 描述系统的动态行为。状态空间模型具有直观、易于分析 和设计等优点,因此在控制工程中得到了广泛应用。
传递函数模型的求解
通过求解传递函数模型中的代数方程或超 越方程,得到系统在给定输入下的输出响 应。
04
控制系统的数学模型
控制系统的定义与分类
总结词
控制系统的定义与分类
详细描述
控制系统的定义是:控制系统是一种能够实现自动控制和调节的装置或系统,它能够根 据输入信号的变化,自动调节输出信号,以实现某种特定的控制目标。控制系统可以分 为开环控制系统和闭环控制系统两类。开环控制系统是指系统中没有反馈环节的控制系
状态空间模型的求解
通过数值计算方法求解状态空间模型中的微分方程或差分方程,得到 系统状态变量的时间响应。
非线性系统的传递函数模型
总结词
传递函数模型的建立、性质和求解
传递函数模型的性质
传递函数模型是非线性的,具有频率响应 特性,可以描述系统在不同频率下的行为
特性。
传递函数模型的建立
通过拉普拉斯变换将非线性系统的微分方 程或差分方程转换为传递函数的形式,从 而建立非线性系统的传递函数模型。
03
非线性系统的数学模型
非线性系统的定义与性质
总结词
非线性系统的定义、性质和特点
非线性系统的定义

非线性系统的分析

非线性系统的分析
可利用继电控制实现快速跟踪。
带死区的继电特性,将会增加系统的定 位误差,对其他动态性能的影响,类似 于死区、饱和非线性特性的综合效果。
式中
a — —继电器吸合电压; ma — —继电器释放电压; M — —常值输出。
当a=0时,继电器的吸合及释放电压为零,此种情况亦 称零值切换,又称理想继电器特性,如 图7-1-5a所示。
增长,时间响应都逐渐衰减为零,非线性系统也 是稳定系统 。
当x0 1时, 线性系统的响应仍与 x0 1时一样。
但非线性系统的响应则不然,它随时间增长而发散
到。系统呈不稳定状态。
2、系统的自持振荡
在非线性系统中,在无外部激励时,发生某一固定 振幅和频率的振荡,称为自持振荡(或自激振荡)。
例 7-1-2 范德波尔方程是
如图7-1-4c所示,其数学描述是
kxt a
yt kxt a
c sgn xt

y(t) 0

y(t) 0
(7-1-5)

y(t) 0
式中 a — —间隙宽度;
k — —线性输出特性的斜率,k tan
间隙(回环)特性的影响
降低了定位精度,增大了系统的静差。
使系统动态响应的振荡加剧,稳定性 变坏。
图 7-1-1 b) 弹簧力的非线性特性
考虑到作用于质量m上的全部力,其运动 可用下面的非线性微分方程描述:
m
d2y dt 2
fv
dy dt
kyy
F
(7-1-1)
描述大多数非线性物理系统的数学模型是n阶非线性 微分方程,其形式为
m
dn dt
y
n
h t, yt, dyt
dt, d 2 yt

非线性系统的分析与控制方法

非线性系统的分析与控制方法

非线性系统的分析与控制方法现今,非线性现象随处可见,涉及到的领域包括工程学、物理学、化学、生物学、经济学等。

与此同时,为了满足人类日益增长的需求,我们需要分析与控制这些非线性系统,使其达到我们所希望的状态。

本文将探讨分析与控制非线性系统的常见方法,涵盖了数学模型、稳定性分析、反馈控制等方面的内容。

1. 数学模型一个非线性系统通常可以利用微分方程表达。

微分方程可以是常微分方程或者偏微分方程,这取决于物理系统的特性。

使用数学模型可以对非线性系统进行分析与控制,比如进行数值计算,对系统进行仿真或者进行数值优化。

数学建模可以使用不同的方法,比如解析法、数值法和近似法等。

在实际应用中,通常使用形式化方法来描述系统的行为。

形式化方法涉及到一些形式的逻辑体系来描述现实问题。

它们通常适用于非线性系统的分析、验证和控制,其中一些常见的方法有:模型检验、定理证明和模型检查等。

2. 稳定性分析稳定性分析是对非线性系统的一个重要分析方法,它涉及到系统是否能够维持其稳定性。

稳定性分析包括局部稳定性分析和全局稳定性分析。

局部稳定性分析关注系统是否能够询问某种程度的扰动,而全局稳定性分析关注系统在无论多大的扰动下是否能保持稳定。

通常情况下,对于一个非线性系统,可以通过对其相应线性化系统的特征值进行分析来评估系统是否稳定。

如果相应线性化系统的特征值的实部都为负,则该非线性系统是局部稳定的。

如果相应线性化系统的特征值的实部都为负,并且没有虚部,则非线性系统是全局稳定的。

相反,如果相应线性化系统的特征值具有正实部,那么原始的非线性系统是不稳定的。

3. 反馈控制反馈控制是对非线性系统的适当信息反馈的一种方法,用于实现所需的稳态或动态目标。

在这种方法中,系统的输出信号与输入信号之间存在一定的误差。

通过将该误差反馈到控制器中,可以对系统进行优化,使其达到所需要的目标。

反馈控制方法最常见的类型是Proportional-Integral-Derivative (PID)控制器,它涉及到根据系统的误差信号进行比例反馈(P 项)、积分反馈(I项)和微分反馈(D项)。

非线性系统的建模与控制方法研究

非线性系统的建模与控制方法研究

非线性系统的建模与控制方法研究概述非线性系统在现实世界中广泛存在,例如机械系统、电路系统、化学反应系统等,其动态行为往往更加复杂和困难于线性系统。

因此,研究非线性系统的建模和控制方法显得尤为重要。

本文将讨论非线性系统的建模方法和常见的控制策略,包括模糊控制、神经网络控制和自适应控制等。

一、非线性系统的建模方法1.1 相似方法相似方法是一种经验性的建模方法,通过观察和分析系统的特征和行为,将其与已知的线性或非线性系统进行类比,并利用类比得出的模型来描述和预测系统的行为。

相似方法适用于从现有的非线性系统中推导出近似模型的情况。

1.2 描述函数法描述函数法是一种常用的非线性系统建模方法,它通过将非线性系统的输入和输出之间的函数关系表示为一个描述函数,从而得到系统的数学模型。

描述函数法适用于特定类型的非线性系统,如非线性饱和系统和非线性运动学系统等。

1.3 状态空间法状态空间法是一种基于系统状态的建模方法,它将系统的动态行为表示为一组状态方程。

通过对系统的状态变量和状态方程进行数学描述,可以得到非线性系统的状态空间模型。

状态空间法适用于具有多个输入和多个输出的非线性系统。

二、模糊控制方法2.1 模糊集合和模糊逻辑模糊集合理论是描述模糊现象和不确定性的数学工具,它将某个事物的隶属度表示为一个介于0和1之间的数值,而不是传统的二值逻辑。

模糊逻辑是一种基于模糊集合的推理方法,它通过定义模糊规则和模糊推理机制来实现对非线性系统的控制。

2.2 模糊控制器的设计流程模糊控制器的设计流程通常包括以下几个步骤:确定输入和输出的模糊化程度、建立模糊规则库、设计模糊推理机制、进行模糊推理和去模糊化处理。

通过这些步骤,可以将非线性系统的输入和输出之间的关系表示为一组简单的模糊规则,并将其用于控制器的设计和实现。

三、神经网络控制方法3.1 神经网络的基本原理神经网络是一种模拟生物神经系统的信息处理方法,它由一组相互连接的神经元组成,这些神经元通过调整其连接权值来实现对输入和输出之间的映射关系进行学习和训练。

数学模型的类型

数学模型的类型

数学模型的类型
1. 线性模型:用线性方程、线性规划等方法描述问题,被广泛应用于物理、经济、管理、工程等领域。

2. 非线性模型:解决非线性问题,例如非线性规划、微积分方程、动力系统等。

3. 概率模型:描述随机变量及其概率分布,包括统计推断、回归分析和假设检验等。

4. 离散模型:离散模型的主要应用领域是计算机科学,涉及图论、排队论、模拟等。

5. 运筹模型:用于优化问题,例如线性规划、整数规划、网络流问题等。

6. 贝叶斯模型:基于贝叶斯定理构建出的模型,用于概率推理、统计学习等。

7. 决策模型:描述决策过程,包括决策树、马尔可夫决策过程、多属性决策等。

8. 动态模型:描述随时间变化的系统,例如微积分方程、差分方程、系统仿真等。

9. 系统模型:将一个大型、复杂的系统分解为较小的子系统,并用数学语言来
表示它们之间的相互作用。

10. 统计学模型:可以用于描述数据集,包括回归分析、时间序列分析、聚类分析等。

第8章-非线性系统分析

第8章-非线性系统分析
假若平衡点在坐标原点时得:
令:
方程组可改写为
特征方程
线性化方程组
在一般情况下,线性化方程在平衡点附近的相轨迹与非线性系统在平衡点附近的相轨迹具有同样的形状特征。但是,若线性化方程求解至少有一个根为零,根据李雅普诺夫小偏差理论,不能根据一阶线性化方程确定非线性系统平衡点附近的特性,此时,平衡点附近的相轨迹要考虑高阶项。
(1) 无阻尼运动(=0) 此时系统特征根为一对共轭虚根,相轨迹方程变为
对上式分离变量并积分,得
式中,A为由初始条件决定的积分常数。
初始条件不同时,上式表示的系统相轨迹是一族同心椭圆,每一个椭圆对应一个等幅振动。在原点处有一个平衡点(奇点),该奇点附近的相轨迹是一族封闭椭圆曲线,这类奇点称为中心点。
图8-1 无阻尼二阶线性系统的相轨迹
(2)欠阻尼运动(01) 系统特征方程的根为一对具有负实部的共轭复根,系统的零输入解为 式中,A、B、为由初始条件确定的常数。时域响应过程是衰减振荡的。
可求出系统有一个位于相平面原点的平衡点(奇点),不同初始条件出发的相轨迹呈对数螺旋线收敛于该平衡点,这样的奇点称为稳定焦点。
5.李雅普诺夫法 李雅普诺夫法是根据广义能量函数概念分析非线性系统稳定性。原则上适用所有非线性系统,但对大多数非线性系统,寻找李雅普诺夫函数相当困难,关于李雅普诺夫法在现代控制理论中作祥解。 6.计算机辅助分析 利用计算机模拟非线性系统,特别上采用MATLAB软件工具中的Simulink来模拟非线性系统方便且直观,为非线性系统的分析提供了有效工具。
例1:确定非线性系统的奇点及附近的相轨迹。
解:令
求得奇点(0,0),(-2,0)。


(1)奇点(0,0) 线性化方程为
特征根

4、非线性系统的数学模型

4、非线性系统的数学模型

2 ( x x ) x10 1 10
当(x1-x10)为微小增量时,可略去二阶以上各项, 写成
df x2 f ( x10 ) dx1
df 其中 K dx1
x10
( x1 x10 )
x20 K ( x1 x10 )
x10
为工作点(x10,x20)处的斜率,
即此时以工作点处的切线代替曲线,得到变量在工 作点的增量方程,经上述处理后,输出与输入之间 就成为线性关系。
输出
输入
液压控制阀中的 圆形窗口;
在不同输入幅值下,元件或环节具有不同的增益。
分段斜面;
阶梯形窗口;
6、滞环特性
输出
输入
铁磁部件的元件
三、单变量非线性系统的线性化
非线性函数的线性化,是指将非线性函数在工 作点附近展开成泰勒级数。 忽略掉高阶无穷小量及余项,得到近似的线性 化方程,来替代原来的非线性函数。
非本质非线性:
能够用小偏差线性化方法进行线性化处理的非线性。
本质非线性 用小偏差线性化方法不能解决的非线性
2、典型非线性特性 (1)饱和特性
输出
输入
k x(t ) y(t ) ka sgn x(t )
x(t ) a x(t ) a
特征:当输入信号超出其线性范围后,输出信号不再随 输入信号变化而保持恒定。
令T1=R1C1,T2=R2C2,T3=R1C2 则得
d 2u0 (t ) du0 (t ) T1T2 (T1 T2 T3 ) u0 (t ) ui (t ) 2 dt dt
一、微分方程的线性化的特点
1、线性控制系统: 由线性元件组成,输入输出问具有叠加性和 齐次性性质。

非线性系统的建模与控制

非线性系统的建模与控制

非线性系统的建模与控制第一章介绍非线性系统在现实生活中随处可见,比如飞机的控制、机器人的运动以及化学反应中的动态行为等。

与线性系统不同,非线性系统的数学模型十分复杂,往往需要使用高级数学工具才能有效解决。

本文将介绍非线性系统的建模方法与控制技术。

第二章非线性系统的建模方法在建立非线性系统的数学模型时,一般采用以下两种方法:1. 基于物理理论的建模方法这种方法首先考虑所研究对象的物理过程,利用物理学的原理,以物理量为基础建立非线性系统模型,例如运动控制中的质点运动、汽车运动、机器人的运动等。

2. 基于数据的建模方法这种方法是通过实验采集数据,然后利用统计学的方法建立非线性系统模型。

这种方法的优点是适用范围广,但缺点是它只能用于已有数据的情况下进行建模。

在非线性系统的建模中,关键是确定出系统的状态方程。

通常根据实际系统采用不同的建模方法,分别对系统做出描述。

例如常见的非线性系统模型有Lorenz模型、Van der Pol模型等。

第三章非线性系统的控制技术目前,针对非线性系统的控制技术主要有以下几种:1. PID控制PID控制是一种比较常见的控制方法,它基于比例、积分、微分三个控制量,通过对误差信号的调整来控制系统的稳定性。

对于非线性系统,PID控制的优点在于简单易懂易操作,但是其控制效果不如其他方法显著。

2. 模糊控制模糊控制是一种应用模糊数学的方法,它允许输出的值不是精确的数字,而是一些用模糊数学表示的不确定的值。

模糊控制在非线性系统中应用广泛,其优点在于可以更好地支持系统不确定性,同时也具有很好的适应性和健壮性。

3. 自适应控制自适应控制是一种基于系统自身的反馈机制进行调节的控制方法。

它的原理是通过调节控制器的参数,使得系统的输出恰好等于期望值。

自适应控制适用于非线性系统,但是其控制策略往往比较复杂。

第四章非线性系统的应用在现代工程技术中,非线性系统已经很广泛地应用到了各个方面。

以下只列举一些常见的非线性系统应用:1. 控制工程中,常见的非线性系统应用包括机器人运动控制、飞行器自稳定控制、柔性梁振动控制等。

第七章__非线性系统分析

第七章__非线性系统分析

输出
铁磁部件的元件
输入
电液伺服阀中的力矩马达
输出
非单值非线性
输入
7、静摩擦与动摩擦
静摩擦 M1
M2
Mf
动摩擦
0
x
直流电动机的方框图
摩擦力矩示意图
摩擦非线性对小功率角度随动系统来说,是一个很 重要的非线性因素。它的影响,从静态方面看,相当于 在执行机构中引入了死区,从而造成了系统的静差,这 一点和死区的影响相类似。
第七章 非线性系统分析
☆非线性数学模型的线性化 ☆典型非线性特性 ☆描述函数与典型环节描述函数 ☆用描述函数分析非线性系统 ☆改进非线性系统性能的方法
第一节 非线性数学模型的线性化
绝大多数物理系统在参数某些范围 内呈现出线性特性。当参数范围不加限 制时,所有的物理系统都是非线性的。
对每个系统都应研究其线性特性和相 应的线性工作范围。
D(s) 1 N( A)G(s) 0
N ( A) 1
G(s) 1 N ( A)
负倒描述函数(描述函数负倒特性)
1
?
N ( A)
线性系统
1 G(s) 0
G(s) 1
(乃奎斯特判据) 若开环稳定,则闭环 稳定的充要条件是 G(j) 轨迹不包围G平 面的(-1,j0)。
第三节 描述函数与典型环节描述函数
一、描述函数
X sint
系统或元件
y(t )
将 y(t) 表示为富氏级数形式

y(t) A0 ( An cos nt Bn sin nt) n1

A0 Yn sin(nt n ) n1
式中:
An

1

2

自动控制原理--非线性特性对系统的影响

自动控制原理--非线性特性对系统的影响
• 饱和非线性使系统在大信号作用下的等 效增益下降,严重的可以使系统丧失闭 环控制作用。
2、死区
在实际系统中死区可由众多原因引起,它对系统可产生不同 的影响:一方面它使系统不稳定或者产生自振荡;另一方面 有时人们又人为的引入死区特性,使系统具有抗干扰能力。
3、滞环(非单值特性)
x2
kx2(mx1sgnaxs1gn
非线性特性对系统的影响
• 如果一个控制系统包含一个或一个以上 具有非线性特性的元件或环节,则此系统 即为非线性系统。
• 实际的物理系统,由于其组成元件在不 同程度上具有非线性特性,严格地讲, 都是非线性系统。
一、本质非线性系统特点:
1)初始条件与输入量对非线性系统的影响
非线性系统可能 会出现某一初始 条件下的响应过 程为单调衰减, 而在另一初始条 件下则为衰减振 荡,如图所示。
包含有各种谐波分量,发生非线性畸变。
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
0
1
2
3
4
5
6
7
8
9 10
4)混沌 非线性系统出现了一种非周期的运动, 其轨迹是永不闭合的非周期曲线。
• 非线性系统分析方法:
1)非线性系统的运动比线性系统复杂得 多;
2)分析线性系统的分析方法不能用于分析 非线性系统;
线性系统如果某系统在某初始条件下的响应过程 为衰减振荡,则其在任何输入信号及初始条件下 该系统的暂态响应均为衰减振荡形式。
x 0.5x 2x x2 u
x0, x0 0,1
x0, x0 0,3
初始条件不同时非线性系统不同的响应特性

4、非线性系统的数学模型

4、非线性系统的数学模型
非线性函数的线性化,是指将非线性函数在工 作点附近展开成泰勒级数。
忽略掉高阶无穷小量及余项,得到近似的线性 化方程,来替代原来的非线性函数。
元件的输出与输入
之 间 关 系 x2=f(x1) 的 曲 线 如 图 , 元件的工作点为(x10,x20)。
将非线性函数x2= f(x1)在工 作 点 ( x10,x20) 附 近 展 开 成 泰 勒 级数
2、典型非线性特性 (1)饱和特性
输出
y(t)
k
x(t)
输入
kasgn x(t)
x(t) a x(t) a
特征:当输入信号超出其线性范围后,输出信号不再随 输入信号变化而保持恒定。
磁饱和
2、死区特性 (不灵敏区特性)
输出
y(t)
0
kx(t)
a
sgn
x(t)
输入
x(t) a x(t) a
非线性系统的数学模型
内容提要
➢ 微分方程的线性化的特点 ➢ 非线性系统的概述 ➢ 非线性系统的线性化
复习:试列写图中所示RC无源网络的微分方程。 输入为ui(t),输出为u0(t) 。
解 根据基尔霍夫定理,可列出以下式子:
ui
(t)
R1i1 (t)
1 ቤተ መጻሕፍቲ ባይዱ1
(i1 (t) i2 (t))dt
1
C1
特征:当输入信号在零位附近变化时,系统没有输出。 当输入信号大于某一数值时才有输出,且与输入呈线性关。
3、间隙特性 输入输出之间具有多值关系
输出
输入
特征: 元件开始运动
输入信号<a时,无输出信号; 当输入信号>a以后,输出随输入线性变化。 元件反向运动 保持在运动方向发生变化瞬间的输出值; 输入反向变化>2a,输出随输入线性变化。

非线性系统概述

非线性系统概述

2.非线性系统的数学模型
一般非线性系统数学模型可用下式描述:
F
d
n x(t dt n
)
,
d
n1x(t) dt n1
,.....
.,dx(t dt
)
,
x(t
),
d
mu(t dt m
)
,..
....
,u(t
)
0
或写成多变量的形式:

X (t) f (X (t),U (t),t)
3.非线性系统的研究方法
3.描述函数法:是一种等效线性化方法。在一定的条件下, 用非线性元件的输出的基波分量作为在正弦信号输入时系 统的非正弦输出,从而应用奈奎斯特稳定性判据分析系统 的稳定性和自持振荡问题。但该近似方法的应用是有一定 条件的,否则所得结果没有价值。
4.相平面法:是一种图解法,仅适用于一阶或二阶系统。 通过在X— 平面上绘制非线性系统的运动轨迹,可分析系 统的稳定性和一些动态性能。对于任意的二阶以下的非线 性系统均适用。
4.在线性系统中,串联环节的互换对系统输出响应并没有 影响,而在非线性系统中,这可能会导致一个稳定的系统 变为不稳定,或使系统的输出发生根本性的变化,
5.非线性系统常会产生持续振荡,即所谓自持振荡;而线 性系统运动状态有两种:收敛和发散。
6. 非线性系统的运动方式比线性系统要复杂得多。从数学 角度来看,其解的存在性和唯一性都值得研究。从控制的 角度来看,目前的研究方法虽很多,但没有系统性的和普 遍性的解决方案。
5.计算机仿真:是研究复杂非线性系统的一种非常有效的 方法,但它只能给出特解,无法得到解析解,因此缺乏对 一般非线性系统的指导意义。
本章仅介绍小范围线性近似法、相平面法 和描述函数法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、微分方程的线性化的特点
线性系统的齐次性和叠加性:
u
H(u)
具有齐次性。
y
y=H(u)
齐次性:若系统满足 H(ku)=kH(u) 则称系统 叠加性:若系统满足 H(u1+u2)=H(u1)+H(u2) 则称系统具有叠加性。 同时满足齐次性和叠加性的系统称线性系统。
二、非线性系统的概述
非线性控制系统: 系统中有非线性元件,输入输出间不具有叠加性和均匀性 性质。
非本质非线性:
能够用小偏差线性化方法进行线性化处理的非线性。
本质非线性 用小偏差线性化方法不能解决的非线性
2、典型非线性特性 (1)饱和特性
输出
输入
k x(t ) y(t ) ka sgn x(t )
x(t ) a x(t ) a
特征:当输入信号超出其线性范围后,输出信号不再随 输入信号变化而保持恒定。
1 1 (i1 (t ) i2 (t )) dt R2 i2 (t ) i2 (t )dt C1 C2
1 u 0 (t ) i2 (t )dt C2
整理得::
d 2 u 0 (t ) du 0 (t ) R1 R2 C1C 2 ( R1C1 R2 C 2 R1C 2 ) u 0 (t ) u i (t ) 2 dt dt
2 ( x x ) x10 1 10
当(x1-x10)为微小增量时,可略去二阶以上各项, 写成
df x2 f ( x10 ) dx1
df 其中 K dx1
x10
( x1 x10 )
x20 K ( x1 x10 )
x10
为工作点(x10,x20)处的斜率,
即此时以工作点处的切线代替曲线,得到变量在工 作点的增量方程,经上述处理后,输出与输入之间 就成为线性关系。
磁饱和
2、死区特性
输出
(不灵敏区特性)
输入
0 y (t ) k x(t ) a sgn x(t )
x(t ) a x(t ) a
特征:当输入信号在零位附近变化时,系统没有输出。 当输入信号大于某一数值时才有输出,且与输入呈线性关。
3、间隙特性
输入输出之间具有多值关系
非线性系统的数学模型
内容提要
微分方程的线性化的特点 非线性系统的概述
非线性系统的线性化
复习:试列写图中所示RC无源网络的微分方程。
输入为ui(t),输出为u0(t) 。

根据基尔霍夫定理,可列出以下式子: 1 u i (t ) R1i1 (t ) (i1 (t ) i2 (t )) dt C1
元件的输出与输入 之间关系 x2=f(x1) 的曲线如图, 元件的工作点为(x10,x20)。 将非线性函数x2= f(x1)在工 作点 ( x10,x20) 附近展开成泰勒 级数
df x2 f ( x1 ) f ( x10 ) dx1 1 d2 f 2 2! dx1
x10
( x1 x10 )
输出
输入
液压控制阀中的 圆形窗口;
在不同输入幅值下,元件或环节具有不同的增益。
分段斜面;ቤተ መጻሕፍቲ ባይዱ
阶梯形窗口;
6、滞环特性
输出
输入
铁磁部件的元件
三、单变量非线性系统的线性化
非线性函数的线性化,是指将非线性函数在工 作点附近展开成泰勒级数。 忽略掉高阶无穷小量及余项,得到近似的线性 化方程,来替代原来的非线性函数。
令T1=R1C1,T2=R2C2,T3=R1C2 则得
d 2u0 (t ) du0 (t ) T1T2 (T1 T2 T3 ) u0 (t ) ui (t ) 2 dt dt
一、微分方程的线性化的特点
1、线性控制系统: 由线性元件组成,输入输出问具有叠加性和 齐次性性质。
第2章 线性系统的数学模型
输出
输入
特征:
元件开始运动 输入信号<a时,无输出信号;
当输入信号>a以后,输出随输入线性变化。
元件反向运动 保持在运动方向发生变化瞬间的输出值;
输入反向变化>2a,输出随输入线性变化。
4、继电器特性
输出
输入
理想继电器
5、非线性增益
大偏差时,具有较大增益加快系统响应。
小偏差时,具有较小增益提高零位附近的系统稳定性。
相关文档
最新文档