工程材料力学性能-第2版习题答案整理

合集下载

江大工程材料力学性能习题解答

江大工程材料力学性能习题解答

第一章1、弹性变形的实质是什么?答:金属晶格中原子自平衡位置产生可逆位移的反映。

2、弹性模量E的物理意义?E是一个特殊的力性指标,表现在哪里?答:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。

E=Z / &。

弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。

弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。

它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。

特殊表现:金属材料的E是一个对组织不敏感的力学性能指标,温度、加载速率等外在因素对其影响不大,E主要决定于金属原子本性和晶格类型。

3、比例极限、弹性极限、屈服极限有何异同?答:比例极限:应力应变曲线符合线性关系的最高应力(应力与应变成正比关系的最大应力);弹性极限:试样由弹性变形过渡到弹-塑性变形时的应力;屈服极限:开始发生均匀塑性变形时的应力。

4、什么是滞弹性?举例说明滞弹性的应用?答:滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

应用:精密传感元件选择滞弹性低的材料。

5、内耗、循环韧性、包申格效应?答:内耗:金属材料在在弹性区内加载交变载荷(振动)时吸收不可逆变形功的能力;循环韧性:• ••塑性区内•••;包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力(特别是弹性极限在反向加载时几乎降低到零)的现象。

6、什么是屈服强度?如何确定屈服强度?答:屈服强度Z s :开始产生塑性变形时的应力。

对于屈服现象明显的材料,以下屈服点对应的应力为屈服强度;对于屈服现象不明显的材料,以产生0.2%残余变形的应力为其屈服强度。

7、屈服强度的影响因素有哪些?答:内因:①金属本性及晶格类型(位错密度增加,晶格阻力增加,屈服强度随之提高)②晶粒大小和亚结构(细晶强化)③溶质元素(固溶强化)④第二相(弥散强化和沉淀强化);外因:①温度(一般,升高温度,金属材料的屈服强度降低)②应变速率(应变速率硬化)③应力状态(切应力分量越大,越有利于塑性变形,屈服强度则越低)。

材料力学性能课后思考题答案

材料力学性能课后思考题答案

第一章 单向静拉伸力学性能一、 解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

13.比例极限:应力—应变曲线上符合线性关系的最高应力。

14.解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。

晶体学平面--解理面,一般是低指数、表面能低的晶面。

15.解理面:在解理断裂中具有低指数,表面能低的晶体学平面。

16.静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。

工程材料力学性能-第2版课后习题答案

工程材料力学性能-第2版课后习题答案

《工程材料力学性能》课后答案机械工业出版社2008第2版第一章单向静拉伸力学性能1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3•循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4•包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5•解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6•塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7. 解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

8. 河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9. 解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10. 穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。

答:E弹性模量G切变模量二r规定残余伸长应力-0.2屈服强度、:gt金属材料拉伸时最大应力下的总伸长率n应变硬化指数【P15】3、金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。

材料力学性能课后习题答案

材料力学性能课后习题答案

材料力学性能课后习题答案1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.xx效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。

弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。

完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理

材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力.一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后.随时间延长产生附加弹性应变的现象称为滞弹性.也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形.卸载后再同向加载.规定残余伸长应力增加;反向加载.规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时.便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下.当外加正应力达到一定数值后.以极快速率沿一定晶体学平面产生的穿晶断裂.因与大理石断裂类似.故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内.可以是韧性断裂.也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展.多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时.冲击吸收功明显下降.断裂方式由原来的韧性断裂变为脆性断裂.这种现象称为韧脆转变2、说明下列力学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P153、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小.但是不改变金属原子的本性和晶格类型。

机械工程材料(第二版)课后习题答案

机械工程材料(第二版)课后习题答案

2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构?答:常见晶体结构有3种:⑴体心立方:-Fe、Cr、V⑵面心立方:-Fe、Al、Cu、Ni⑶密排六方:Mg、Zn2---7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。

第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。

答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。

答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。

原因是:(1)强度高:Hall-Petch公式。

晶界越多,越难滑移。

(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。

(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。

4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后再精加工。

试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。

4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn的最低再结晶温度分别为:TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W在1000℃时为冷加工,Sn在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。

建筑力学第二版课后习题答案

建筑力学第二版课后习题答案

建筑力学第二版课后习题答案建筑力学是建筑工程领域中非常重要的一门学科,它研究的是建筑结构在受力作用下的力学性能和稳定性。

对于学习建筑力学的学生来说,课后习题是巩固知识和提高能力的重要途径。

本文将为大家提供《建筑力学第二版》课后习题的答案,希望能够帮助大家更好地理解和掌握建筑力学的知识。

第一章弹性力学基础1. 弹性力学是研究物体在外力作用下发生形变时产生的应力和应变关系的学科。

主要包括应力、应变、胡克定律、弹性模量等内容。

2. 线弹性材料是指在小应变范围内,应力和应变之间的关系是线性的材料。

常见的线弹性材料有钢材、混凝土等。

3. 弹性模量是描述材料抵抗形变能力的物理量,用E表示,单位为帕斯卡(Pa)。

4. 应力是单位面积上的力的作用,用σ表示,单位为帕斯卡(Pa)。

5. 应变是物体形变程度的度量,用ε表示,是无量纲的。

6. 一维拉伸问题是指材料在轴向受力下的变形和应力分布问题。

7. 胡克定律是描述线弹性材料应力和应变之间的关系,即应力与应变成正比。

数学表达式为σ = Eε,其中σ为应力,E为弹性模量,ε为应变。

第二章梁的基本性质1. 梁是一种常见的结构构件,在建筑工程中起到承载荷载的作用。

2. 梁的基本性质包括梁的截面形状、长度、材料和受力情况等。

3. 梁的受力分析可以通过应力分析和变形分析来进行,常用的方法有静力学方法和力学性能方法。

4. 静力学方法是通过平衡方程和几何关系来分析梁的受力情况,常用的方法有力平衡法、弯矩平衡法和剪力平衡法。

5. 力学性能方法是通过分析梁的强度和刚度来确定梁的受力情况,常用的方法有强度理论和刚度理论。

6. 梁的截面形状对其受力性能有很大影响,常见的梁截面形状有矩形截面、圆形截面和T形截面等。

7. 梁的变形是指梁在受力作用下发生的形变,常见的梁的变形有弯曲变形、剪切变形和挠曲变形等。

第三章梁的弯曲1. 梁的弯曲是指梁在受到弯矩作用下产生的变形和应力情况。

2. 弯矩是指作用在梁上的力对梁产生的弯曲效应。

材料力学性能习题及解答库

材料力学性能习题及解答库

第一章习题答案一、解释下列名词1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。

2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。

4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现σe升高或降低的现象。

5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。

6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。

韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶;8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。

9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。

10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。

穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。

11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。

二、说明下列力学指标的意义1、E(G):E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。

2、σr、σ0.2、σs: σr :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。

σ0.2:表示规定残余伸长率为0.2%时的应力。

σs:表征材料的屈服点。

3、σb:韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。

4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬化行为的性能指标。

5、δ、δgt、ψ:δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。

材料力学性能学习题与解答[教材课后答案]

材料力学性能学习题与解答[教材课后答案]

度越高。
3、计算: 某低碳钢的摆锤系列冲击实验列于下表, 温度(℃) 60 40 35 25 试计算: a. 绘制冲击功-温度关系曲线; 冲击功(J) 75 75 70 60 温度(℃) 10 0 -20 -50 冲击功(J) 40 20 5 1
冲击吸收功—温度曲线 80 70 60 50
Ak
40 30 20 10 0 -6 -5 -4 -3 -2 -1 0 10 20 30 40 50 60 70 0 0 0 0 0 0 t/℃
第三章 冲击韧性和低温脆性 1、名词解释: 冲击韧度 冲击吸收功 低温脆性
解: 冲击韧度:一次冲断时,冲击功与缺口处截面积的比值。 冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功。 低温脆性:当试验温度低于某一温度时,材料由韧性状态转变为脆性状态。 韧脆转变温度:材料在某一温度 t 下由韧变脆,冲击功明显下降。该温度即韧脆转 变温度。 迟屈服:用高于材料屈服极限的载荷以高加载速度作用于体心立方结构材料时,瞬 间并不屈服,需在该应力下保持一段时间后才屈服的现象。
2) 简述扭转实验、弯曲实验的特点?渗碳淬火钢、陶瓷玻璃试样研究其力学 性能常用的方法是什么? 1 扭转实验的应力状态软性系数较拉伸的应力状态软性系数高。可 解: 扭转实验的特点是○
2 扭转实验 对表面强化处理工艺进行研究和对机件的热处理表面质量进行检验。 ○ 3 圆柱试样在扭转时,不产生缩颈现象,塑 时试样截面的应力分布为表面最大。○
韧脆转变温度 迟屈服
2、简答 1) 缺口冲击韧性实验能评定哪些材料的低温脆性?哪些材料不能用此方法 检验和评定?[提示:低中强度的体心立方金属、Zn 等对温度敏感的材料,高强 度钢、铝合金以及面心立方金属、陶瓷材料等不能]
解:缺口冲击韧性实验能评定中、低强度机构钢的低温脆性。面心立方金属及合金如氏 体钢和铝合金不能用此方法检验和评定。

完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理

材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P15 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。

材料力学性能课后习题 (1)

材料力学性能课后习题 (1)

材料力学性能课后习题第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。

⑧解理断裂:解理断裂是在正应力达到一定的数值后沿一定的晶体学平面产生的晶体学断裂。

2.解释下列力学性能指标的意义(1)E( 弹性模量);(2)σp(规定非比例伸长应力)、σe(弹性极限)、σs(屈服强度)、σ0.2(规定残余伸长率为0.2%的应力);(3)σb(抗拉强度);(4)n(加工硬化指数);(5)δ(断后伸长率)、ψ(断面收缩率)3.金属的弹性模量取决于什么?为什么说他是一个对结构不敏感的力学性能?取决于金属原子本性和晶格类型。

因为合金化、热处理、冷塑性变形对弹性模量的影响较小。

4.常用的标准试样有5倍和10倍,其延伸率分别用δ5和δ10表示,说明为什么δ5>δ10。

答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。

5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。

试分析这两种故障的本质及改变措施。

《工程材料力学性能》期末复习笔记-2

《工程材料力学性能》期末复习笔记-2

《工程材料力学性能》期末复习笔记弹性滞后环:实际金属材料在弹性区内单向快速加载、;6、包申格效应:包申格效应:金属材料经预先加载产;消除包申格效应的方法是预先进行较大的塑性变形,或;包辛格效应可以用位错理论解释;实际意义:在工程应用上,首先是材料加工成型工艺需;可以从河流花样的反“河流”方向去寻找裂纹源;解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典;7、弹性极限:试样加载后再卸裁,以不弹性滞后环:实际金属材料在弹性区内单向快速加载、卸载时,加载线和卸载线不重合形成的一封闭回线。

金属的内耗:又称金属的循环韧性,指金属材料在交变载荷(振动)下吸收不可逆变形功的能力。

循环韧性越高,材料的消震性越好。

6、包申格效应:包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。

消除包申格效应的方法是预先进行较大的塑性变形,或在第二次反向受力前先使金属材料于回复或再结晶温度下退火。

包辛格效应可以用位错理论解释。

第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。

背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。

因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。

这一般被认为是产生包辛格效应的主要原因。

其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。

实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。

其次,包辛格效应大的材料,内应力较大。

材料物理课后答案+第二版+(熊兆贤+著)+科学出版社

材料物理课后答案+第二版+(熊兆贤+著)+科学出版社

l1
ε1
ε1
1-5 一陶瓷含体积百分比为 95%的 Al2O3 (E = 380 GPa)和 5%的玻璃相(E = 84
GPa),试计算其上限和下限弹性模量。若该陶瓷含有 5 %的气孔,再估算其上限
和下限弹性模量。
解:令 E1=380GPa,E2=84GPa,V1=0.95,V2=0.05。则有
上限弹性模量EH = E1V1 + E2V2 = 380 × 0.95 + 84 × 0.05 = 365.2(GPa)
5
《材料物理性能》 习题解答
解:⎪⎧C1
Q
⎪ ⎨
⎪⎪⎩C2
= =
B 2.303 fg = Bf
= 17.44(B是常数, fg 51.6(B f 是自由体积在
f g是Tg时的自由体积百分数 Tg以上的热膨胀系数 )
)
101.6 又有f = f g + B f (T − Tg ) ⇒ f g+50 = f g + 50B f = 51.6 f g

ε
2=1.0E×210
4
(1-e
−10
)
=
0.01,∴ E2
= 1.0 ×106 Pa,η2
=
E2τ
=
3.6 ×109 Pa ⋅ s
1-10 当取 Tg 为参考温度时 logαT
=
− c2
c1 +
(T (T
− Ts ) − Ts )
中的
C1=17.44,C2=51.6,求以
Tg+50℃为参考温度时 WLF 方程中的常数 C1 和 C2。
3
×
4 ×10−3 6.02 ×1023

《工程材料力学性能》第二版课后习题答案

《工程材料力学性能》第二版课后习题答案
《工程材料力学性能》(第二版) 《工程材料力学性能》(第二版) 课后答案
第一章
一、 解释下列名词
材料单向静拉伸载荷下的力学性能
滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料 能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限 (ζ P)或屈服强度(ζ S)增加;反向加载时弹性极限(ζ P)或屈服 强度(ζ S)降低的现象。
二、 金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学 姓能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而 材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指
1
《工程材料力学性能》(第二版)
标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的 强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或 屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明 在反向加载时塑性变形立即开始了。 包辛格效应可以用位错理论解释。第一,在原先加载变形时,位错源在 滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于 位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停 止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平 均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当 反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应 力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服 强度就降低了。这一般被认为是产生包辛格效应的主要原因。其次,在反向 加载时, 在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁, 这也会引起材料的软化,屈服强度的降低。 实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效 应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲 劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛 格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。

机械工程材料(第二版)课后习题答案

机械工程材料(第二版)课后习题答案

2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构?答:常见晶体结构有3种:⑴体心立方:-Fe、Cr、V⑵面心立方:-Fe、Al、Cu、Ni⑶密排六方:Mg、Zn2---7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。

第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。

答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。

答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。

原因是:(1)强度高:Hall-Petch公式。

晶界越多,越难滑移。

(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。

(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。

4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后再精加工。

试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。

4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn的最低再结晶温度分别为:TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W在1000℃时为冷加工,Sn在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。

结构设计原理-第一章-材料的力学性能-习题及答案

结构设计原理-第一章-材料的力学性能-习题及答案

结构设计原理-第一章-材料的力学性能-习题及答案结构设计原理-第一章-材料的力学性能-习题及答案第一章材料的力学性能一、填空题1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为____________和。

2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。

3、碳素钢可分为、和。

随着含碳量的增加,钢筋的强度、塑性。

在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。

4、钢筋混凝土结构对钢筋性能的要求主要是、、、。

5、钢筋和混凝土是不同的材料,两者能够共同工作是因为、、6、光面钢筋的粘结力由、、三个部分组成。

7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。

8、混凝土的极限压应变包括和两部分。

部分越大,表明变形能力越,越好。

9、混凝土的延性随强度等级的提高而。

同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。

10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。

11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。

12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。

二、判断题1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。

2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。

3、混凝土双向受压时强度比其单向受压时强度降低。

4、线性徐变是指徐变与荷载持续时间之间为线性关系。

5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。

6、强度与应力的概念完全一样。

7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。

8、钢筋应力应变曲线下降段的应力是此阶段拉力除以实际颈缩的断面积。

9、有明显流幅钢筋的屈服强度是以屈服下限为依据的。

10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。

材料力学性能-课后答案-(时海芳-任鑫)

材料力学性能-课后答案-(时海芳-任鑫)

材料力学性能-课后答案-(时海芳-任鑫)第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。

⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。

2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b(抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率)4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。

答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。

5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。

试分析这两种故障的本质及改变措施。

答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。

材料力学性能参考答案

材料力学性能参考答案

填空:1.影响材料弹性模数的因素有键合方式和原子结构、晶体结构、化学成分、微观组织、温度、加载条件和负荷持续时间等。

2.提供材料弹性比功的途径有二,提高材料的弹性极限,或降低弹性模量。

3.退火态和高温回火态的金属都有包申格效应,因此包申格效应是具有的普遍现象。

4.金属材料常见的塑性变形机理为晶体的滑移和孪生两种。

5.多晶体金属材料由于各晶粒位向不同和晶界的存在,其塑性变形更加复杂,主要有各晶粒变形的不同时性和不均匀性及各晶粒变形的相互协调性的特点。

6.影响金属材料屈服强度的因素主要有晶体结构、晶界与亚结构、溶质元素、第二相、温度等。

7.产生超塑性的条件是(1)超细晶粒;(2)合适的条件,变形温度≥0.4Tm,应变速率ε≤ 10-3s-1 ;(3)应变速率敏感指数较高0.3≤m≤1 。

8.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为韧性断裂与脆性断裂;按照晶体材料断裂时裂纹扩展的途径,分为穿晶断裂和沿晶断裂;按照微观断裂机理分为剪切断裂和解理断裂;按作用力的性质可分为正断和切断。

9.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力增加;卸载时降低的的现象。

10.剪切断裂的两种主要形式为滑断(纯剪切断裂)和微孔聚集性断裂。

11.解理断口的基本微观特征为解理台阶、河流花样和舌状花样。

12.韧性断裂的断口一般呈杯锥状,由纤维区、放射区和剪切唇三个区域组成。

13.韧度是衡量材料韧性大小的力学性能指标,其中又分为静力韧度、断裂韧度和冲击韧度。

14. 材料在受到三向等拉伸应力作用时压力状态最硬,其最大切应力分量分量为零,材料最易发生脆性断裂,适用于揭示塑性较好的金属材料的脆性倾向。

单向拉伸时,正应力分量较大,切应力分量较小,应力状态较硬。

一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;弯曲、扭转时应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料;材料的硬度试验属于三向压缩状态,应力状态非常软,可在各种材料上进行。

工程材料力学性能答案

工程材料力学性能答案

111111111111111111111111111111111111111111111111111111111111111111111111111111111.7决定金属屈服强度的因素有哪些?12内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。

外在因素:温度、应变速率和应力状态。

1.9试举出几种能显著强化金属而又不降低其塑性的方法。

固溶强化、形变硬化、细晶强化1.10试述韧性断裂与脆性断裂的区别。

为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

1.13何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。

上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化1.20断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,由于出现颈缩两者并不相等。

1.22裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。

2222222222222222222222222222222222222222222222222222222222222222222222222.3试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。

答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形抗力与切断强度较低得所谓塑性材料试验。

压缩试验的特点及应用:(1)单向压缩的应力状态软性系数a=2,因此,压缩试验主要用于脆性材料,以显示其在静拉伸时缩不能反映的材料在韧性状态下的力学行为。

结构设计原理 第一章 材料的力学性能 习题及答案

结构设计原理 第一章 材料的力学性能 习题及答案

第一章材料的力学性能一、填空题1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为____________和。

2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。

3、碳素钢可分为、和。

随着含碳量的增加,钢筋的强度、塑性。

在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。

4、钢筋混凝土结构对钢筋性能的要求主要是、、、。

5、钢筋和混凝土是不同的材料,两者能够共同工作是因为、、6、光面钢筋的粘结力由、、三个部分组成。

7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。

8、混凝土的极限压应变包括和两部分。

部分越大,表明变形能力越,越好。

9、混凝土的延性随强度等级的提高而。

同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。

10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。

11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。

12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。

二、判断题1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。

2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。

3、混凝土双向受压时强度比其单向受压时强度降低。

4、线性徐变是指徐变与荷载持续时间之间为线性关系。

5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。

6、强度与应力的概念完全一样。

7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。

8、钢筋应力应变曲线下降段的应力是此阶段拉力除以实际颈缩的断面积。

9、有明显流幅钢筋的屈服强度是以屈服下限为依据的。

10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。

11、钢筋的弹性模量与钢筋级别、品种无关。

12、钢筋的弹性模量指的是应力应变曲线上任何一点切线倾角的正切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、 解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。

弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。

组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。

【P4】4、 决定金属屈服强度的因素有哪些?【P12】答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。

外在因素:温度、应变速率和应力状态。

5、 试述韧性断裂与脆性断裂的区别。

为什么脆性断裂最危险?【P21】答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

6、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。

7、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。

上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。

第二章 金属在其他静载荷下的力学性能一、解释下列名词:(2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。

(4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。

【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。

(6)维氏硬度——以两相对面夹角为136。

的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。

【P53 P62】二、说明下列力学性能指标的意义(1)σbc——材料的抗压强度【P41 P48】 (2)σbb——材料的抗弯强度【P42 P50】 (3)τs——材料的扭转屈服点【P44 P52】 (4)τb——材料的抗扭强度【P44 P52】 (5)σbn——材料的抗拉强度【P47 P55】 三、试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。

试验方法特点 应用范围拉伸 温度、应力状态和加载速率确定,采用光滑圆柱试样,试验简单,应力状态软性系数较硬。

塑性变形抗力和切断强度较低的塑性材料。

压缩应力状态软,一般都能产生塑性变形,试样常沿与轴线呈45º方向产生断裂,具有切断特征。

脆性材料,以观察脆性材料在韧性状态下所表现的力学行为。

弯曲 弯曲试样形状简单,操作方便;不存在拉伸试验时试样轴线与力偏斜问题,没有附加应力影响试验结果,可用试样弯曲挠度显示材料的塑性;弯曲试样表面应力最大,可灵敏地反映材料表面缺陷。

测定铸铁、铸造合金、工具钢及硬质合金等脆性与低塑性材料的强度和显示塑性的差别。

也常用于比较和鉴别渗碳和表面淬火等化学热处理机件的质量和性能。

扭转 应力状态软性系数为0.8,比拉伸时大,易于显示金属的塑性行为;试样在整个长度上的塑性变形时均匀,没有紧缩现象,能实现大塑性变形量下的试验;较能敏感地反映出金属表面缺陷和及表面硬化层的性能;试样所承受的最大正应力与最大切应力大体相等用来研究金属在热加工条件下的流变性能和断裂性能,评定材料的热压力加工型,并未确定生产条件下的热加工工艺参数提供依据;研究或检验热处理工件的表面质量和各种表面强化工艺的效果。

四.试述脆性材料弯曲试验的特点及其应用。

七、试说明布氏硬度、洛氏硬度与维氏硬度的实验原理,并比较布氏、洛氏与维氏硬度试验方法的优缺点。

【P49 P57】 原理布氏硬度:用钢球或硬质合金球作为压头,计算单位面积所承受的试验力。

洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。

维氏硬度:以两相对面夹角为136。

的金刚石四棱锥作压头,计算单位面积所承受的试验力。

布氏硬度优点:实验时一般采用直径较大的压头球,因而所得的压痕面积比较大。

压痕大的一个优点是其硬度值能反映金属在较大范围内各组成相得平均性能;另一个优点是实验数据稳定,重复性强。

缺点:对不同材料需更换不同直径的压头球和改变试验力,压痕直径的测量也较麻烦,因而用于自动检测时受到限制。

洛氏硬度优点:操作简便,迅捷,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可测量各种软硬不同的金属和厚薄不一的试样的硬度,因而广泛用于热处理质量检测。

缺点:压痕较小,代表性差;若材料中有偏析及组织不均匀等缺陷,则所测硬度值重复性差,分散度大;此外用不同标尺测得的硬度值彼此没有联系,不能直接比较。

维氏硬度优点:不存在布氏硬度试验时要求试验力F 与压头直径D 之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度试验时不仅试验力可以任意取,而且压痕测量的精度较高,硬度值较为准确。

缺点是硬度值需要通过测量压痕对角线长度后才能进行计算或查表,因此,工作效率比洛氏硬度法低的多。

第三章 金属在冲击载荷下的力学性能冲击韧性:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。

【P57】冲击吸收功: 缺口试样冲击弯曲试验中,摆锤冲断试样失去的位能为mgH1-mgH2。

此即为试样变形和断裂所消耗的功,称为冲击吸收功,以K A表示,单位为J 。

低温脆性: 体心立方晶体金属及合金或某些密排六方晶体金属及其合金,特别是工程上常用的中、低强度结构钢(铁素体-珠光体钢),在试验温度低于某一温度k t时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。

韧性温度储备:材料使用温度和韧脆转变温度的差值,保证材料的低温服役行为。

四、试说明低温脆性的物理本质及其影响因素低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料,它们的屈服强度会随温度的降低急剧增加,而断裂强度随温度的降低而变化不大。

当温度降低到某一温度时,屈服强度增大到高于断裂强度时,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。

从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,当温度降低时,位错运动阻力增大,原子热激活能力下降,因此材料屈服强度增加。

影响材料低温脆性的因素有(P63,P73):1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高,材料脆性断裂趋势明显,塑性差。

2.化学成分:能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高。

3.显微组织:①晶粒大小,细化晶粒可以同时提高材料的强度和塑韧性。

因为晶界是裂纹扩展的阻力,晶粒细小,晶界总面积增加,晶界处塞积的位错数减 少,有利于降低应力集中;同时晶界上杂质浓度减少,避免产生沿晶脆性断裂。

②金相组织:较低强度水平时强度相等而组织不同的钢,冲击吸收功和韧脆转变温度以马氏体高温回火最佳,贝氏体回火组织次之,片状珠光体组织最差。

钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。

七. 试从宏观上和微观上解释为什么有些材料有明显的韧脆转变温度,而另外一些材料则没有?宏观上,体心立方中、低强度结构钢随温度的降低冲击功急剧下降,具有明显的韧脆转变温度。

而高强度结构钢在很宽的温度范围内,冲击功都很低,没有明显的韧脆转变温度。

面心立方金属及其合金一般没有韧脆转变现象。

微观上,体心立方金属中位错运动的阻力对温度变化非常敏感,位错运动阻力随温度下降而增加,在低温下,该材料处于脆性状态。

而面心立方金属因位错宽度比较大,对温度不敏感,故一般不显示低温脆性。

体心立方金属的低温脆性还可能与迟屈服现象有关,对低碳钢施加一高速到高于屈服强度时,材料并不立即产生屈服,而需要经过一段孕育期(称为迟屈时间)才开始塑性变形,这种现象称为迟屈服现象。

由于材料在孕育期中只产生弹性变形,没有塑性变形消耗能量,所以有利于裂纹扩展,往往表现为脆性破坏。

第五章 金属的疲劳1.名词解释;应力幅σa:σa=1/2(σmax-σmin) p95/p108 平均应力σm :σm=1/2(σmax+σmin) p95/p107 应力比r :r=σmin/σmax p95/p108疲劳源:是疲劳裂纹萌生的策源地,一般在机件表面常和缺口,裂纹,刀痕,蚀坑相连。

相关文档
最新文档