量子力学 第四版 卷一 (曾谨言 著)习题答案第3章-补充

合集下载

量子力学 第四版 卷一(曾谨言 著) 答案----第2章

量子力学 第四版 卷一(曾谨言 著) 答案----第2章

(b)由(4)式,得
∂ w 2 ∂ ∂ = ( ∇ ψ * )⋅ ∇ ψ + ∇ ψ * ⋅ ( ∇ ψ ∂t 2m ∂ t ∂t 2 = ∇ 2m ∂ψ * ∂ψ * ⋅ ∇ψ + ∇ψ − ∂ t ∂ t
∂ψ ∗ ∂ψ ) + Vψ + ψ *V ∂t ∂t ∂ψ * 2 ∂ ψ 2 * ∂ψ * ∂ψ ∇ ψ + ∇ ψ + Vψ + ψ *V ∂t ∂t ∂t ∂t
(1)
V1 与 V2 为实函数。
(a)证明粒子的几率(粒子数)不守恒。
(b)证明粒子在空间体积 τ 内的几率随时间的变化为
d dt
∫∫∫
τ
d 3 rψ *ψ = −
ψ *∇ ψ − ψ ∇ ψ ∫ ∫ 2im S
(
*
) ⋅ dS +
2V2
∫∫∫ d
τ
3
rψ *ψ
证:(a)式(1)取复共轭, 得
*
∂ ψ 2 2 ∂ ψ * 2 2 = −∇ ⋅s+ − ∇ + V ψ + − ∇ + V ψ ∂ t 2m ∂ t 2m ∂ψ * ∂ψ * = − ∇ ⋅ s + E ψ + ψ ∂t ∂t ∂ρ = −∇ ⋅s+ E ∂t = −∇ ⋅s
dp

∞ −∞
e − α ξ dξ =
2
π α
imx 2

1 ψ ( x, t ) = e 2 t 2π
2mπ it
写出共轭函数(前一式 i 变号):

曾谨言量子力学第一卷习题答案解析3第三章.docx

曾谨言量子力学第一卷习题答案解析3第三章.docx

第三章:一维定态问题[1]对于无限深势阱屮运动的粒子(见图3・1)证明…上(1—亠212 / 兀 2并证明当"T 00时上述结果与经典结论一致。

[解]写出归一化波函数:(1)先计算坐标平均值:x=「|屮「曲=「dn 2竺曲显「(l — cos 込)xdx Jo X a agJo a 利用公式:. xcos px sin px xs in pxax — --------------------- 1 -------- ;—P P—f 1T/ 2 2 / f 2 2 - 2 MX J 1 f" 2/1 2勿才、, x - 屮才 ax- —x sin 〜 ---------- ax-— 才Pl — cos ---------- ) axJo J a a a利用公式 [才2cos pxdx-—x 1 sin /zr +丄7才cos/zr —— sin pxJp矿p2/77LV(2)才 cos pxdx -xs in px cos px(3)(5) nnx得计算均方根值用s-$2 = 7-pj 2 J 以知,可计算7/__/ 12 ~ 2/72^2在经典力学的一维无限深势阱问题中,因粒子局限在(0, a )范围中运动,各点的几率密度看作 相同,由于总几率是1,几率密度CD=-.a_ f" 」r z, 1 , a x - coxar = —xax=—Jo Jo a 2[解](甲法):根据波函数标准条件,设定各区间的波函数如下:(x<0 区):屮=(x>a 区):H 7 = De~kyX但仏三寸2腻人一Q 丨Hk 、三 J2同匕 _ Z )/ 1i 写出在连接点x=0处连续条件(0<x<a 区):屮=BdJC 沙(2) (1) (3)/c 2 三 J2/〃Z7力故当/?—> oo 时二者相一致。

#[2]试求在不对称势力阱屮粒子的能f 4= B+CI k\A = ikAB—C} x=a处连续条件Be ikl<i + Ce ikia = De kyi (6)Bd® - C严=竺De kyi(7)(4)(5)二式相除得k x B-Cik[ B + C(6)(7)二式相除得ik、_ B" _ C严石一Bd^ + C严从这两式间可消去B, C,得到一个k&出间的关系ik、_ (心 + 右 + ik石+%2)/"+(一£ +%2)才®k、cos k^a-k2 sin k、a/(心sin k’a* k z cos k z a\解出tgkg得tgk、a = /"J + ")+ 〃兀(〃=0,1,2,...)〜k;-心最后一式用E表示吋,就是能量得量子化条件:個〃〃 + 一夕)tg --------- a -- ------ -- 彳、,〜卉夕-JW-勾“一刀(乙法)在0<x<a区间屮波函数表示为(8)屮(才)=2?sin (禺才+§)现在和前一法相同写出边界条件:力=2?sin 5(在x=0处) (9)(在x=a处) k x A-局〃cos5 (10)(11) 一(2 方cos/a+M = k^De(12)(9) (10)相除得加 3+»)=写出(13) (14)的反正切关系式,得到:E------- + mn V x -E EF Z77T V x -EE V z -E前述两法的结果形式不同,作为一种检验,可以用下述方法来统一。

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案量子力学是物理学中描述微观粒子行为的一门基础理论,它在20世纪初由普朗克、爱因斯坦、波尔、薛定谔、海森堡等科学家共同发展起来。

曾谨言教授的量子力学练习题是帮助学生深入理解量子力学概念和计算方法的重要工具。

以下是一些练习题及其答案的示例:练习题1:波函数的归一化某粒子的波函数为 \( \psi(x) = A \sin(kx) \),其中 \( A \) 和\( k \) 是常数。

求波函数的归一化常数 \( A \)。

答案:波函数的归一化条件为 \( \int |\psi(x)|^2 dx = 1 \)。

将\( \psi(x) \) 代入归一化条件中,得到:\[ \int |A \sin(kx)|^2 dx = 1 \]\[ A^2 \int \sin^2(kx) dx = 1 \]利用三角恒等式 \( \sin^2(kx) = \frac{1 - \cos(2kx)}{2} \),积分变为:\[ A^2 \int \frac{1 - \cos(2kx)}{2} dx = 1 \]\[ A^2 \left[ \frac{x}{2} - \frac{\sin(2kx)}{4k} \right] = 1 \]由于波函数在 \( x = 0 \) 到 \( x = \frac{\pi}{k} \) 之间归一化,所以:\[ A^2 \left[ \frac{\pi}{2k} - 0 \right] = 1 \]\[ A = \sqrt{\frac{2k}{\pi}} \]练习题2:薛定谔方程的解考虑一个一维无限深势阱,其势能 \( V(x) = 0 \) 当 \( 0 < x < a \),\( V(x) = \infty \) 其他情况下。

求粒子的能级。

答案:在无限深势阱中,薛定谔方程为:\[ -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x) \]设 \( \psi(x) = \sin(kx) \),其中 \( k = \frac{n\pi}{a} \),\( n \) 为正整数。

附量子力学答案 曾谨言

附量子力学答案   曾谨言

目录 退出 16
二.普朗克量子论的提出
Planck量子论:
对于一定频率的辐射,物体只
能以 能量单位h 不连续地发射或吸
收辐射能量。h 为Planck常数,能量单
位h 称为能量子。
Planck于1900年12月14日在德
国物理学会上报告了这个理论的推导,
以及根据辐射实验定出了Planck常
数。这日被定为量子理论的诞生日。
1 uv2 2
hv w0
阿尔伯特-爱因斯坦(1879-1955) 因发现光电效应定律,荣获了1921年 诺贝尔物理学奖 目录 退出 20
0.1.3 原子问题——Bohr(玻尔)的原子理论
一、原子模型问题
1、汤姆逊(J. J. Thomson)的原子模型:
正电荷均匀分布在原子中,而电子则以某种规律镶嵌其中。 ——局限在于无法解释原子散射实险中的大角度偏转现象。
该公式在低频段部分与实验曲线相符合,而在高频段有明显偏离(当 v 时,
Ev 成为发散的,即紫外发散困难)。
目录 退出 14
(三)普朗克(Planck)公式 普朗克分别从瑞利公式和维恩公式求出其能量的涨落,并将二者
相加作为插值公式的能量涨落,从而得出插值公式,即普朗克公式:
Evdv
c1v3dv exp(c2vT )
2、卢瑟福(E. Rutherford)的有核原子模型:
卢瑟福于1911年用 粒子对原子的散射,提出了有核原子模型:
原子的正电荷及大部分质量都集中在很小的原子中心,形成原子核,而电
子则围绕原子核旋转,该模型能很好地解释 粒子的大角度偏转问题,但
不能解释原子的稳定性问题和原子的大小问题。
目录 退出 21
量子力学 (Quantum Mechanics)

曾谨言量子力学(卷I)第四版(科学出版社)2007年1月...

曾谨言量子力学(卷I)第四版(科学出版社)2007年1月...

曾谨言《量子力学》(卷I )第四版(科学出版社)2007年1月摘录第三版序言我认为一个好的高校教师,不应只满足于传授知识,而应着重培养学生如何思考问题、提出问题和解决问题。

这里涉及到科学上的继承和创新的关系。

“继往”中是一种手段,而目的只能是“开来”。

讲课虽不必要完全按照历史的发展线索讲,但有必要充分展开这种矛盾,让学生自己去思考,自己去设想一个解决矛盾的方案。

要真正贯彻启发式教学,教师有必要进行教学与科学研究。

而教学研究既有教学法的研究,便更实质性的是教学内容的研究。

从教学法来讲,教师讲述一个新概念和新原理时,应力求符合初学者的认识过程。

在教学内容上,至少对于像量子力学这样的现代物理课程来讲,我信为还有很多问题并未搞得很清楚,很值得研究。

量子力学涉及物质运动形式和规律的根本变革.20世纪前的经典物理学(经典力学、电动力学、热力学与统计物理学等),只适用于描述一般宏观从物质波的驻波条件自然得出角动量量子化的条件及自然理解为什么束缚态的能量是量子化的:P17~18;人类对光的认识的发展历史把原来人们长期把物质粒子看作经典粒子而没有发现错误的启发作用:P18;康普顿实验对玻尔电子轨道概念的否定及得出“无限精确地跟踪一个电子是不可能的”:P21;在矩阵力学的建立过程中,玻尔的对应原理思想起了重要的作用;波动力学严于德布罗意物质波的思想:P21;微观粒子波粒二象性的准确含义:P29;电子的双缝衍射实验对理解电子波为几率波的作用:P31在非相对论条件下(没有粒子的产生与湮灭),概率波正确地把物质粒子的波动性与粒子性联系起来,也是在此条件下,有波函数的归一化及归一化不随时间变化的结果:P32;经典波没有归一化的要领,这也是概率波与经典波的区别之一:P32;波函数归一化不影响概率分布:P32多粒子体系波函数的物理意义表明:物质粒子的波动性并不是在三维空间中某种实在的物理量的波动现象,而一般说来是多维的位形空间中的概率波。

曾谨言--量子力学习题及解答

曾谨言--量子力学习题及解答

dv , 1
(1) (2) (3)
v c , v dv v d ,
dv d c d v ( ) d ( ) v c

8hc 5
1 e
hc kT
, 1
1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。 本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零, 由此可求得相应的λ的值,记作 m 。但要注意的是,还需要验证 对λ的二阶导数在 m 处的取值是否小于零,如果小于零,那么前面求得的 m 就是要求的,具体如下:
2


k
2 E
2


k
cos 2d (2 ) cos d ,
2 E



k

这里 =2θ,这样,就有
2
A B E


k
d sin 0
(2)
根据式(1)和(2) ,便有
A E
这样,便有

k n h 2
E

k

E
n h 2 k
nh
其中 h

k
,
h 2
最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的 能量是等间隔分布的。 (2)当电子在均匀磁场中作圆周运动时,有

R p qBR

2
qB
这时,玻尔——索末菲的量子化条件就为

又因为动能耐 E

p2 ,所以,有 2
2
2 如果所考虑的粒子是非相对论性的电子( E 动 e c ) ,那么

曾谨言量子力学第3章

曾谨言量子力学第3章
ˆ O ˆ iO ˆ O 1 ˆ ˆ ˆ 1 ˆ ˆ ˆ 令 O (O O ), O (O O ) 2 2i

则O+和O-均是厄米算符。
定理: 在体系的任何状态下,厄米算符的平均值必为实数。 证明:
ˆ ( , A ˆ ) ( A ˆ , ) ( , A ˆ ) A ˆ A
ˆ A ˆ A
(41)
Note: 所有力学量的算符均是厄米算符 性质: (1) 两个厄米算符之和仍是厄米算符 (2)两个厄米算符之积不一定是厄米算符 (3)无论厄米算符A,B是否对易,算符
1 ˆ ˆ ˆˆ 1 ˆ ˆ ˆˆ ( AB BA), ( AB BA) 均是厄米算符 2 2i
(4)任何算符总可分解为两个厄米算符的线性组合
球坐标系下的角动量算符 r x 2 y 2 z 2 x r sin θ cosφ 2 2 y r sin θ sin φ , θ arctan( x y / z ) z r cosθ φ arctan(y / x ) ˆ l x i sin φ θ cotθ cosφ φ ˆ l y i cosφ θ cotθ sin φ φ ˆ l z i φ 2 1 1 ˆ2 2 l sin θ θ sin θ θ sin 2 θ φ 2
如 算符A 则
ˆ ˆ p (i) i p
的厄米共轭算符A+定义为

ˆ φ ) ( A ˆ ψ ,φ ) (ψ , A

(41)
~ ˆ φ ) (A ˆ ψ , φ ) (φ , A ˆ ψ ) (φ , A ˆ ψ ) (ψ , A ˆ φ) (ψ , A

量子力学_答案_曾谨言

量子力学_答案_曾谨言

第一章量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动,⎩⎨⎧<<><∞=a x ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。

解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系λ/h p = (2)而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。

解:除了与箱壁碰撞外,粒子在箱内作自由运动。

假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。

动量大小不改变,仅方向反向。

选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。

利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn hn dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n m p p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(x m x V E a x ω===。

(完整word版)量子力学 第四版 卷一 (曾谨言 著)习题答案

(完整word版)量子力学 第四版 卷一 (曾谨言 著)习题答案

(完整word 版)量子力学 第四版 卷一 (曾谨言 著)习题答案 第一章量子力学的诞生1。

1设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰ )(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(a m x V E a x ω===。

a - 0 a x 由此得 2/2ωm E a = , (2)a x ±=即为粒子运动的转折点。

有量子化条件h n a m a m dx x a m dx x m E m dx p aaaa==⋅=-=-=⋅⎰⎰⎰+-+-222222222)21(22πωπωωω得ωωπm nm nh a 22==(3) 代入(2),解出 ,3,2,1,==n n E n ω (4)积分公式: c au a u a u du u a ++-=-⎰arcsin 22222221.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。

解:除了与箱壁碰撞外,粒子在箱内作自由运动.假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。

动量大小不改变,仅方向反向。

选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。

利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π,3,2,1,,=z y x n n n1.3设一个平面转子的转动惯量为I ,求能量的可能取值。

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学作为现代物理学的重要分支,是研究微观世界的基本理论。

在学习量子力学的过程中,练习题是不可或缺的一部分。

本文将为大家提供一些曾谨言量子力学练习题的答案,希望能对大家的学习有所帮助。

1. 考虑一个自旋1/2的粒子,其自旋矢量可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。

对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|其中,i为虚数单位。

根据这些泡利矩阵,我们可以计算自旋矢量在不同方向上的期望值。

2. 对于一个自旋1/2的粒子,其自旋矢量的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋矢量的内积。

根据泡利矩阵的定义,可以计算出自旋矢量在不同方向上的内积。

3. 考虑一个自旋1/2的粒子,其自旋矩阵可以表示为:J = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。

对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋矩阵在不同方向上的期望值。

4. 对于一个自旋1/2的粒子,其自旋矩阵的模长可以表示为:|J| = √(J·J)其中,J·J表示自旋矩阵的内积。

根据泡利矩阵的定义,可以计算出自旋矩阵在不同方向上的内积。

5. 考虑一个自旋1/2的粒子,其自旋算符可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。

对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋算符在不同方向上的期望值。

6. 对于一个自旋1/2的粒子,其自旋算符的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋算符的内积。

量子力学曾谨言练习题答案

量子力学曾谨言练习题答案

量子力学曾谨言练习题答案量子力学是一门研究微观粒子行为的物理学分支,它与经典力学有着根本的不同。

曾谨言教授的《量子力学》教材是许多学生和学者学习量子力学的重要参考书籍。

以下是一些量子力学练习题的答案,供参考:1. 波函数的归一化条件:波函数的归一化条件是为了保证概率的守恒。

一个归一化的波函数满足以下条件:\[ \int |\psi(x)|^2 dx = 1 \]这意味着粒子在空间中任意位置出现的概率之和等于1。

2. 薛定谔方程:薛定谔方程是量子力学中描述粒子波函数随时间演化的基本方程。

对于一个非相对论性的单粒子系统,薛定谔方程可以写为:\[ i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2 \psi + V\psi \]其中,\( \hbar \) 是约化普朗克常数,\( m \) 是粒子质量,\( V \) 是势能,\( \nabla^2 \) 是拉普拉斯算子。

3. 不确定性原理:海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。

其数学表达式为:\[ \Delta x \cdot \Delta p \geq \frac{\hbar}{2} \]这里,\( \Delta x \) 和 \( \Delta p \) 分别是位置和动量的不确定性。

4. 氢原子的能级:氢原子的能级是量子化的,并且可以用以下公式表示:\[ E_n = -\frac{13.6 \text{ eV}}{n^2} \]其中,\( n \) 是主量子数,\( E_n \) 是对应于 \( n \) 能级的能级能量。

5. 泡利不相容原理:泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的四个量子数。

这意味着在同一个原子中,没有两个电子可以同时具有相同的主量子数、角量子数、磁量子数和自旋量子数。

6. 量子隧道效应:量子隧道效应是指粒子在经典力学中不可能穿越的势垒下,由于量子效应,粒子有一定的概率穿越势垒。

量子力学 第四版 卷一 (曾谨言 著)习题答案第3章-补充

量子力学 第四版 卷一 (曾谨言 著)习题答案第3章-补充

补充3.5)设粒子处于半壁高的势场中⎪⎩⎪⎨⎧><<-<∞=ax a x V x V ,00,x ,)(0 (1) 求粒子的能量本征值。

求至少存在一条束缚能级的体积。

解:分区域写出eq s .:ax ,0)()(a x 0 ,0)()(22"212'"1>=-<<=+x k x x k x ψψψψ (2)其中 ()22022'2k ,2E E V kμμ-=+=(3) 方程的解为kxkxx ik x ik DeCe x Be Ae x --+=+=)()(21''ψψ (4)根据对波函数的有限性要求,当∞→x 时,)(2x ψ有限,则 当0=x 时,0)(1=x ψ,则0=+B A 于是ax , )(x 0 ,sin )(2'1>=<<=-kxDe x a x k F x ψψ (5)在a x =处,波函数及其一级导数连续,得ka ka kDe a k F k De a k F ---=='''cos ,sin (6)上两方程相比,得 kk a k tg ''-= (7)即 ()E E V E V atg +--=⎥⎦⎤⎢⎣⎡+0022 μ(7’) 若令 ηξ==a a k k ,'(8) 则由(7)和(3),我们将得到两个方程:⎪⎩⎪⎨⎧=+-=(10)9) ( 2220a V ctg μηξξξη(10)式是以a V r 202 μ=为半径的圆。

对于束缚态来说,00<<-E V ,结合(3)、(8)式可知,ξ和η都大于零。

(10)式表达的圆与曲线ξξηctg -=在第一象限的交点可决定束缚态能级。

当2π≥r ,即222πμ≥a V ,亦即 82220 πμ≥a V (11)时,至少存在一个束缚态能级。

这是对粒子质量,位阱深度和宽度的一个限制。

曾谨严量子力学习题解答3

曾谨严量子力学习题解答3

= 0 + 0 + yihpz + ihpz y zihp y ihp y z
r r 同理,亦可证得: ly , r p = 0, 由此可得:
=0
r r lz , r p = 0
r r l , r p = 0, α
证毕。
(α = x, y, z )
2.《曾 P.238-3》 设 [ q, p ] = ih, f ( q ) 是q 的可微函数,证明
(
)
( ) ( ) ( )
(
)
(
)
(
)
( )
1 1 ∴ O+ = O + O + = AB + BA 2 2 1 + 1 O = OO = AB BA 2i 2i 由上面的证明易知,O 和O 均为Hermite算符。
( (
O + = BA
) ( ) (
+
)
)
1 1 ∴ O = AB = AB + BA + i AB BA 2 2i =O +O
(e) [ p, pfp ] = [ p, pf ] p + pf [ p, p ] = [ p, pf ] p + 0
= p [ p, f ] p + [ p, p ] fp = p [ p, f ] p + 0 h pf ′ p i 2 2 2 (f) p, fp = [ p, f ] p + f p, p =
( )
(
)
= A3 B1C3 + A2 B1C2 A1 ( B2C2 + B3C3 )
A1 ( B1C1 + B2C2 + B3C3 )

量子力学第四版卷一(曾谨言著)习题集规范标准答案第3章-补充

量子力学第四版卷一(曾谨言著)习题集规范标准答案第3章-补充

补充3.5)设粒子处于半壁高的势场中⎪⎩⎪⎨⎧><<-<∞=ax a x V x V ,00,x ,)(0 (1) 求粒子的能量本征值。

求至少存在一条束缚能级的体积。

解:分区域写出eq s .:ax ,0)()(a x 0 ,0)()(22"212'"1>=-<<=+x k x x k x ψψψψ (2)其中 ()22022'2k ,2ηηE E V k μμ-=+=(3) 方程的解为kxkxx ik x ik DeCe x Be Ae x --+=+=)()(21''ψψ (4)根据对波函数的有限性要求,当∞→x 时,)(2x ψ有限,则0=C当0=x 时,0)(1=x ψ,则0=+B A 于是ax , )(x 0 ,sin )(2'1>=<<=-kxDe x a x k F x ψψ (5)在a x =处,波函数及其一级导数连续,得ka ka kDe a k F k De a k F ---=='''cos ,sin (6)上两方程相比,得 kk a k tg ''-= (7)即 ()E E V E V atg +--=⎥⎦⎤⎢⎣⎡+0022ημ(7’) 若令 ηξ==a a k k ,'(8)则由(7)和(3),我们将得到两个方程:⎪⎩⎪⎨⎧=+-=(10)9) ( 2220a V ctg ημηξξξη(10)式是以a V r 202ημ=为半径的圆。

对于束缚态来说,00<<-E V ,结合(3)、(8)式可知,ξ和η都大于零。

(10)式表达的圆与曲线ξξηctg -=在第一象限的交点可决定束缚态能级。

当2π≥r ,即222πμ≥a V η,亦即 82220ηπμ≥a V (11)时,至少存在一个束缚态能级。

量子力学 第四版 卷一 (曾谨言 著)习题答案第3章-补充

量子力学 第四版 卷一 (曾谨言 著)习题答案第3章-补充

2
2
代入边界条件 (b) 0 ,得 2
(b) sin(kb ) 0,kb n 2
因而 kb n , 2 (x) C sin[k(x b) n ]
C sin k(x b)
或 2(x)
(2)
C sin k(x b)
和V0 情形相同,C=A ,偶宇称解是
1(x) Asin k(x b)
x 2 2m(m 1 ) m2 2 1
2
a2
(m 1 ) 2m(m 1 ) m2 2 (m 1 )
2
2
m 2
m(m 1) 2
测不准关系中的不准度是:
p 2
* m
(
i
)
2
d 2 m dx 2
dx
2mE
m2 2
x2
2m(m
1 ) 2
m2 2
1 a2
(m 1 ) 2m(m 1 ) m2 2 (m 1 )
ka n , kb n
相减得 k(b a) (n n) n
n 是整数,可作为能级编号.
kn
n ba
因此能级是
En
2 2 2m
( n )2 ba
是二度简并的
注: 在本题中因为左右两个势阱对称,粒子在两者中都能出现, 和实际上是同一个函数,只是的取值 范围不同.
考察V0 为有限值情形的解,先设 E<V0 设区间 (a, b) 中的解是
区间 (b,a) ,设波函数:Байду номын сангаас
再考虑
2 (x) b sin(kx ) (5) (x a)x b 在二点的连续条件得
代入
B sin(ka ) 0, B sin(kb ) 0
得: ka p , kb p ,但 p, p 整数,因此区间 (b,a) 的波函数:

量子力学习题答案(曾谨言版)

量子力学习题答案(曾谨言版)

和任意,所以
ˆ ˆ ) BA ˆ ˆ ( AB
P74 习题3.3
解答:利用
[ p, x ] i mx
m
m1
[ x, pn ] i npn1
[ p, F ]
mn 0 m n C [ p , x ] p mn
i
mn 0
C

mn
mx
m 1
p i F x
Rnl ( r ) N nl l e 2F ( n l 1, 2l 2, )
园轨道(l = n-1)下的径向概率分布函数
n,n1 ( r ) Cr e
2 d n,n1 ( r ) 0 dr
2
2 n 2 Zr na
最概然半径 rn 由下列极值条件决定:
(b) 对两个全同的Femi子,体系波函数必须满足交换 反对称要求。
对Femi子不允许两个粒子处于相同的单态,因 此它们只能处于不同的单态,此时反对称化的体系 波函数: 1 (1, 2) [i (1) j (2) i (2) j (1)], i j 2 2 可能态数目 C3 3 所以,两个全同Femi子总的可能态数目3 (b) 对两个经典的粒子(可区分),其体系波函数无对称 性要求,即 (1, 2) i (1) j (2), i, j 1, 2, 3 可能态数目3 3 9
dp
( x, t ) (2 )
利用
1


e
t m 2 mx 2 [( p x) ] 2t 2m 2t i
dp


e d e
m 2 t e
i 2
i

4
所以
( x, t )

量子力学-第四版-卷一-(曾谨言-著)习题答案第4章-2

量子力学-第四版-卷一-(曾谨言-著)习题答案第4章-2

4.29——6.14.29证明在zL ˆ的本征态下,0==y x L L 。

(提示:利用x y z z y L i L L L L =-,求平均。

) 证:设ψ是z L 的本征态,本征值为 m ,即ψψ m L z=[]x L i =-=y z z y z y L L L L L ,L ,[]y L i =-=z x x z x z L L L L L ,L ,()()()0111 =-=-=-=∴ψψψψψψψψψψψψy y y z z y y z z y x L m L m i L L L L i L L L L i L同理有:0=y L 。

附带指出,虽然x l ˆ,y l ˆ在x l ˆ本征态中平均值是零,但乘积x l ˆyl ˆ的平均值不为零,能够证明:,212y x y x l l i m l l -==说明y x l l ˆˆ不是厄密的。

2ˆx l ,2ˆy l 的平均值见下题。

4.30 设粒子处于()ϕθ,lm Y 状态下,求()2x L ∆和()2yL ∆解:记本征态lm Y 为lm ,满足本征方程()lm l l lm L 221 +=,lm m lm L z =,lm m L lm z =,利用基本对易式 L i L L =⨯,可得算符关系 ()()x y z x z y x y z z y x x x L L L L L L L L L L L L L i L i -=-== 2()x y z z x y y x y z y z x y L L L L L L L i L L L L i L L L -+=-+=2将上式在lm 态下求平均,使得后两项对平均值的贡献互相抵消,因此 22yxLL =又()[]222221 m l l L L L zy x -+=-=+()[]2222121m l l L L yx-+==∴ 上题已证 0==y x L L 。

()()()[]2222222121m l l L L L L L L x x x xx x -+==-=-=∆∴同理 ()()[]222121m l l L y-+=∆。

量子力学 第四版 卷一 (曾谨言 著) 科学出版社 课后答案

量子力学 第四版 卷一 (曾谨言 著) 科学出版社 课后答案

目次第二章:波函数与波动方程………………1——25第三章:一维定态问题……………………26——80第四章:力学量用符表达…………………80——168第五章:对称性与守衡定律………………168——199第六章:中心力场…………………………200——272第七章:粒子在电磁场中的运动…………273——289第八章:自旋………………………………290——340* * * * *参考用书1.曾谨言编著:量子力学上册 科学。

19812.周世勋编:量子力学教程 人教。

19793.L .I .席夫著,李淑娴,陈崇光译:量子力学 人教。

19824.D .特哈尔编,王正清,刘弘度译:量子力学习题集 人教。

19815.列维奇著,李平译:量子力学教程习题集 高教。

19586.原岛鲜著:初等量子力学(日文) 裳华房。

19727.N.F.Mott.I.N.Sneddon:Wave Mechanics and its Applications 西联影印。

19488.L.Pauling.E.B.Wilson:Introduction to Quantum- Mechanics(有中译本:陈洪生译。

科学) 19519. A.S.Davydov: Quantum Mechanics Pergamon Press 196510. SIEGFRIED.Fluegge:Practical Quantum- Mechanics(英译本) Springer Verlag 197311. A.Messian:Quantum Mechanics V ol I.North.Holland Pubs 1961ndau,E.Lifshitz:Quantum-Mechanics1958量子力学常用积分公式 (1) dx e x an e x a dx e x ax n ax n ax n ⎰⎰--=11 )0(>n (2) )cos sin (sin 22bx b bx a b a e bxdx e axax-+=⎰ (3) =⎰axdx e ax cos )sin cos (22bx b bx a b a e ax++ (4) ax x a ax a axdx x cos 1sin 1sin 2-=⎰ (5) =⎰axdx x sin 2ax a x aax a x cos )2(sin 2222-+ (6) ax a x ax a axdx x sin cos 1cos 2+=⎰ (7) ax aa x ax a x axdx x sin )2(cos 2cos 3222-+=⎰))ln(2222c ax x a ac c ax x ++++ (0>a ) (8)⎰=+dx c ax 2)arcsin(222x c a a c c ax x --++ (a<0) ⎰20sin πxdx n 2!!!)!1(πn n - (=n 正偶数) (9) = ⎰20cos πxdx n !!!)!1(n n - (=n 正奇数)2π (0>a ) (10)⎰∞=0sin dx xax 2π-(0<a ) (11)) 10!+∞-=⎰n n ax a n dx x e (0,>=a n 正整数) (12) adx e ax π2102=⎰∞- (13) 121022!)!12(2++∞--=⎰n n ax n an dx e x π (14) 10122!2+∞-+=⎰n ax n a n dx e x (15) 2sin 022a dx xax π⎰∞= (16) ⎰∞-+=0222)(2sin b a ab bxdx xe ax (0>a ) ⎰∞-+-=022222)(c o s b a b a b x d x xe ax (0>a )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

补充3.5)设粒子处于半壁高的势场中⎪⎩⎪⎨⎧><<-<∞=ax a x V x V ,00,x ,)(0 (1) 求粒子的能量本征值。

求至少存在一条束缚能级的体积。

解:分区域写出eq s .:ax ,0)()(a x 0 ,0)()(22"212'"1>=-<<=+x k x x k x ψψψψ (2)其中 ()22022'2k ,2E E V kμμ-=+=(3) 方程的解为kxkxx ik x ik DeCe x Be Ae x --+=+=)()(21''ψψ (4)根据对波函数的有限性要求,当∞→x 时,)(2x ψ有限,则 当0=x 时,0)(1=x ψ,则0=+B A 于是ax , )(x 0 ,sin )(2'1>=<<=-kxDe x a x k F x ψψ (5)在a x =处,波函数及其一级导数连续,得ka ka kDe a k F k De a k F ---=='''cos ,sin (6)上两方程相比,得 kk a k tg ''-= (7)即 ()E E V E V atg +--=⎥⎦⎤⎢⎣⎡+0022 μ(7’) 若令 ηξ==a a k k ,'(8) 则由(7)和(3),我们将得到两个方程:⎪⎩⎪⎨⎧=+-=(10)9) ( 2220a V ctg μηξξξη(10)式是以a V r 202 μ=为半径的圆。

对于束缚态来说,00<<-E V ,结合(3)、(8)式可知,ξ和η都大于零。

(10)式表达的圆与曲线ξξηctg -=在第一象限的交点可决定束缚态能级。

当2π≥r ,即222πμ≥a V ,亦即 82220 πμ≥a V (11)时,至少存在一个束缚态能级。

这是对粒子质量,位阱深度和宽度的一个限制。

3—13)设粒子在下列势阱中运动,()⎩⎨⎧>--<∞=.0,,0,)(x a x r x x V δ ()0,>a r (1) 是否存在束缚定态?求存在束缚定态的条件。

解:S.eq: ()ψψδψE a x r dxd m =---2222 (2) 对于束缚态(0<E ),令 mE 2-=β (3)则()022222=-+-ψδψβψa x mr dx d (4) 积分⎰+-εεa a dx ,+→0ε,得'ψ跃变的条件)(2)()(2''a mra a ψψψ -=--+ (5) 在a x ≠处,方程(4)化为0222=-ψβψdxd (6) 边条件为 ()束缚态0)( ,0)0(=∞=ψψ 因此 ⎩⎨⎧><≤=-.,,0,)(a x Ae a x x sh x xββψ (7) 再根据a x =点)(x ψ连续条件及)('x ψ跃变条件(5),分别得)(a Ae a sh a ψββ==- (8))(22a mra ch Ae a ψββββ-=--- (9) 由(8)(9)可得(以)(a a ψ-乘以(9)式,利用(8)式)22coth mraa a a =+βββ (10) 此即确定能级的公式。

下列分析至少存在一条束缚态能级的条件。

当势阱出现第一条能级时,-→0E ,所以+→0a β,利用 1limcoth lim 00==→→ath aa a a a ββββββ,(10)式化为++=+=01coth 22a a a mra βββ, 因此至少存在一条束缚态能级的条件为 122≥mra(11) 纯δ势阱中存在唯一的束缚能级。

当一侧存在无限高势垒时,由于排斥作用(表现为0)(≡x ψ,对0≤x )。

束缚态存在与否是要受到影响的。

纯δ势阱的特征长度mr L 2= 。

条件(11)可改写为 2L a ≥ (12)即要求无限高势垒离开δ势阱较远(2L a ≥)。

才能保证δ势阱中的束缚态能存在下去。

显然,当∞→a (即2L a >>),∞→a β时,左侧无限高势垒的影响可以完全忽略,此时1coth →a β,式(10)给出即 222222mr m E =-=β (13) 与势阱)()(x r x V δ-=的结论完全相同。

令ηβ=a , 则式(10)化为()22coth 1 mra=+ηη (14) 由于()1coth 1≥+ηη,所以只当122≥ mra时,式(10)或(14)才有解。

解出根η之后,利用mE a a 2-==βη,即可求出能级2222maE η -= (15) [7]设一谐振子处于基态,求它的()22p x ∆∆,)(并验证测不准关系: (解)()()222x x x -=∆)(由对称性知道()220x x x =∆=,,同理()222p p p -=∆)(也由对称性知道()220p p p =∆=,对谐振子而言,应先写出归一化波函数:但ωαm = !m A mm 2πα= (1)于是 ()ξξξαξd H e A x mx m 2223221-∞-∞=⎰=(2)为了计算这个积分,利用厄米多项式不同阶间的递推式: ()()()ξξξξ1121-++=m m m mH H H (3) 此式作为已知的,不证。

将前式遍乘ξ,重复用公式 ()()()()ξξξ2212141-+-+++=m m m H m m H m H )( (4) 将此式代入(2)此式最后一式第一项。

第三项都和 )(ξHm 的正交化积分式成比例,都等于零。

第二项和归一化积分成比例;可以简化再计算,这可以利用波函数满足的微分方程式:m m m E x m dx d m ψψωψ='+-222222 (m '是振子质量) 将此遍乘对积分测不准关系中的不准度是: 测不准关系中的不准度是:22)(p p p =∆=δ=)21(+'m m ω)21(+=⋅m p x δδ 因m=0, 而2=⋅p x δδ [9]一维无限深势阱中求处于)(x n ψ态的粒子的动量分布几率密度2)(p ϕ。

(解)因为ax n a x n πϕsin 2)(=是已知的,所以要求动量分布的几率密度,先要求动量波函数,这可利用福利衰变换的一维公式:利用不定积分公式 用于前一式:2cos 22222223pa e n p a a n ipaππ--= (n 奇数)2sin 22222222pa e n p a a ni ipaππ--=, (n 偶数) 动量几率密度分别是2cos )(4222222222pa n p a a n ππ-, (n 奇数) 2sin )(4222222222pa n p a a n ππ-, (n 偶数) #[11]设粒子处在对称的双方势阱中=)(x V 0 b x a <<(1)在∞→0V 情况下求粒子能级,并证明能级是双重简并。

(2)证明0V 取有限值情 况下,简并将消失。

(解)本题的势场相对于原点0来说是对称的,因此波函数具有字称。

设总能量是E , 又设 mEk 2=在区间(∞-,b - ) (-a , a) (b , ∞)之中波函数都是零,在区间(a ,b),设波函数是:0)sin()(=+=a ka A x ψ (1) 考虑x=a, x=b 二连续条件:(势阱外面0=ψ))sin()(0)sin()(=+==+=αψαψkb A b ka A a(2)从这里得到,因而得παn ka =+ , παl n kb =+,因而得 ππαl n kb n ka +-+-=或 ,n,l n 是整数,满足边界条件的解是:再考虑区间),(a b --,设波函数: )sin()(2βψ+=kx b x (5)代入b x a x -=-=)(在二点的连续条件得得: πβp ka =+-,πβp kb '-=+-,但p p ',整数,因此区间),(a b --的波函数: )(sin a x k B + (6) )(sin a x k B +- (7))(1x ψ和)(2x ψ之间要满足奇或偶宇称的要求,才能成为一组合理的解,若令)()(21x x ψψ=-,得A=B,相应的一组偶宇称解是:同理令)()(21x x ψψ-=-,得到一组奇宇称解是)(sin )(1a x k A x -+=ψ (9))(1x ψ和)(2x ψ是线性不相关的解,但却有相同的波数k ,因而也有相同的能级mk E 222 =.能级是分立的,这可以从边界条件式0)(,0)(21==b a ψψ同时满足的要求看到,这两式推得 相减得ππn n n a b k ''=-'=-)()(n '' 是整数,可作为能级编号.因此能级是222)(2ab n m E n -''=''π 是二度简并的注: 在本题中因为左右两个势阱对称,粒子在两者中都能出现, 和实际上是同一个函数,只是的取值范围不同.考察0V 为有限值情形的解,先设E<0V 设区间),(b a 中的解是 代入边界条件0)(1=b ψ,的得 因而παn kb =+ 或在),(a b --的对称区中的解设是 代入边界条件0)(2=-b ψ,得因而,πγn kb '+= ])(sin[)(2πψn b x k C x '++=或 =)(2x ψ (2) 和∞=0V 情形相同,C=A ,偶宇称解是)(sin )(1b x k A x -=ψ (3) 奇宇称解是)(sin )(1b x k A x -=ψ (4) 在区间),(a a -内的解)(2x ψ满足薛定谔方程但00>-E V ,令20)(221 E V m k -=,知道这方程式的解可用实指数函数或双曲函数,计算法相类似.为计算方便直接设定),(a a -区间 偶宇称解x Bchk x 12)(=ψ (5)奇宇称解x Bshk x 12)(='ψ (6)这两者都满足此区间的薛氏方程式.为确定能量量子化条件,可以建立在边界点a x =处,波函数及其一阶导数的连续条件.使用(3)和(5)有:)()(12a a ψψ= 即 :)(sin 1b a k A a Bchk -= (7))()(12a a '='ψψ 即: )(cos 11b a k kA a Bchk k -= (8)(7)和(8)相除得:将此式改用能量E 的项来表示,得到偶宇称态的能量量子化条件: ⎩⎨⎧⎭⎬⎫-=b a mE ctg E 2 (9)注意若使用边界点x=-a 上的连续条件,由于对称性得不到新解.其次求奇宇称的能量量子化条件,为此先写出x=a 处连续条件, 所用方程式是(4)和(6))()(12a a ψψ= 即: )(sin 1b a k A a Bshk -= (11))()(12a a '='ψψ 即: )(cos 11b a k kA a Bchk k -= (12)相除得: )(11b a kctgk a cthk k -= 改写成能量式子:⎩⎨⎧⎭⎬⎫-=⎩⎨⎧⎭⎬⎫-- b a mE ctg E a E V m cth E V 2)(20 (13)(9)和(13)是不同的方程式,它们所决定的能级是不相同的,因此偶宇称波函数(3)和(5)与奇宇称波函数(4)和(6)不具有相同的能量E,它们是非简并的.(9)(13)中E 的分立解要用图解法,与有限深势阱类似.第二种情形是0V E >,这种情形可不必作重复计算.因为 令2220)(2k V E m ≡-,则 i k k 21=代入(5)(6)得),(a a -区间的波函数:偶宇称解 x k B ix Bchk x 222cos )(==ψ (14) 奇宇称解 x k Bi ix Bshk x 222sin )(==ψ (15) (a,b)区间的解同于(1)式的)(1x ψ,),(a b --区间解同于(2)式的 )(2x ψ能量量子化条件是: 偶宇称:⎩⎨⎧⎭⎬⎫-=⎩⎨⎧⎭⎬⎫-- b a mE ctg E a V E m tg E V 2)(200 (16)奇宇称⎩⎨⎧⎭⎬⎫-=⎩⎨⎧⎭⎬⎫-- b a mE ctg E a V E m ctg E V 2)(200 (17)也是不同的方程式.奇偶宇称的波函数是非简并的。

相关文档
最新文档