反比例函数思维导图讲稿思维导图知识点归纳总结
初中数学《反比例函数》单元教学设计以及思维导图
② 你能根据反比例数学 y=k/x 的图象画出 y=-k/x 的图象吗? ③ 结合反比例函数 y=3/x 的图象与 y=-3/x 的关系引导学生画 y=-3/x 的图象。 ④ 分析每支图象升降趋势。 [设计意图] 通过多媒体演示直观形象地得出 y=k/x 与 y=-k/x 的同一坐 标系的位置关系以及如何利用这种关系画反比例函数图象,让学生初 步感知双曲线特征,同时也使同学们从中感悟图形美。 2、、【多媒体展示】:归纳反比例函数图象和性质并与一次函数比较完 成表格:
主 题 单 2. 作出反比例函数图象并归纳其特点
元 问 题 3.体会函数的三种表示方法间的相互转化
设计
4. 观察具体反比例函数图象,归纳:位于哪个象限、y
随 x 的变化而变化的规律。
5. 从函数图象中获取信息,解决实际问题。
专题一:反比例函数概念
( 1课
时)
专题二:探究反比例函数的图象和性质
时) 专题划
成功体验。
专题三:反比例函数的应用 分
时)
( 2课 ( 1课
………… 其中,专题三
(或专题三 中的活动 作为研究性
学习)
专题一 反比例函数概念
所需课
1 课时 时
专题学习目标
知识与技能:
1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系, 加深对函数概念的理解. 2.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例 函数表达式. 过程与方法:
离开超市没多久,来到校门前,哎?有拍大头贴的,小明最喜欢 拍大头贴了。可惜身上的钱只够拍一份,他想多拍几张,又希望每一 张都大一点,真伤脑筋啊!折腾了半天终于拍完了,一看时间,糟了,
初中数学《一次函数与反比例函数》单元教学设计以及思维导图
初中数学《一次函数与反比例函数》单元教学设计以及思维导图一次函数与反比例函数主题单元设计适用年级九年级所需时间10课时(说明:课内共用10课时,每周5课时;课外共用2课时)主题单元学习概述函数是数学中重要的基本概念之一,它是从显示世界中抽象出来的,是从数量关系的角度刻画事物运动变化规律的工具;函数知识渗透在中学教学的许多内容之中,它又与物理、化学等学科的知识密切相关。
本章内容的安排,先举例讲述数量以及变化过程和变量,讲述变量之间的相互联系和相互依存,使学生对函数获得感性的认识;接着,用朴素的语言描述函数的感念,注重两个变量之间存在确定的依赖关系这一基本特征;然后,研究正比例函数和反比例函数,以它们为载体,帮助学生初步感知变量数学,体会研究函数的基本方法;在学生对函数具有一般了解和具体研究的基础上,再整理函数的表示法,讨论生活实际中的函数问题,深化对函数的理解。
主题单元规划思维导图主题单元学习目标知识与技能:1、经历函数概念的形成过程,认识变量与常量,理解变量之间的相互依赖关系,理解函数的意义;2、知道函数的定义域、函数值的意义,知道符号“y=f(x)”的意义,会求函数值;3、理解正比例关系和反比例关系,理解一次函数和反比例函数的概念,掌握正比例函数和反比例函数的基本性质;4、会用待定系数法求一次函数和反比例函数的解析式。
过程与方法:1、通过采取学习交流心得、小节体会等多种多样的形式,进行自主性评价2、利用图象直观的研究函数性质,通过研究解决问题,引导学生逐步认识,深入体会,初步掌握有关的数学思想和方法3、鼓励学生积极探究,大胆发表意见,认真参加操作实践活动。
情感态度与价值观:从数学的角度去思考问题,能通过数学的操作实验或理性活动进行合情推理;关心现实世界中的数学现象并具有积极探索的兴趣,能从数学的角度提出问题和进行研究。
对应课标1.函数(1)探索简单实例中的数量关系和变化规律,了解常量、变量的意义。
初中数学《反比例函数》单元教学设计以及思维导图
情感态度:与价值观通过学习反比例函数,培养学生合作交流意识和 探索能力; 在探究反比例函数性质的过程中,让学生初步感知反比例函数图像的
对称性, 运用反比例函数解决实际问题的过程中,体验数学的应用性,提高学 习数学的兴趣。 :
对应课标 1. 理解反比例函数的概念,能根据实际问题中的条件确定反比例 函数的解析式,能判断一个给定函数是否为反比例函数, 2. 能描点画出反比例函数的图像,会用待定系数法法求反比例函 数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法 和图像法的各自特点; 3. 能根据图像数形结合地分析并掌握反比例函数的函数关系和 性质,能利用这些函数性质分析和解决一些简单的实际问题; 4. 再次经历函数建模的过程,进一步体会函数是刻画现实世界中 变化规律的重要数学模型 5. 能用反比例函数解决简单实际问题。
1.什么是反比例函数?如何判断一个给定函数是否为反
比例函数?如何确定反比例函数解析式? 专题问题
2.反比例函数图像是什么?它有哪些性质? 设计
3.用到了哪些数学思想?
所需教学环境和教学资源
信息化 课件、常见问题解答、计算机、课外书、学案
资源
常规资 纸、粉笔、黑板
源
教学支 多媒体教室
撑环境
其 练习用的纸,笔等
主题单元学习目标 知识与技能:理解反比例函数的意义,能够根据已知条件确定反比例 函数的解析式; 会用描点法画反比例函数图像,理解反比例函数的性质; 运用反比例函数的概念解决实际问题
过程与方法:经历从实际问题抽象出反比例函数模型的过程,体会反 比例函数来源于实际; 通过动手画图,观察图像,分析、探究反比例函数的性质,培养学生 的探究、归纳及概括能力;经历“实际问题-建立模型—拓展应用” 的过程,发展学生分析问题、解决问题的能力。
初中数学各章节知识图解思维导图(共9张PPT)
应用
特例
定理
勾股定理
证明 内容
文字.符号图形
互逆命题
内容
文字.符号图形
直角三角形
逆定理
全等
证明
应用
知三边定形状
锐角三角函数
有关线段
定义
三角 形
解直角三角形
锐角三角函数
定义
计算
三边关系锐角关 系边角关系
应用
坡度 仰.俯角 方位角
正弦
余弦
符号.几何意义. 特殊角的值
特殊值的运算
正切
作对称轴 作一点到两点距离相等 离相等(外心)
作等腰三角形 作一点到三点距
翻折后与 另一图形重 合
到两点距离相等的 点
点到两点 的距离 相等
性质
判定
应用
垂直平分线
定义
对称点
关于轴对称
基本 图形
对称 轴
特征
要素
利用轴对称制作图案
用
坐
作:关于x轴、
标
y轴的对称点
表
示
轴
对
解决几何中的
称
极值问题
基本图形
一条直线
翻折后与 两部分 重合
对称轴 定义
轴对称图形 静
与y轴交点位置 c>0.
对应角相等, 尺规作角 对应边成比例,
二次函数与 一元二次方程
对称轴垂直平分对称点的连线
作对直称线公轴理
直线
作等腰三角形
磁道问题
利润问题 拱桥问题
在表示原与点画法 c<0.
到寻三找射边线方的法 距离相射等线 在三角形内直线.射线.线段
一次函数与反比例函数
表示与画法
线段
计算与比较
中考总复习数学13-第一部分 第13讲 反比例函数及其应用
返回思维导图
第13讲 反比例函数及其应用— 考点梳理
返回栏目导航
续表
在每个象限内,y随x的增大
增减性
而⑤ 减小
对称性
是轴对称图形,对称轴为直线y=⑦
⑧ 原点O
在每个象限内,y随x的增大
而⑥增大
±x
; 是中心对称图形,对称中心是
图象由分别位于两个象限的双曲线组成,图象无限接近坐标轴,但不与
图象特征
坐标轴相交.
第13讲 反比例函数及其应用— 考点梳理
返回思维导图
返回栏目导航
考点 4 反比例函数的应用
1.判断同一坐标系中反比例函数图象和一次函数图象的方法
(假设法)假设反比例函数正确,即可确定 k的取值范围,再根据 k 的取值范围
确定一次函数图象,无矛盾,则正确.
2.已知两个函数图象,求交点坐标
(1)求一次函数图象与反比例函数图象的交点,将两个函数解析式联立方程组
位置关系,依据图象在上方的函数值总比图象在下方的函数值大 ,在各区域
内找对应的x的取值范围.
4.求图形面积
(1)当图形有一边在坐标轴上时,通常将坐标
轴上的边作为底边,再利用点的坐标求出底边上的高,最后用面积公式求解.
(2)当图形三边都不在坐标轴上时,一般用“割补法”.
第13讲 反比例函数及其应用— 考点梳理
返回思维导图
2.与反比例函数中k的几何意义有关的面积计算
S△AOP=⑩
S△APP‘=
|k|
2|k|
S△OBP= |k|
S△ABC=
|k|
S矩形OAPB=|k|
S▱ABCD=
|k|
返回栏目导航
思维导图数学篇
知识点思维导图
知识点思维导图
知识点思维导图
知识点思维导图
课堂练习
做出函数单调性的知识点思维导图
习题课
案例:
ห้องสมุดไป่ตู้
以下两个函数中:
(1)
f
(x)
1 1
x x
2 2
;
(2) f (x) (1 x) 1 x . 1 x
非奇非偶的函数是______________.
解题思维导图
四 开发右脑
思维导图极大地激发我们的右脑。因为我们在创 作导图的时候还使用颜色、形状和想象力。根据科 学研究发现人的大脑是由两部分组成的。左大脑负 责逻辑、词汇、数字,而右大脑负责抽象思维、直 觉、创造力和想象力。巴赞说:“传统的记笔记方 法是使用了大脑的一小部分,因为它主要使用的是 逻辑和直线型的模式。”所以,图像的使用加深了 我们的记忆,因为使用者可以把关键字和颜色、图 案联系起来,这样就使用了我们的视觉感官。
三 同化记忆
思维导图具有极大的可伸缩性,它顺应了我们大脑 的自然思维模式。从而,可以使我们的主观意图自 然地在图上表达出来。它能够将新旧知识结合起来。 学习的过程是一个由浅入深的过程,在这个过程中, 将新旧知识结合起来是一件很重要的事情,因为人 总是在已有知识的基础上学习新的知识,在学习新 知识时,要把新知识与原有认知结构相结合,改变 原有认知结构,把新知识同化到自己的知识结构中, 能否具有建立新旧知识之间的联系是学习的关键。
二、思维导图在复习中的应用
课后复习是巩固知识、提高运用知识解决问题的能力的重要环节。学生对运用思维导图这 种方式进行复习总结都表现出一定的兴趣。在复习中,首先,学生独立对整章知识进行总 结,根据自己的理解,理清数学概念、规律及其区别、联系,区分重点难点,画出思维导 图。其次,教师批阅学生交上来的作品,把握学生对整个章节知识的掌握情况,同时对其 在思维导图中体现的思维错误进行一定程度的修改。第三,在复习课堂上抽取部分典型的 作品,先由大家讨论该思维导图的优劣,进行补充与深化,最后教师进行总结与提升,由 于初中生的思维水平有限,教师的提高主要是将本章知识与已有知识进行联系,将新知识 融入已有的知识体系中,形成知识网络,便于提取。各章、各单元间不是孤立的,而是互 相联系的,让学生自己找出联系,把所有的思维导图编织成自己的知识网,整个过程也是 其乐无穷的。图2为学生学完直角三角形全等后,将直角三角形的知识与已有的三角形全 等的知识相结合绘制的思维导图,加强了对课程内容的整体认识,形成了一个清晰的知识 框架。 除了按章节复习之外,还可以按照知识分类复习,如函数知识,分一次函数、反比例 函数、二次函数三个主要分支,每个主要分支再细分为函数概念、函数图像、函数性质及 应用等,这样当思维导图完成时,学生也有了一个十分清晰的函数知识框架。
反比例函数思维导图
(4)反比例函数有三种表达式
①
(k≠0)
②
(k≠0)
③
(定值)(k≠0)
二、用待定系数法求反比例函 数的解析式
由于反比例函数 (k≠0)中,只有 一个待定系数,因此,只要一组对应 值,就可以求出 k 的值,从而确定反比 例函数的表达式
三、反比例函数的图像及画法
内 ,y 随着 x 的 增大 而 内 ,y 随着 x 的 增大 而
减小
增大
2.反比例函数 (k≠0)中比例系数 k的绝对值的几何意义
(1)过双曲线上任一点P(x,y)分别 作x轴、y轴的垂线,E、F分别为足,则
(2)反比例函数 (k≠0)中,k越大,双曲 线 越远离坐标原点; 越小,双曲线 越 靠近坐标原点 (3)双曲线是中心对称图形,对称中心是坐标原 点;双曲线又是轴对称图形,对称轴是直线y=x和 直线 y=-x
作反比例函数的图像时应注意以下几点
①列表时选取的数值宜对称选取 ②列表时选取的数值越多,画的图像越精确 ③连线时,必须根据自变量大小从左至右(或 从右至左)用光滑的曲线连接,切忌画成折线 ④画图像时,它的两个分支应全部画出,但切 忌将图像与坐标轴相交
四、反比例函数的性质
1.图像的位置及函数值的增减情况,如下表
反比例函数知识点
一、反比例函数的定义 二、用待定系数法求解析式 三、反比例函数的图像及画法 四、反比例函数的性质
一、反比例函数的定义
一般地,形如 (k为常 数,k≠0)的函数称为反比 例函数
(1)x是自变量,y是x 的反比例函数
(2)自变量x的取值范围是x≠0的一切实数,函数值的 取值范围是y≠0
反比例函数的图像是双曲线,它有两个分支,这 两个分支分别位于第一、第三象限或第二、第四 象限,它们与原点对称,由于反比例函数中自变 量函数中自变量x≠0,函数值y≠0,所以它的图 像与x轴、y轴都没有交点,即双曲线的两个分支 无限接近坐标轴,但永远达不到坐标轴
人版初三下反比例函数常见题型解法思维导图(原创)
1.反比例函数定义 【例1】如果函数222-+=k k kx y 的图像是双曲线.且在第二.四象限内.那么K 的值是多少?函数的解析式?思维导图练习1当k 为何值时22(1)k y k x -=-是反比例函数?练习2.已知y=(a ﹣1)是反比例函数.则a= . 练习3.如果函数y=(k+1)是反比例函数.那么k= .练习4.如果函数y=x 2m ﹣1为反比例函数.则m 的值是2. 增减性问题【例2】在反比例函数xy 1-=的图像上有三点(1x .)1y .(2x .)2y .(3x .)3y 。
若3210x x x >>>则下列各式正确的是( )A .213y y y >>B .123y y y >>C .321y y y >>D .231y y y >>思维导图练习1.若A (-3.y 1).B (-2.y 2).C (-1.y 3)三点都在函数y =-x1的图象上.则y 1.y 2.y 3的大小关系是( ).A.y 1>y 2>y 3 B.y 1<y 2<y 3 C.y 1=y 2=y 3 D.y 1<y 3<y 2练习2.已知反比例函数y =x m21-的图象上有A (x 1.y 1)、B (x 2.y 2)两点.当x 1<x 2<0时.y 1<y 2.则m 的取值范围是( ).A.m <0 B.m >0 C.m <21D.m >3、交点问题【例3】如果一次函数()的图像与反比例函数xmn y m n mx y -=≠+=30相交于点(221,).那么该直线与双曲线的另一个交点为( )思维导图练习1.若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点.且有一个交点的纵坐标为6.则b =____ 4、反比例函数解析式【例4】已知12y y y =+.1y 与x 成正比例.2y 与x 成反比例.且当x =1时.y =7;当x =2时.y =8.(1) y 与x 之间的函数关系式; 思维导图练习1 正比例函数y=2x 与双曲线的一个交点坐标为A (2.m ).求反比例函数关系式。
北师版九年级数学 第六章 反比例函数 知识归纳与题型突破(十类题型清单)
第六章反比例函数知识归纳与题型突破(十类题型清单)01思维导图02知识速记一、反比例函数的概念一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.要点:在ky x=中,自变量x 的取值范围是,k y x=()可以写成()的形式,也可以写成的形式.二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.三、反比例函数的图象和性质1.反比例函数的图象反比例函数()0ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①)0(≠=k x ky 的图象是轴对称图形,对称轴为x y x y -==和两条直线;②)0(≠=k x ky 的图象是中心对称图形,对称中心为原点(0,0);③xky x k y -==和(k≠0)在同一坐标系中的图象关于x 轴对称,也关于y 轴对称.注:正比例函数x k y 1=与反比例函数xk y 2=,当021<⋅k k 时,两图象没有交点;当021>⋅k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质当0k >时,x y 、同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当0k <时,x y 、异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.(2)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,故反比例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较正比例函数反比例函数解析式图像直线有两个分支组成的曲线(双曲线)位置0k >,一、三象限;0k <,二、四象限0k >,一、三象限0k <,二、四象限增减性0k >,y 随x 的增大而增大0k <,y 随x 的增大而减小0k >,在每个象限,y 随x 的增大而减小0k <,在每个象限,y 随x 的增大而增大(4)反比例函数y=中k 的意义①过双曲线xky =(k ≠0)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k .②过双曲线x ky =(k ≠0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .四、应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.03题型归纳题型一反比例函数的概念及应用例题1.下列函数中,y 是x 的反比例函数的是()A .3x y =B .321y x =+C .k y x=D .134y x -=巩固训练2.下列问题中的两个变量是成反比例的是()A .被除数(不为零)一定,除数与商B .货物的单价一定,货物的总价与货物的数量C .等腰三角形的周长一定,它的腰长与底边的长D .汽车所行的速度一定,它所行驶的路程与时间3.下列函数表达式中,表示y 是x 的反比例函数的有()(1)4x y =;(2)34y x=;(3)3xy -=;(4)1y 3x -=-;(5)21y x =+;(6)52y x =+A .1个B .2个C .3个D .4个4.下列各点在反比例函数2y x=图象上的是()A .()1,2-B .()2,1-C .()1,3D .()1,2--5.已知关于x 的反比例函数()32m y m x -=-,则m 的值为.6.如果2212n n n n y x+++=是反比例函数,那么n 的值是.题型二反比例函数的图像与性质例题7.关于反比例函数6y x=,下列说法不正确..的是()A .函数图像分别位于第一、三象限B .函数图像经过点()3,2--C .函数图像过()()23A m B n -,、,,则m n >D .函数图像关于原点成中心对称巩固训练8.如图是三个反比例函数11k y x=,22ky x =,33k y x =在x 轴上方的图象,则1k ,2k ,3k 的大小关系为()A .123k k k >>B .231k k k >>C .132k k k >>D .312k k k >>9.关于反比例函数4y x=-,下列说法正确的是()A .函数图像经过点()2,2B .函数图像位于第一、三象限C .函数值y 随着x 的增大而增大D .当1x >时,4y >-10.若点()11,A y -,()22,B y ,()33,C y 是反比例函数2y x=-图像上的三个点,则下列结论正确的是()A .132y y y >>B .321y y y >>C .213y y y >>D .312y y y >>题型三根据图像或性质求参数范围例题11.反比例函数2y x=的图象上有一点(),P m n ,当1n ≥-,则m 的取值范围是.巩固训练12.若反比例函数13ky x-=的图象不经过第一象限,则k 的取值范围是.13.在平面直角坐标系xOy 中,对于每一象限内的反比例函数3m y x+=图像,y 的值都随x 值的增大而增大,则m 的取值范围是.14.若反比例函数2221(21)kk y k x --=-的图象位于第二、四象限,则k 的值()A .0B .0或1C .0或2D .4题型四参数范围、图像与性质的相互判断例题15.在同一坐标系中,函数ky x=和2y kx =-+的图像大致是()A .B .C .D .巩固训练16.一次函数=−1与反比例函数()0ky k x=≠在同一直角坐标系中的图象可能是()A .B .C .D .17.已知反比例函数21k y x+=,则下列说法正确的是()A .函数图像分布在第二、四象限B .y 随x 的增大而减小C .如果两点()11,y -,()22,y 都在图像上,则12y y >D .图像关于原点中心对称18.在函数21m y x+=-(m 为常数)的图象上有三个点1(1)y -,,2(2)y -,,3(3)y ,,则函数值123、、y y y 的大小关系是().A .231y y y <<B .321y y y <<C .123y y y <<D .312y y y <<题型五反比例函数与方程、不等式例题19.如图,一次函数y kx b =+(k 、b 为常数,且0k ≠)的图象与反比例函数my x=(m 为常数,且0m ≠)的图象交于A 、B 两点.则关于x 的方程mkx b x+=的解为.巩固训练20.如图,已知一次函数=B +与反比例函数.ky x=的图象交于()()3,11,3A B --,两点.观察图象可知,不等式kmx n x+>的解集是.21.已知一次函数2y x =-+与反比例函数ky x=在同一坐标系内的图象没有交点,则k 的取值范围为.题型六k 的几何意义例题22.如图,过双曲线上任意一点P 分别作x 轴,y 轴的垂线PM ,PN ,交x 轴、y 轴于点M 、N ,所得矩形PMON 的面积为8,则k 的值是()A .4B .4-C .8D .8-巩固训练23.如图,反比例函数()40y x x-=>的图像上有一点P ,PA x ⊥轴于点A ,点B 在y 轴上,则PAB 的面积为()A .1B .2C .4D .824.如图,在平面直角坐标系中,AOC △的边OA 在y 轴上,点C 在第一象限内,点B 为AC 的中点,反比例函数()0k y x x=>的图象经过B ,C 两点.若AOC △的面积是6,则k 的值为.25.函数1(0)y x x =>与8(0)y x x=>的图象如图所示,点C 是y 轴上的任意一点.直线AB 平行于y 轴,分别与两个函数图象交于点A 、B ,连接AC BC 、.当AB 从左向右平移时,ABC V 的面积是.26.如图,点A B ,是反比例函数()0ky x x=>图像上的点,点,C D 分别在x 轴,y 轴正半轴上.若四边形ABCD 为菱形,BD x ∥轴,6ABCD S =菱形,则k 的值()A .3B .6C .12D .24题型七反比例函数的代数应用例题27.已知点1()2P a b -,与点2)1(2Pa b +-,在反比例函数()0ky k x=≠的图象上,()A .若0k >,则202a b ><<,B .若0k >,则12a b <->,C .若0k <,则22a b <>,D .若0k <,则1202a b -<<<<,巩固训练28.已知点()11,A x y ,()22,B x y ,()33,C x y 在反比例函数()0ky k x=>的图象上,123x x x <<,则下列结论一定成立的是()A .若130x x <,则23y y <B .若230x x <,则130y y >C .若130x x >,则23y y >D .若230x x >,则130y y >题型八反比例函数的实际应用例题29.验光师检测发现近视眼镜的度数y (度)与镜片焦距x (米)成反比例,y 关于x 的函数图象如图所示.经过一段时间的矫正治疗后,小雪的镜片焦距由0.25米调整到0.5米,则近视眼镜的度数减少了()度.A .150B .200C .250D .300巩固训练30.机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度()m/s v 是载重后总质量(kg)m 的反比例函数.已知一款机器狗载重后总质量60kg m =时,它的最快移动速度6m/s v =;当其载重后总质量90kg m =时,它的最快移动速度=v m/s .31.为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强p (kPa )是气体体积V (ml )的反比例函数,其图像如图所示.则下列说法中错误的是()A .这一函数的表达式为6000p V=B .当气体体积为40ml 时,气体的压强值为150kPaC .当温度不变时,注射器里气体的压强随着气体体积增大而减小D .若注射器内气体的压强不能超过400kPa ,则其体积V 不能超过15ml 题型九最值问题、其他问题例题32.已知函数1k y x =,()20ky k x=->,当13x ≤≤时,函数1y 的最大值为a ,函数2y 的最小值为4a -,则a 的值为.巩固训练33.反比例函数1k y x =,()220ky k x =-≠,当a x b ≤≤(b ,a 为常数,且0b a >>)时,1y 的最小值为m ,2y 的最大值为n ,则mn的值为()A .2-B .12-C .12-或2-D .2b a-34.在同一坐标系中,若正比例函数1y k x =与反比例函数2k y x=的图象没有交点,则1k 与2k 的关系,下面四种表述:①120k k +≤;②120k k <;③1212||k k k k +<-;④121k k k +<或122k k k +<.正确的有()A .4个B .3个C .2个D .1个题型十解答综合题例题35.已知y 与2x +成反比例,且当5x =时,y =-6,求:(1)y 与x 之间的函数关系式;(2)当5y =时,x 的值.巩固训练36.如图,函数()120y x x =≥与2(0)ay x x=>的图象交于点()1,A b ,直线2x =与函数12,y y 的图象分别交于B ,C 两点.(1)求a 和b 的值;(2)求BC 的长度;(3)根据图象写出120y y >>时x 的取值范围(不需说明理由).37.某气球内充满一定质量的气体,当温度不变时,气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时,气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时,它的压强是多少?(2)当气球内气体的压强大于150kPa 时,气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?38.如图,已知()4,A n -,()2,4B -是反比例函数ky x=的图象和一次函数y ax b =+的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求AOB V 的面积;(3)根据图象直接写出不等式0k ax b x+-<的解集.39.已知一次函数y ax b =+与反比例函数y =kx的图象交于()()3,2,6A n B --,两点.(1)①求一次函数和反比例函数的表达式;②求AOB 的面积.(2)在x 轴的负半轴上,是否存在点P ,使得PAO 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.40.已知:如图,直线4y kx =+与函数()0,0my x m x=>>的图像交于A ,B 两点,且与x ,y 轴分别交于C ,D 两点.(1)若直线4y kx =+与直线2y x =--平行,且AOD △面积为2,求m 的值;(2)若COD △的面积是AOB V倍,过A 作AE x ⊥轴于E ,过B 作BF y ⊥轴于F ,AE 与BF 交于H 点.①求:AH OD 的值;②求k 与m 之间的函数关系式.(3)若点P 坐标为2,0,在(2)的条件下,是否存在k ,m ,使得APB △为直角三角形,且90APB ∠=︒,若存在,求出k ,m 的值;若不存在,请说明理由.第六章反比例函数知识归纳与题型突破(十类题型清单)01思维导图02知识速记一、反比例函数的概念一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.要点:在ky x=中,自变量x 的取值范围是,k y x=()可以写成()的形式,也可以写成的形式.二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.三、反比例函数的图象和性质1.反比例函数的图象反比例函数()0ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①)0(≠=k x ky 的图象是轴对称图形,对称轴为x y x y -==和两条直线;②)0(≠=k x ky 的图象是中心对称图形,对称中心为原点(0,0);③xky x k y -==和(k≠0)在同一坐标系中的图象关于x 轴对称,也关于y 轴对称.注:正比例函数x k y 1=与反比例函数xk y 2=,当021<⋅k k 时,两图象没有交点;当021>⋅k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质当0k >时,x y 、同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当0k <时,x y 、异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.(2)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,故反比例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较正比例函数反比例函数解析式图像直线有两个分支组成的曲线(双曲线)位置0k >,一、三象限;0k <,二、四象限0k >,一、三象限0k <,二、四象限增减性0k >,y 随x 的增大而增大0k <,y 随x 的增大而减小0k >,在每个象限,y 随x 的增大而减小0k <,在每个象限,y 随x 的增大而增大(4)反比例函数y=中k 的意义①过双曲线xky =(k ≠0)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k .②过双曲线x ky =(k ≠0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .四、应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.03题型归纳题型一反比例函数的概念及应用例题1.下列函数中,y 是x 的反比例函数的是()A .3x y =B .321y x =C .k y x=D .134y x -=2.下列问题中的两个变量是成反比例的是()A .被除数(不为零)一定,除数与商B .货物的单价一定,货物的总价与货物的数量C .等腰三角形的周长一定,它的腰长与底边的长D .汽车所行的速度一定,它所行驶的路程与时间D .汽车所行的速度一定,它所行驶的路程与时间是正比例函数的关系,故此选项不符合题意.故选:A .【点睛】本题考查反比例函数,正确区分正比例函数与反比例函数是解题关键.判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系.3.下列函数表达式中,表示y 是x 的反比例函数的有()(1)4x y =;(2)34y x=;(3)3xy -=;(4)1y 3x -=-;(5)21y x =+;(6)52y x =+A .1个B .2个C .3个D .4个4.下列各点在反比例函数y x=图象上的是()A .()1,2-B .()2,1-C .()1,3D .()1,2--5.已知关于x 的反比例函数()32m y m x -=-,则m 的值为.6.如果2212nn n n y +++=是反比例函数,那么n 的值是.例题7.关于反比例函数6y x=,下列说法不正确..的是()A .函数图像分别位于第一、三象限B .函数图像经过点()3,2--C .函数图像过()()23A m B n -,、,,则m n >D .函数图像关于原点成中心对称8.如图是三个反比例函数11k y x=,22ky x =,33k y x =在x 轴上方的图象,则1k ,2k ,3k 的大小关系为()A .123k k k >>B .231k k k >>C .132k k k >>D .312k k k >>【答案】C9.关于反比例函数y x=-,下列说法正确的是()A .函数图像经过点()2,2B .函数图像位于第一、三象限C .函数值y 随着x 的增大而增大D .当1x >时,4y >-【答案】D【分析】根据反比例函数的图象及其性质即可求解.【解析】A 、点()2,2不在它的图象上,不符合题意;B 、它的图象在第二、四象限,不符合题意;C 、在每个象限内,y 随x 的增大而增大,不符合题意;D 、当1x >时,4y >-,正确,符合题意;故选:D .【点睛】此题考查了反比函数的性质,正确掌握反比例函数的性质是解题的关键.10.若点()11,A y -,()22,B y ,()33,C y 是反比例函数2y x=-图像上的三个点,则下列结论正确的是()A .132y y y >>B .321y y y >>C .213y y y >>D .312y y y >>【答案】A【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,结合反比例函数的增减性,进而判断在同一象限内的点B 和点C 的纵坐标例题11.反比例函数2y x =的图象上有一点(),P m n ,当1n ≥-,则m 的取值范围是.12.若反比例函数13k y x -=的图象不经过第一象限,则k 的取值范围是.13.在平面直角坐标系xOy 中,对于每一象限内的反比例函数y x +=图像,y 的值都随x 值的增大而增大,则m 的取值范围是.14.若反比例函数2221(21)kk y k x --=-的图象位于第二、四象限,则k 的值()A .0B .0或1C .0或2D .4故选:A .题型四参数范围、图像与性质的相互判断例题15.在同一坐标系中,函数k y x =和2y kx =-+的图像大致是()A .B .C .D .16.一次函数=−1与反比例函数()0k y k x=≠在同一直角坐标系中的图象可能是()A .B .C .D .17.已知反比例函数1k y x+=,则下列说法正确的是()A .函数图像分布在第二、四象限B .y 随x 的增大而减小C .如果两点()11,y -,()22,y 都在图像上,则12y y >D .图像关于原点中心对称18.在函数y x+=-(m 为常数)的图象上有三个点1(1)y -,,2(2)y -,,3(3)y ,,则函数值123、、y y y 的大小关系是().A .231y y y <<B .321y y y <<C .123y y y <<D .312y y y <<例题19.如图,一次函数y kx b =+(k 、b 为常数,且0k ≠)的图象与反比例函数m y x =(m 为常数,且0m ≠)的图象交于A 、B 两点.则关于x 的方程m kx b x +=的解为.【答案】1-和2【分析】本题考查了反比例函数和一次函数的图像和性质,熟练掌握反比例函数和一次函数的图像和性质是解题的关键;根据反比例函数和一次函数的图像和性质求解即可;【解析】解:观察函数图象可知:点A 的横坐标为1-,点B 的横坐标为2,20.如图,已知一次函数=B +与反比例函数.k y x =的图象交于()()3,11,3A B --,两点.观察图象可知,不等式k mx n x +>的解集是.21.已知一次函数2y x =-+与反比例函数k y x =在同一坐标系内的图象没有交点,则k 的取值范围为.解得:1k >.故答案为:1k >.题型六k 的几何意义例题22.如图,过双曲线上任意一点P 分别作x 轴,y 轴的垂线PM ,PN ,交x 轴、y 轴于点M 、N ,所得矩形PMON 的面积为8,则k 的值是()A .4B .4-C .8D .8-23.如图,反比例函数()40y x x-=>的图像上有一点P ,PA x ⊥轴于点A ,点B 在y 轴上,则PAB 的面积为()A .1B .2C .4D .8【答案】B 【分析】本题考查反比例函数系数k 的几何意义,掌握过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于k ,并根据面积关系得出方程是解题的关键.设s ,则4xy =-,再由三角形的面积公式即可得出结论.【解析】解:设s ,∵点P 在反比例函数()40y x x-=>的图象上,∴4xy =-.∵PA x ⊥轴,∴11142222PAB S PA OA xy =⨯⨯==⨯= .故选:B .24.如图,在平面直角坐标系中,AOC △的边OA 在y 轴上,点C 在第一象限内,点B 为AC 的中点,反比例函数()0ky x x =>的图象经过B ,C 两点.若AOC △的面积是6,则k 的值为.【答案】4【分析】过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,由点B 为AC 的中点,推出C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,,求得直线BC 的解析式,得到A 点坐标,根据AOC △的面积是6,列式计算即可求解.∴BD CE ∥,∴ABD ACE ∽,∴BD AB CE AC=,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,∵点B 为AC 的中点,25.函数1(0)y x x =>与8(0)y x x=>的图象如图所示,点C 是y 轴上的任意一点.直线AB 平行于y 轴,分别与两个函数图象交于点A 、B ,连接AC BC 、.当AB 从左向右平移时,ABC V 的面积是.【点睛】此题考查了反比例函数的OP BP AP 、、的长度,难度一般.26.如图,点A B ,是反比例函数()0ky x x=>图像上的点,点,C D 分别在x 轴,y 轴正半轴上.若四边形ABCD为菱形,BD x ∥轴,6ABCD S =菱形,则k 的值()A .3B .6C .12D .24AC BD ∴⊥,OA OC =,6ABCD S = 菱形,∴11222AC BD OC BD ⨯⨯=⨯⨯=6OC BD ∴⨯=,BD x ∥轴,BE x ⊥轴,题型七反比例函数的代数应用例题27.已知点1()2P a b -,与点2)1(2Pa b +-,在反比例函数()0ky k x=≠的图象上,()A .若0k >,则202a b ><<,B .若0k >,则12a b <->,C .若0k <,则22a b <>,D .若0k <,则1202a b -<<<<,∴020b b >⎧⎨-<⎩,∴02<<b ,故选项D 正确.故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数的性质是解题的关键.巩固训练28.已知点()11,A x y ,()22,B x y ,()33,C x y 在反比例函数()0ky k x=>的图象上,123x x x <<,则下列结论一定成立的是()A .若130x x <,则23y y <B .若230x x <,则130y y >C .若130x x >,则23y y >D .若230x x >,则130y y >故选C .【点睛】本题考查了反比例函数的性质,解题关键是掌握当比例系数0k >时,函数图象在第一、三象限内,且在每个象限内,y 随x 的增大而减小;当比例系数0k <时,函数图象在第二、四象限内,且在每个象限内,y 随x 的增大而增大.题型八反比例函数的实际应用例题29.验光师检测发现近视眼镜的度数y (度)与镜片焦距x (米)成反比例,y 关于x 的函数图象如图所示.经过一段时间的矫正治疗后,小雪的镜片焦距由0.25米调整到0.5米,则近视眼镜的度数减少了()度.A .150B .200C .250D .30030.机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度()m/s v 是载重后总质量(kg)m 的反比例函数.已知一款机器狗载重后总质量60kg m =时,它的最快移动速度6m/s v =;当其载重后总质量90kg m =时,它的最快移动速度=v m/s .31.为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强p (kPa )是气体体积V (ml )的反比例函数,其图像如图所示.则下列说法中错误的是()A .这一函数的表达式为6000p V=B .当气体体积为40ml 时,气体的压强值为150kPaC .当温度不变时,注射器里气体的压强随着气体体积增大而减小D .若注射器内气体的压强不能超过400kPa ,则其体积V 不能超过15ml 【答案】D例题32.已知函数1k y x =,()20ky k x=->,当13x ≤≤时,函数1y 的最大值为a ,函数2y 的最小值为4a -,则a 的值为.33.反比例函数1k y x =,()220ky k x=-≠,当a x b ≤≤(b ,a 为常数,且0b a >>)时,1y 的最小值为m ,2y 的最大值为n ,则mn的值为()A .2-B .12-C .12-或2-D .2b a-34.在同一坐标系中,若正比例函数1y k x =与反比例函数2y x=的图象没有交点,则1k 与2k 的关系,下面四种表述:①120k k +≤;②120k k <;③1212||k k k k +<-;④121k k k +<或122k k k +<.正确的有()A .4个B .3个C .2个D .1个【答案】B【分析】根据题意得出1k 和2k 异号,再分别判断各项即可.例题35.已知y与2x=时,y=-6,求:x+成反比例,且当5(1)y与x之间的函数关系式;y=时,x的值.(2)当536.如图,函数()120y x x =≥与2(0)ay x x=>的图象交于点()1,A b ,直线2x =与函数12,y y 的图象分别交于B ,C 两点.(1)求a 和b 的值;(2)求BC 的长度;(3)根据图象写出120y y >>时x 的取值范围(不需说明理由).当2x =时,21,y =∴点C 的纵坐标为1.413BC ∴=-=.(3)解:当120y y >>时x 的取值范围是1x >.37.某气球内充满一定质量的气体,当温度不变时,气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时,气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时,它的压强是多少?(2)当气球内气体的压强大于150kPa 时,气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?38.如图,已知()4,A n -,()2,4B -是反比例函数k y x=的图象和一次函数y ax b =+的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求AOB V 的面积;(3)根据图象直接写出不等式0k ax b x+-<的解集.39.已知一次函数y ax b =+与反比例函数y =x的图象交于()()3,2,6A n B --,两点.(1)①求一次函数和反比例函数的表达式;②求AOB 的面积.(2)在x 轴的负半轴上,是否存在点P ,使得PAO 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.由022x =--得1x =-;40.已知:如图,直线4y kx =+与函数()0,0m y x m x=>>的图像交于A ,B 两点,且与x ,y 轴分别交于C ,D 两点.(1)若直线4y kx =+与直线2y x =--平行,且AOD △面积为2,求m 的值;(2)若COD △的面积是AOB V倍,过A 作AE x ⊥轴于E ,过B 作BF y ⊥轴于F ,AE 与BF 交于H 点.①求:AH OD 的值;②求k 与m 之间的函数关系式.(3)若点P 坐标为2,0,在(2)的条件下,是否存在k ,m ,使得APB △为直角三角形,且90APB ∠=︒,若存在,求出k ,m 的值;若不存在,请说明理由.【答案】(1)3m =①设1,1,2,2(其中∵2COD AOB S S = ,∴()2COD AOC BOC S S S =- ,∴111222OC OD OC y ⎛⋅=⋅-若90APB ∠=︒,则90APE BPN ∠+∠=︒,∵90APE PAE ∠+∠=︒,∴EAP BPN ∠=∠,∵90AEP PNB ∠=∠=︒,相似比计算线段的长.。
专题05 反比例函数 (4大考点)九年级数学上学期期末考点(北师大版)
与一次函数 y=kx+1 在同一坐标系的图象可能是( )
A.
B.
C.
D.
ห้องสมุดไป่ตู้
【解答】解:A、由反比例函数的图象可知,k>0,由一次函数的图象可知 k<0,两结论矛盾,故本选项错误;
B、由反比例函数的图象可知,k<0,由一次函数的图象可知 k>0,故本选项正确,符合题意;
C、由反比例函数的图象可知,k<0,由一次函数的图象可知 k>0,故本选项错误,不符合题意;
解得:k=4 故选:D.
期末复习
考点4:反比例函数的实际应用
典例 6:(2022 秋•渭南期末)某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰 药消毒”.已知药物在燃烧释放过程中,室内空气中每立方米含药量 y(mg)与燃烧时间 x(min) 之间的关系如图所示.根据图象所示信息,解答下列问题: (1)求一次函数和反比例函数表达式; (2)据测定,当室内空气中每立方米的含药量低于 3mg 时,对人体无毒害作用.从消毒开始,至 少在多少分钟内,师生不能待在教室?
期末复习
变式 4:(2022 秋•乐亭县期末)一次函数 y1=k1x+b 和反比例函数 y2= (k1•k2≠0)的图象如图所示,若 y1>y2,则 x 的 取值范围是( )
A.x<﹣2 或 x>1 C.﹣2<x<0 或 0<x<﹣2
B.x<﹣2 或 0<x<1 D.﹣2<x<0 或 x>2
【解答】解:由图象可知,当 y1>y2,x 的取值范围为 x<﹣2 或 0<x<1. 故选:B.
期末复习
典例 1:(2023•章贡区校级模拟)对于反比例函数 y= ,下列结论错误的是( )
A.函数图象分布在第一、三象限 B.函数图象经过点(﹣3,﹣2) C.函数图象在每一象限内,y 的值随 x 值的增大而减小 D.若点 A(x1,y1),B(x2,y2)都在函数图象上,且 x1<x2,则 y1>y2
导图系列(5):九年级上册数学(北师大版)各章知识点思维导图集合
中心对称 两组对角分别相等的四边形
面积 底×高
对角线互相平分的四边形
对角相等, 邻角互补
四边相等的四边形
互相垂直平分; 中心对称
每一条对角线
+
有一组邻边相等的平行四边形
平分一组对角 轴对称 对角线互相垂直的平行四边形
底×高; 对角线乘积
的一半
四个角 都是直角
相等且 互相平分
有三个角是直角的四边形
中心对称
+
有一个角是直角的平行四边形
轴对称 对角线相等的平行四边形
长×宽
四个角 都是直角
有一个角是直角的菱形
相等且
中心对称 对角线相等的菱形
互相垂直平分;
+
每一条对角线
轴对称 有一组邻边相等的矩形
平分一组对角
对角线互相垂直的矩形
边长×边长
第二章 一元二次方程
第三章 概率的进一步认识
第四章 图形的相似
九年级上册数学(的平行四边形
图形 边
平行 对边平行 四边形 且相等
菱形
对边平行, 四条边相等
矩形
对边平行 且相等
对边平行, 正方形
四条边相等
第一章 特殊的平行四边形
性质 角
对角线
对角相等, 邻角互补
互相平分
对称性
判定
两组对边分别相等的四边形 两组对边分别平行的四边形 一组对边平行且相等的四边形
第五章 投影与视图
第六章 反比例函数
2020人教版九下数学思维导图(史上最新最全)
第 28 章 锐角三角函数
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
第 29 章 投影与视图
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
人教版 9 年级下册思维导图(全)
整章内容预览,梳理知识脉络,学习记忆好帮手,复习补漏好工具 目录
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优பைடு நூலகம்内容免费领。
第 26 章 反比例函数
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
第 27 章 相似
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。