《章末复习课》函数的概念与性质PPT

合集下载

函数的定义及基本性质PPT课件

函数的定义及基本性质PPT课件

一.判断一次函数的单调性 1.函数x∈R) 3.函数f(x)=2x+3,(x∈R)
4.函数f(x)=-2x+c,(x∈R,c为常数)
5.函数f(x)=kx+3,(x∈R,k≠0) 6.函数f(x)=(2k-1)x+b是R上的
减函数,求k的取值范围.
二.利用定义证明函数的单调性
1.设任意的两个x1,x2; 2.计算出两个函数值; 3.判断两个函数值的大小; 4.结论;
作差法(实用性广)
作商法(函数值必
然同号时有实用性)
三练习册:
p22:1,2,3,4
四探究?
1.定义在(-1,1)上的函数f(x)是减 函数,且满足f(1-a)<f(a),求实数a 的取值范围. 2.已知函数f(x)=x2+2(a-1)x+2 在[3,+∞)上是增函数,求实数a 的取值范围. 3. 函数f(x)=ax2-(3a-1)x+a2在 [1,+∞)上是增函数,求实数a的 取值范围.
二.判断二次函数的单调性 1.函数f(x)=x2,(x∈R) 2.函数f(x)=x2+1,(x∈R)
3.函数f(x)=x2-2x+3,(x∈R) 4.函数f(x)=x2-bx+3,(x∈R)
5.函数f(x)=ax2+bx+c,(x∈R)
6.讨论函数f(x)=x2-2ax+3在 (-2,2)内的单调性.
作差法实用性广作商法函数值必然同号时有实用性函数值必然同号时有实用性三练习册
一.函数的单调性的定义
1.讨论函数的单调性,一定指明区间D
3.任意取值x1`x2,但必须在区间D 4.已知函数在区间D上的单调性,可以 通过自变量的大小推导函数值的大小。 5.已知函数在区间D上的单调性,那么

3.1.1函数的概念(共53张PPT)

3.1.1函数的概念(共53张PPT)

其中表示同一个函数的是________.(填上所有同一个函数的序号)
【解析】 (1)①错误.函数 f(x)=x0 的定义域为{x|x≠0},函数 g(x)=1 的定 义域是 R,不是同一个函数; ②正确.y=f(x),x∈R 与 y=f(x+1),x∈R 两函数定义域相同,对应关系 可能相同,所以可能是同一个函数;③正确.两个函数定义域相同,对应关 系完全一致,是同一个函数.所以正确的个数有 2 个.
(3)要使此函数有意义,则 xx+ +32≥ ≠00,⇒xx≥ ≠- -32,⇒x≥-3 且 x≠-2. 所以 f(x)的定义域为{x|x≥-3 且 x≠-2}.
探究点 3 同一个函数
(1)给出下列三个说法:
①f(x)=x0 与 g(x)=1 是同一个函数;②y=f(x),x∈R 与 y=f(x+1),x∈R
1.下列图形中可以表示以 M={x|0≤x≤1}为定义域,以 N={y|0≤y≤1}为
值域的函数的图象是
()
解析:选 C.由函数的定义知选 C.
2.(多选)下列两个集合间的对应中,是 A 到 B 的函数的有 A.A={-1,0,1},B={-1,0,1},f:A 中的数的平方 B.A={0,1},B={-1,0,1},f:A 中的数的开方 C.A=Z,B=Q,f:A 中的数的倒数 D.A={1,2,3,4},B={2,4,6,8},f:A 中的数的 2 倍
③函数就是两个集合之间的对应关系.
其中正确说法的个数为
()
A.0
B.1
C.2
D.3
(3)已知集合 A=[0,8],集合 B=[0,4],则下列对应关系中,不能看作是
从 A 到 B 的函数关系的是
()
A.f:x→y=18x

函数的概念ppt课件

函数的概念ppt课件

已学函数的定义域和值域
反比例函数 一次函数
y
k x
(k 0)
y ax b (a 0)
二次函数
y ax2 bx c (a 0)
a> 0
a< 0
图像
y ox
y ox
y ox
y ox
定义域 {x| x 0} R 值域 {y| y 0} R
R
R
{y
|
y
4ac 4a
b2}
{y
|
y
4ac 4a
(2) y (x 1)0 2 x 1
(1)
x 1 4 x
0 ,1
0
x
4,定义域是x
1
x
4
(2)
x
2 1
0
,
解得x
1且x
1, 定义域为
x
x 1且x 1
x 1 0
x2 x 12
解析:由题意得x2-x-12≥0,解得x≤-3或x≥4. 定义域为{x|x≤-3或x≥4}
2x2 x 3 0, 2x2 x 3 0, (2x 3)(x 1) 0, 1 x 3
2 y 2x2 x 3 2(x 1)2 25 5 2
484
[0, 5 2 ] 4
2
o12 5 x
4.求下列函数的值域 (1).y 2x x 1
设t x 1,则t 0且x t2 1, 所以y 2(t2 1) t 2(t 1)2 15 ,[15 , )
它对应,就称f: A→B 为从集合A到集合B的一个函数,记作:
a
e
b
f
c
g

h …
A
B
f: A→B
y=f(x) , x∈A

函数的概念ppt课件

函数的概念ppt课件

→s=x 十y;
⑥A={x|—1≤x≤1,x∈R},B={0}, 对应关系f:x→
y=0.
A.①⑤⑥
B.②④⑤⑥
C.②③④
D.①②③⑤
【思维·引】
1.在x 轴上区间[0,2]内作与x 轴垂直的直线,此直线 与函数的图象恰有一个公共点.
2.先看集合A,B 是否为非空数集,再判断非空数集A 中任取一个数,在非空数集 B 中是否有唯一的数与之 对应.
②求f(g(a)): 已 知f(x) 与 g(x), 求 f(g(a)) 的值应遵 循由里往外的原则.
(2)关注点:用来替换解析式中x 的 数a 必须是函数定 义域内的值,否则函数无意义.
习练 ·破
1.若f(x)=ax²—√2,a 为正实数,且f(f(√2))=—√2, 则 a=
2.设f(x)=2x²+2,
函数的定义,所以A 不是函数.B.由 |x—1|+√y²-1=
0得, |x—1|=0,√y²-1=0, 所以x=1,y=±1, 所以

( 1 ) 求 f(2),f(a+3),g
—2),g(f(2)). (2)求g(f(x)).
(a)+g(0)(a≠
≠—2),
【加练·固】

(x≠—1), 求 f(0),f(1),
f(1—a)(a≠2),f(f(2)) 的值.
课堂达标检测
1.下列图形中,不能确定y 是x 的函数的是
y
3
(
)
3
x
⑥对于由实际问题的背景确定的函数,其定义域还要受 实际问题的制约.
★习练·破
求下列函数的定义域:
(1
;(2)y=√x- 1·√1—x;

高中数学(人教版A版必修一)配套课件:第二章 基本初等函数(Ⅰ) 第二章 章末复习课

高中数学(人教版A版必修一)配套课件:第二章 基本初等函数(Ⅰ) 第二章  章末复习课
如何利用规律实现更好记忆呢?
超级记忆法-记忆规律
第四个记忆周期是 1天 第五个记忆周期是 2天 第六个记忆周期是 4天 第七个记忆周期是 7天 第八个记忆周期是15天 这五个记忆周期属于长期记忆的范畴。 所以我们可以选择这样的时间进行记忆的巩固,可以记得更扎实。
如何利用规律实现更好记忆呢?
超级记忆法--场景法
解析 f(x)=12x 在 x∈(-∞,0)上为减函数,g x=log1 x 为偶函数, 2
x∈(0,+∞)时g x=log1 x 为减函数,所以在(-∞,0)上为增函数.
2
解析答案
1 2345
4.已知 P=2-32,Q=253,R=123,则 P,Q,R 的大小关系是( B ) A.P<Q<R B.Q<R<P C.Q<P<R D.R<Q<P 解析 由函数 y=x3 在 R 上是增函数知,253<123,
跟踪训练3 函数f(x)=loga(1-x)+loga(x+3)(0<a<1). (1)求函数f(x)的定义域; 解 要使函数有意义,则有1x+-3x>>00, , 解得-3<x<1,∴定义域为(-3,1).
解析答案
(2)若函数f(x)的最小值为-2,求a的值.
解 函数可化为f(x)=loga[(1-x)(x+3)]=loga(-x2-2x+3)=loga[-(x +1)2+4]. ∵-3<x<1,∴0<-(x+1)2+4≤4. ∵0<a<1,∴loga[-(x+1)2+4]≥loga4.
解析答案
1
2.函数 y=x3 的图象是( B )
1 2345
解析 ∵0<13<1.
1
∴在第一象限增且上凸,又 y=x3 为奇函数,过(1,1),故选B.

人教版九年级数学上册第22章二次函数章末复习课件 (共68张ppt)

人教版九年级数学上册第22章二次函数章末复习课件 (共68张ppt)

(4)当图像与x轴 有两个交点时, b2-4ac>0;当图像与x轴只有一个 交点时, b2-4ac=0; 当图像与x轴没有交点时, b2-4ac<0. (5)图像过点(1, a+b+c)和点(-1, a-b+c), 再根据图像上的点的位置可 确定式子a+b+c和a-b+c的符号.
例1 已知二次函数y=ax2+bx+c的图像如图22-Z-1所示, 那么下
二次函数 的图像和
性质
开口方向
a>0, 图像开口向上 a<0, 图像开口向下
对称轴
a, b同号, 对称轴在y轴左侧 a, b异号, 对称轴在y轴右侧
烦烦烦鬼鬼鬼鬼 鬼鬼鬼鬼跟鬼鬼 鬼鬼鬼g鬼鬼
二次函数 的图像和
性质
a>0 增减性
a<0
最值
二次函数 的解析式
y=ax²+bx+c(a≠0)(一般式) y=a(x-h)²&#(a≠0)(交点式)
【要点指导】研究二次函数的图像的平移、轴对称变换过程, 实 际 就是确定变换后所得图像的二次函数解析式, 研究变换后的图 像和性质 的过程, 关键是找到变换后图像上的特殊点(如抛物线的 顶点), 从而得出 函数解析式, 最后利用二次函数的性质解答.
例4 如图22-Z-3, 在平面直角坐标系 xOy中, 将抛物线y=2x2沿y轴 向上平移1个单 位长度, 再沿x轴向右平移2个单位长度, 平移 后所 得抛物线的顶点记作A, 直线x=3与平移 后的抛物线相交于点B, 与 直线OA相交于点C. (1)求平移后的抛物线的函数解析式; (2)求点C的坐标及△ABC的面积.
例2 已知二次函数的图像以A(-1, 4)为顶点, 且过点B(2, -5). (1)求该函数的解析式; (2)求该函数图像与坐标轴的交点坐标.

函数的概念和性质PPT课件

函数的概念和性质PPT课件

x 0为第二类间断点 .
这种情况称为的振荡间 断点.
注意 不要以为函数的间断点只是个别的几个点.
★ 狄利克雷函数
1, 当x是有理数时, y D( x ) 0, 当x是无理数时,
在定义域R内每一点处都间断,且都是第二类间 断点. ★
x , 当x是有理数时, f ( x) x , 当x是无理数时,
0
0
连续函数必有极限, 有极限不一定是连续函数. 例如
limsin x / x 1, 但函数sin x / x在x 0处不连续.
x 0
1 x sin , x 0, 例1 试证函数 f ( x ) 在x 0 x x 0, 0, 处连续. 1 证 lim x sin 0, x0 x
解 f (0 0) 0,
f (0 0) ,
o x
x 1为函数的第二类间断点 .
这种情况称为无穷间 断点.
1 例7 讨论函数 f ( x ) sin 在 x 0处的连续性. x 解 在x 0处没有定义,
1 且 lim sin 不存在. x0 x
y sin 1 x
2
x0 是否连 续?又若| f ( x ) | 、 f ( x ) 在x0 连续, f ( x ) 在 续?
2
思考题解答
1、一类;一类;二类。 2、 f ( x ) 在x0 连续, lim f ( x ) f ( x0 )
x x0
且 0 f ( x ) f ( x0 ) f ( x ) f ( x0 )
f ( x ) f ( x 0 ) (或 f ( x ) f ( x 0 )) 则称 f ( x 0 )是函数 f ( x )在X上的最大值(最小值).

章末复习课-函数的概念与性质ppt优秀课件

章末复习课-函数的概念与性质ppt优秀课件

教案下载:/jiaoan/
PPT论坛:
PPT课件:/kejian/
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
英语课件:/kejian/ying yu/ 美术课件:/kejian/me ishu/
范文下载:/fanwen/
试卷下载:/shiti/
教案下载:/jiaoan/
PPT论坛:
PPT课件:/kejian/
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
x2-9≠0,
x≤5,
得x≥1, x≠±3,
故函数的定义域是{x|1≤x≤5且x≠3}.
(2)设矩形的一边长为x,则另一边长为12(a-2x),
所以y=x·12(a-2x)=-x2+12ax,定义域为x0<x<12a
.
5
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
求函数的定义域
【例 1】 (1)求函数 y= 5-x+ x-1-x2-1 9的定义域. (2)将长为 a 的铁丝折成矩形,求矩形面积 y 关于一边长 x 的解析式, 并写出此函数的定义域.
4
[解]
5-x≥0,
(1)解不等式组x-1≥0,
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/

人教A版数学必修第一册第三章函数的概念与性质章末复习课件

人教A版数学必修第一册第三章函数的概念与性质章末复习课件

易知,通话2小时,两种方案的话费分别为116元,168元.
[例4]
某通讯公司为了配合客户的不同需要,现设计A,B两种优惠方
案,这两种方案的应付话费y(元)与通话时间x(分钟)之间的关系如图所
示(实线部分).(注:图中MN∥CD)
(2)方案B从500分钟以后,每分钟收费多少元?
由图可知M(60,98),N(500,230),C(500,168),MN∥CD.
某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还
的小型残疾人企业乙,并约定该店经营的利润,第一保证企业乙的全体职工每
月最低生活开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中有:
①这种消费品的进价每件14元;②该店月销售量Q(百件)与销售价格P(元)的关
系如图所示;③每月需各种开支2000元.
1

,使用解方程组法.
4已知一个区间的解析式,求另一个区间的解析式,
可用奇偶性转移法.
跟踪训练
2.(1) 已知f(x)-3f(-x)=2x-1,则f(x)=________.
(2) 二次函数f(x)=ax2+bx+c(a,b∈R,a≠0)满足条件:
①当x∈R时,f(x)的图象关于直线x=-1对称;
1−
A.
1
−∞,
3
B.
1
,1
3
C.
1 1
− ,
3 3
D.
1
−∞,
3
1
1− >0
✓ 由ቊ
得x<1且x≠
3
3 − 1 ≠ 0

D )
1
,1
3
题型二 求函数的解析式
[例2]

函数概念及性质课件

函数概念及性质课件

03
函数的运算
函数的四则运算
01
02
03
04
加法运算
函数加法是指将两个函数的值 分别对应相加,得到一个新的
函数。
减法运算
函数减法是指将一个函数的值 对应相减,得到一个新的函数

乘法运算
函数乘法是指将两个函数的值 分别对应相乘,得到一个新的
函数。
除法运算
函数除法是指将一个函数的值 对应相除,得到一个新的函数
幂函数的定义
幂函数是指形式为$y=x^n$的函数,其中$n$为实数。
幂函数的性质
幂函数具有指数为实数、幂次为整数、幂次为负数等性质,其性质与 指数和幂次有关。
幂函数的图象
幂函数的图象根据指数的不同而变化,当指数为正整数时,幂函数的 图象为凸函数;当指数为负整数时,幂函数的图象为凹函数。
对数函数
对数函数
利用函数的单调性
通过函数的单调性判断函 数的增减性,进而解决不 等式问题。
利用函数的奇偶性
利用函数的奇偶性判断函 数的对称性,简化函数图 像的绘制。
利用函数的周期性
利用函数的周期性,可以 快速求解一些周期性问题 。
利用函数解决物理问题
描述运动规律
利用函数描述物体的运动规律, 如匀速运动、匀加速运动等。
分析电路特性
利用函数分析电路的电压、电流 等特性,理解电路的工作原理。
解决波动问题
利用函数描述波动现象,如声波 、光波等,分析波的传播规律。
05
函数的扩展Байду номын сангаас识
分段函数
分段函数
分段函数是指函数在其定义域的不同 区间上由不同的表达式所表示的函数 。分段函数广泛应用于实际生活中, 如气温变化、人口增长等。

2023高考数学基础知识综合复习第4讲函数的概念与性质 课件(共26张PPT)

2023高考数学基础知识综合复习第4讲函数的概念与性质 课件(共26张PPT)

考点一
考点二
◆角度2.函数的奇偶性
例8(2018年4月浙江学考)用列表法将函数f(x)表示为
x
f(x)
1
-1
2
0
3
1
则(
)
A.f(x+2)为奇函数
B.f(x+2)为偶函数
C.f(x-2)为奇函数
D.f(x-2)为偶函数
答案 A
解析 由题可得,函数f(x)的图象关于(2,0)对称,将函数f(x)的图象向左
C.(-∞,-2)∪(0,+∞)
D.(-∞,-1)∪(1,+∞)
答案 D
解析 当x0≤0时,f(x0)= 2- 0-1>1,解得-x0>1,所以x0<-1,所以此时有
x0<-1;当x0>0时,f(x0)=
1
2
知,x0<-1或x0>1.故选D.
0
>1,解得x0>1,所以此时有x0>1.综上可
考点一
考点二
分段函数的求解策略:
(1)根据分段函数解析式求函数值
首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求
解.
(2)已知函数值或函数值范围求自变量的值或范围
应根据每一段的解析式分别求解,但要注意检验所求自变量的值或
范围是否符合相应段的自变量的取值范围.
考点一
考点二
函数的基本性质
◆角度1.函数的单调性
平移2个单位长度,得到函数f(x+2)的图象,其图象关于原点对称,所
以f(x+2)为奇函数.故选A.
考点一
考点二
例9已知函数f(x)是R上的奇函数,且当x>0时,f(x)=x2+

《函数的概念》函数的概念与性质PPT

《函数的概念》函数的概念与性质PPT
可以用任意的字母表示,如f(x)=2x,f(t)=2t,g(a)=2a等,那么,不同的字
母表示对两个函数是否为同一个函数有影响吗?
提示:自变量、因变量和对应关系用什么字母表示与函数无关,
不影响两个函数的关系.
如f(x)=2x,f(t)=2t,g(a)=2a,只要自变量取值范围相同,它们就是同
一个函数.

||- ≠ 0,
≠ -2,
解得 x<0,且 x≠-2.
|| ≠ ,
故原函数的定义域为(-∞,-2)∪(-2,0).
4- ≥ 0,
≤ 4,
(2)要使函数有意义,自变量 x 的取值必须满足

≠ 1.
-1 ≠ 0,
故原函数的定义域为(-∞,1)∪(1,4].
课堂篇
探究学习
探究一

4
3
2
3
x→y= ,x∈[0,4]⇒y∈ 0, ,包含于{y|0≤y≤2},故成立;
8
x→y= ,x∈[0,4]⇒y∈ 0, ,包含{y|0≤y≤2},故不成立;
3
3
x→y= ,x∈[0,4]⇒y∈[0,2],故成立.故选 C.
答案:C
课堂篇
探究学习
探究一
探究二
探究三
探究四
思想方法
随堂演练
区间
分析:判断两个函数f(x)和g(x)是否是同一个函数的方法是:先求
函数f(x)和g(x)的定义域,如果定义域不同,那么它们不是同一个函
数;如果定义域相同,再化简函数的表达式,如果化简后的函数表达
式相同,那么它们是同一个函数,否则它们不是.
课堂篇
探究学习
探究一
探究二
探究三

《函数的基本性质》函数的概念与性质PPT(第2课时函数的最大值、最小值)

《函数的基本性质》函数的概念与性质PPT(第2课时函数的最大值、最小值)

A.-1,0 C.-1,2 答案:C
B.0,2 D.12,2
栏目 导引
第三章 函数的概念与性质
函数 f(x)=1x在[1,+∞)上( ) A.有最大值无最小值 B.有最小值无最大值 C.有最大值也有最小值 D.无最大值也无最小值
栏目 导引
第三章 函数的概念与性质
解析:选 A.结合函数 f(x)=1x在[1,+∞)上的图象可知函数有 最大值无最小值.
栏目 导引
第三章 函数的概念与性质
图象法求最值的一般步骤
栏目 导引
ቤተ መጻሕፍቲ ባይዱ
第三章 函数的概念与性质
1.函数 f(x)在区间[-2,5]上的图象如图所示,则此函数的最 小值、最大值分别是( )
A.-2,f(2)
B.2,f(2)
C.-2,f(5)
D.2,f(5)
解析:选 C.由函数的图象知,当 x=-2 时,有最小值-2;当
x=5 时,有最大值 f(5).
栏目 导引
第三章 函数的概念与性质
x2-x(0≤x≤2),
2.已知函数 f(x)=x-2 1(x>2),
求函数 f(x)的最大值和
最小值.
解:作出 f(x)的图象如图.由图象可知,当 x=2 时,f(x)取最 大值为 2; 当 x=12时,f(x)取最小值为-14. 所以 f(x)的最大值为 2,最小值为-14.
栏目 导引
第三章 函数的概念与性质
利用函数的单调性求最值 已知函数 f(x)=xx-+12,x∈[3,5]. (1)判断函数 f(x)的单调性,并证明; (2)求函数 f(x)的最大值和最小值. 【解】 (1)f(x)是增函数.证明如下: ∀x1,x2∈[3,5]且 x1<x2, f(x1)-f(x2)=xx11+-21-xx22+-21=(x13+(2x)1-(xx22)+2),

第12章一次函数期末复习一次函数的图象及其性质课件

第12章一次函数期末复习一次函数的图象及其性质课件
一条 直线 .特别地,正比例函数y=kx(k≠0)的图象 是一条过 原点 的直线.
复习要点 3.正比例函数y =kx的图象及其性质
当k>0时,y随着x的增大而增大;图象经过第三、一象限.
当k<0时,y随着x的增大而减小;图象经过第二、四象限.
y
y
y=kx
O
x
y=kx
O
x
复习要点
4.一次函数y=kx+b与正比例函数y=kx图象的关系
A.y=-2x+3
B.y=-2+3x
C.y=-3x-2
D.y=3-2x
4.一次函数y=mx+|m-1|的图象过点(0,2),且y
随x的增大而增大,则m=( B ).
A.-1 B.3 C.1 D.-1或3
练习巩固
5.点A(4,m) ,B(4.7,n)都在直线y=2.3x-5上,则
m与n之间的关系是( B ).
Ox
∴ m+1=-1<0
A.
B.
y
即k<0
y
∵ m<-2 ∴-m>2
O x∴ 1-m>1 +2>0
C.
即b>0
Ox
D.
10.直线y=kx+2与y=2x+k在同一坐标系内的
大致图象是( D ).
y
k>0
k<0
O
x
y k>0
k<0
O
x
A. y k<0 k>0
O
x
B.
y k<0 k<0
b>0
O
x
C.
D.
y
y=kx+b y=kx
O
x
y=kx+b
复习要点 8.用待定系数法求一次函数解析式一般步骤: (1)先设出一次函数解析式为y=kx+b; (2)将已知两点的坐标代入所设的解析式,建立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-x 资料下载:/ziliao/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/
试卷下载:/shiti/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
(2)f(x)=x2-x+1,x∈(-∞,1)∪(1,+∞) 地理课件:/kejian/d域是使解析式有意义的自变量的
取值集合.
2.实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使 实际问题有意义.
6
D [由
1.函数f(x)=
3x2 +(3x-1)0的定义域是( PPT模板:/moban/
PPT背景:/beijing/ PPT下载:/xiazai/
历史课件:/kejian/lish i/
)
1-x>0, 3x-1≠0,
得 x<1
A.-∞,13 C.-13,13
B.13,1 D.-∞,13∪13,1
且 x≠13,故选 D.]
7
【例 2】
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
教案下载:/jiaoan/
PPT论坛:
PPT课件:/kejian/
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
英语课件:/kejian/ying yu/ 美术课件:/kejian/me ishu/
第三章 函数的概念与性质
章末复习课
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
科学课件:/kejian/kexue/ 物理课件:/kejian/wul i/
化学课件:/kejian/huaxue/ 生物课件:/kejian/she ngwu/
地理课件:/kejian/dili/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
PPT素材:/sucai/
PPT背景:/beijing/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
2
3
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
x2-9≠0,
x≤5,
得x≥1, x≠±3,
故函数的定义域是{x|1≤x≤5且x≠3}.
(2)设矩形的一边长为x,则另一边长为12(a-2x),
所以y=x·12(a-2x)=-x2+12ax,定义域为x0<x<12a
.
5
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
求函数的定义域
【例 1】 (1)求函数 y= 5-x+ x-1-x2-1 9的定义域. (2)将长为 a 的铁丝折成矩形,求矩形面积 y 关于一边长 x 的解析式, 并写出此函数的定义域.
4
[解]
5-x≥0,
(1)解不等式组x-1≥0,
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
英语课件:/kejian/ying yu/ 美术课件:/kejian/me ishu/
科学课件:/kejian/kexue/ 物理课件:/kejian/wul i/
化学课件:/kejian/huaxue/ 生物课件:/kejian/she ngwu/
求函数的解析式
(1)函数 f(x)在 R 上为奇函数,当 x>0 时,f(x)= x+1,则
f(x)的解析式为______.
(2)已知 f1+x x=1+x2x2+1x,则 f(x)的解析式为________.
1+ x,x>0
(1)f(x)=0,x=0 - -x-1,x<0
PPT模板:/moban/
范文下载:/fanwen/
试卷下载:/shiti/
教案下载:/jiaoan/
PPT论坛:
PPT课件:/kejian/
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
相关文档
最新文档