钢结构工程中钢梁对接焊缝超声波探伤
钢结构焊缝超声波探伤自检报告(样本)
对接焊缝
GLJ-5
●NI
○RI
○UI
无
二级
合格
对接焊缝
GLJ-6
●NI
○RI
○UI
无
二级
合格
对接焊缝
GLJ-7
●NI
○RI
○UI
无
二级
合格
对接焊缝
GLJ-8
●NI
○RI
○UI
无
二级
合格
对接焊缝
GLJ-9
●NI
○RI
○UI
无
二级
合格
对接焊缝
GLJ-10
●NI
○RI
○UI
无
二级
合格
对接焊缝
GLJ-11
○UI
无
二级
合格
对接焊缝
GLJ-18
●NI
○RI
○UI
无
二级
合格
对接焊缝
GLJ-19
●NI
○RI
○UI
无
二级
合格
对接焊缝
GLJ-20
●NI
○RI
○UI
无
二级
合格
对接焊缝
注:NI-无记录缺陷 RI-有应记录缺陷 UI-需返工缺陷
某某工程
焊缝自检报告
(探伤自检报告)
编号:UT2023-12-02
编制:
审核:
GZJ-2
●NI
○RI
○UI
无
二级
合格
对接焊缝
GZJ-3
●NI
○RI
○UI
无
二级
合格
对接焊缝
GZJ-4
●NI
○RI
钢结构焊缝检测常用方法的特点及适用范围
钢结构焊缝检测常用方法的特点及适用范围根据《钢结构工程施工质量验收规范》(gb50204-2001)及相关的检测规程,对一般常见钢结构焊缝采用的主要检测方法及适用范围作了介绍。
一、超声波探伤法1、仪器和探头无损检测仪是无损检测中不可缺少的设备,它直接影响着检测结果的准确性。
(1)仪器(2)探头应用中应注意以下几点①调节探头与工件的距离,使声波在焊缝中的传播能量能够集中于该处。
②使用高频时,当接触到较大的缺陷或焊缝外形复杂时,宜改用低频,以免声波绕射。
③当超声波遇到裂纹时,应改用连续波,否则会造成“假阳性”反映,即实际上没有缺陷存在。
④焊缝局部腐蚀严重,缺陷密集、尺寸大且无规则、易引起严重超声波反射的情况,都应避开高频超声检测,以利获得较准确的反射波。
⑤在某些场合,尤其是当缺陷和腐蚀较严重时,超声波衰减较快,应考虑加上波幅值,以防止由此而引起的误判。
目前,用于焊缝检测的超声波探头大致有两类:一类是接触式超声波探头,另一类是非接触式超声波探头。
(1)接触式探头的工作原理是,超声波在两种不同的金属之间进行传播时,有时遇到各种形状不规则的缺陷或孔洞,就会发生强烈的反射,这样就容易把反射信号当作有缺陷的回波。
当这种反射回波的幅度足够大时,检测人员就能够发现缺陷,从而获得焊缝内部质量的信息。
2、操作方法(1)探头选择(2)调整焦距(3)焊缝检测(包括横向焊缝和纵向焊缝) (4)记录图像(包括焊缝长度、弯曲度,焊缝表面气孔等缺陷,也可以显示焊缝外形的基本轮廓)(5)编制报告3、优点(1)操作简便(2)速度快(3)结果准确可靠(4)成本低4、缺点(1)当有焊缝气孔或未焊透存在时,易漏检(2)探头有热损耗,因此需要经常补偿(3)受焊接材料的限制,灵敏度较低二、射线探伤法1、仪器和探头射线探伤所用的仪器称为射线探伤机。
它是检测焊缝质量的重要工具。
射线探伤的主要设备是x射线机,由此产生的射线叫做x射线。
它是以电磁波的形式沿直线传播的,其波长范围在0。
建筑工程钢结构焊缝超声波检验报告
建筑工程钢结构焊缝超声波检验报告一、引言建筑工程中,钢结构焊缝的质量直接关系到结构的稳定性和安全性。
超声波检验作为一种常用的非破坏检测方法,可以有效地检测焊缝的质量,并及早发现潜在的缺陷。
本报告旨在对建筑工程中钢结构焊缝进行超声波检验,并分析检验结果。
二、检验方法和设备本次检验采用了超声波检测仪作为检测设备,检验方法为纵波和横波扫查。
检验的焊缝包括对接焊缝和角焊缝。
检验人员根据国家标准和相关规范的要求,按照设备使用说明进行了正确的操作。
三、焊缝超声波检验结果1.对接焊缝的超声波检测结果:通过超声波检测,对接焊缝的检测结果显示99%的焊缝质量良好,未发现任何焊接缺陷。
在少数焊缝中,检测结果显示有微小的焊缝夹渣,但其夹渣量较小,不会影响焊缝的强度和密封性。
对接焊缝的超声波检测结果表明,焊缝的纵波声速和横波声速均符合设计要求,焊缝的声耗率在合理范围内。
2.角焊缝的超声波检测结果:通过超声波检测,角焊缝的检测结果显示98%的焊缝质量良好,未发现任何焊接缺陷。
在个别焊缝中,检测结果显示有轻微的焊缝不良蒸气孔,但数量较少,不会影响焊缝的强度和密封性。
角焊缝的超声波检测结果表明,焊缝的纵波声速和横波声速均符合设计要求,焊缝的声耗率在合理范围内。
四、分析与讨论根据本次检测结果,大部分的焊缝质量良好,没有发现任何焊接缺陷。
少量焊缝中存在微小的夹渣和轻微的不良蒸气孔,但数量较少,不会对结构的稳定性和安全性造成显著影响。
焊缝的声速和声耗率符合设计要求,说明焊缝的材料质量良好,焊接工艺得到了正确的控制。
然而,本次检验未覆盖全部焊缝,仅仅是对焊缝的抽样检验,因此不能保证全部焊缝的质量都符合要求。
在实际施工中,应继续进行焊缝的质量控制和检测,以确保整个结构的安全性和可靠性。
五、结论本次超声波检验显示大部分建筑工程钢结构焊缝的质量良好,未发现焊接缺陷。
少量焊缝中存在微小的夹渣和轻微的不良蒸气孔,但数量较少,不会对结构的安全性造成显著影响。
论述超声波探伤在钢结构焊缝中的应用
论述超声波探伤在钢结构焊缝中的应用摘要:超声波检测是常规的无损检测方法之一。
随着国内钢结构多层建筑的不断增多,无损检测工作量也越来越大,除了在焊接工艺上加大控制以外在无损检测上也应加大检测力度,并应尽早在钢结构高层建筑焊缝无损检测标准上体现出来。
本文就是基于此,进行了超声波探伤在建筑钢结构焊缝中的运用的相关探讨的。
关键词:无损探伤技术;超声波探伤;高层建筑Abstract: ultrasonic detection is one of the normal NDT methods. With domestic steel structure of multi-storey building is on the increase, nondestructive testing is more and more big workload, except in welding technology to increase control in the outside nondestructive testing should be increased detection dynamics, and should soon in steel structure high-rise building weld nondestructive testing standards reflected. This paper is based on this, the ultrasonic inspection in construction steel structure of the use of the weld the relevant discussion.Keywords: NDT technology; Ultrasonic inspection; High-rise building一、钢结构焊缝无损探伤技术钢结构在大型厂房、桥梁、多层建筑等都有着广泛的应用。
建筑钢结构焊缝超声波检测技术探析
建筑钢结构焊缝超声波检测技术探析首先,建筑钢结构焊缝超声波检测技术的原理是利用超声波在声导体中传播的特性。
超声波在焊缝中的传播速度取决于材料的密度和弹性模量。
当超声波遇到缺陷时,会发生多次反射和散射,从而影响超声波的传播路径和能量。
通过检测超声波传播的时间和能量的变化,可以确定焊缝中的缺陷位置和尺寸。
其次,建筑钢结构焊缝超声波检测技术的具体步骤如下。
首先,需要选择合适的超声波传感器和检测仪器,并调整超声波的频率和功率。
然后,将传感器放置在待测的焊缝表面,并施加适当的压力来确保传播的稳定性。
接下来,将超声波的传播时间和能量的变化记录下来,并与标准数据进行比较,以确定焊缝的质量。
最后,建筑钢结构焊缝超声波检测技术具有一些优点和应用前景。
首先,该技术可以非破坏性地检测焊缝的缺陷和质量,避免了因拆除焊缝而引发的额外损失。
其次,该技术对焊缝中的各种缺陷,如气孔、夹渣和裂纹等,都有很高的检测精度。
此外,该技术还可以实时监测焊缝的质量变化,并及时采取补救措施。
然而,建筑钢结构焊缝超声波检测技术也存在一些局限性。
首先,该技术对焊缝的厚度和尺寸有一定的限制,较粗和较大的焊缝往往会影响超声波的传播和接收效果。
其次,该技术在对离焊缝较远的深层缺陷进行检测时存在一定的困难,这需要采用更复杂的检测装置和方法。
综上所述,建筑钢结构焊缝超声波检测技术是一种常用的非破坏性检测方法,通过利用超声波的传播和反射特性来检测焊缝的缺陷和质量。
这种技术具有检测精度高、操作方便等优点,但也存在一定的局限性。
随着科技的不断进步和应用经验的积累,建筑钢结构焊缝超声波检测技术将会在建筑工程领域得到更广泛的应用。
钢结构焊缝超声波检测实施细则
1 引用标准《无损检测人员资格鉴定与认证》GB/T 9445-2008《焊缝无损检测超声检测技术检测等级和评定》GB/T 11345-2013《焊缝无损检测超声检测焊缝中的显示特征》GB/T 29711-2013《焊缝无损检测超声检测验收等级》GB/T 29712-2013《钢结构超声波探伤及质量分级法》JG/T 203-2007《钢结构工程施工质量验收规范》GB 50205-20012 适用范围本细则适用于母材厚度为不小于8mm铁素体钢全熔透焊缝(包括对接接头、T型接头和角接接头)的超声波探伤。
如母材厚度小于8mm且不小于4mm,则按照标准JG/T 203-2007进行超声波探伤。
3 主要仪器设备3.1 超声检测仪器应定期进行性能测试。
除另有约定外,超声检测仪宜符合下列要求:3.1.1 温度的稳定性:环境温度变化5℃,信号的幅度变化不大于全屏高度的±2%,位置变化不大于全屏宽度的±1%。
3.1.2 显示的稳定性:频率增加约1Hz,信号幅度变化不大于全屏高度的±2%,位置变化不大于全屏宽度的±1%。
3.1.3 水平线性的偏差不大于全屏宽度的±2%。
3.1.4 垂直线性的测试值与理论值的偏差不大于±3%。
3.2 系统性能测试至少在每次检测前,应按JB/T9214推荐的方法,对超声检测系统工作进行性能试。
除另有约定外系统性能宜符合下列要求:3.2.1 用于缺欠定位的斜探头入射点的测试值与标称值的偏差不大于±1mm;3.2.2 用于缺欠定位的斜探头折射角的测试值与标称值的偏差不大于±2o;3.2.3 灵敏度余量、分辨力和盲区,视实际应用需要而定。
系统性能的测试项目、时机、周期及其性能要求,应在书面检测工艺规程中予以详细规定。
3.3 探头3.3.1 检测频率应在2MHz~5MHz范围内,同时应遵照验收等级要求选择合适的频率。
钢结构焊缝超声波探伤实施细则
1总则1.1适用范围本实施细则依据GB/T11345 - 89”钢焊缝手工超声波探伤方法和探伤结果的分级” 编制,适用于母材厚度不小于8mm的铁素体类钢全焊透熔化焊对接焊缝脉冲反射法手工超声波检验。
不适用于铸钢、奥氏体不锈钢焊缝,外径小于159mm的钢管对接焊缝,内径小于等于200mm的管座角焊缝及外径小于250mm和内外径比小于80%的纵向焊缝。
1.2检测人员1.2.1从事焊缝探伤的检验人员必须掌握超声波的基础技术,具有足够的焊缝超声波探伤经验,并掌握一定的材料、焊接基础知识。
1.2.2焊缝超声检验人员应按有关规程或技术条件的规定经严格的培训和考核,并持有相应项目的上岗证,从事相对应考核项目的检验工作。
1.3本实施细则不涉及抽样方法及验收标准,需要时应根据设计图纸或相应的验收规范等技术文件制定专用的工艺,明确具体的抽样方法及验收标准。
1.4必要时应根据具体的检测对象,针对具体的接头型式、板厚等编制工艺卡。
2探伤仪、探头及系统性能要求2.1探伤仪:使用A型显示脉冲反射式探伤仪,其工作频率范围应为1〜5MHz,探伤仪应配备衰减器或增益控制器,其精度为任意相邻12dB误差在±1dB内,步进级每档不大于2dB,总调节量应大于60dB,水平线性误差不大于1%,垂直线性误差不大于5%。
2.2探头2.2.1探头应有晶片尺寸、K值或折射角度、入射点刻度、型号、厂家等标志。
2.2.2晶片的有效面积不应超过500mm2,且任一边长不大于25mm。
2.2.3声束轴线水平偏离角应不大于2°2.2.4探头主声束垂直方向的偏离,不应有明显的双峰。
2.2.5斜探头的公称折射角6为45°、60°、70°或K值为1. 0、1.5、2. 0、2. 5, 折射角的实测值与公称值的偏差应不大于2°(K值偏差不应超过±0.1)。
如受工件几何形状或探伤面曲率等限制也可选用其它公称角度/K值的探头。
钢结构工程中钢板对接焊缝的超声波检测
贾朝宏 新 疆昌吉州产品质量检验所 新疆 昌吉 8 3 1 1 0 0
【 摘 要 1近年 来在建筑工程 中,钢结构工程越 来越 多,钢结构焊接 的质 量情况直接影响 着构件的质量 ,而超 声波探伤是无损检 测中应 用比较普遍 的探测 内部缺 陷的方 法。本 文阐述超声 波探伤检测在钢结构焊接 中的应用。钢结构具有 自重轻、抗震性能好 、工业化程度 高等优点, 已广泛应用 于 工业厂房 、体 育场馆等工业及 民用建筑。 国家质 量技 术监督部 门也 开始 了对钢结构制造安装的监督 管理 。新疆 昌吉州质检 所于 2 0 0 2年开展钢结构 焊缝超 声波检测 ,积 累了一定的经验 。焊缝 内 部质 量的优劣是保证结构整体质 量的根 本,必须进行相应等级的焊缝质 量检 测。 【 关键词 】建筑 钢结构 超声波 检测
中 图分 类 号 :T G4 4 1 . 7 文 献 标 识 码 :A 文 章 编 号 : 1 0 0 9 . 4 0 6 7 ( 2 0 1 4 ) 1 7 - 2 4 4 . 0 1
一
、
超声 波探伤 的基本原理
探伤仪按信号的显示方式不 同,可分为 A 、 B 、c型三种 ,即人们通 常所说的 A超 、B超 、c超。焊缝超声波探伤采用 A超。焊缝探伤主要 采用斜探头横波探伤 ,斜探头使声束斜 向入射 , 根据在始脉冲与底脉冲 之 间是否存在探伤脉冲来判断焊缝 中的缺 陷。当发现焊缝 中存在缺陷后 , 根据探头在试件上的位置以及缺陷回波 的位置和在显示屏上高度 ,由此 可确定焊缝的缺陷位置和大小。
3 . 回 波 分 析
Hale Waihona Puke 二 、检 测前 的 准 备
1 . 探 测 面 的修 整
建筑钢结构焊缝超声波检测技术探讨
建筑钢结构焊缝超声波检测技术探讨摘要:声波探伤是指利用超声波仪产生的高频超声波,将其发射到待检材料中,利用统一均匀介质中超声波按照恒速直线传播,从一种介质中传播到另外一种介质中的过程中会会出现反射及折射的原理,然后利用探头对这些反射或者折射的超声波进行接收,利用超声仪在超声显示屏中显示出来。
关键词:建筑钢结构焊缝超声波检测技术超声波探伤实际上就是按照显示的波形与波高对缺陷的大小及类型进行分析与判断的一种检测技术。
超声波检测技术本身在应用过程中具有操作便捷、高度灵敏以及成本低等优点,所以得到了广泛的应用。
但是其在应用过程中也存在一些缺陷,利用这种探伤方法进行定性定量,受到探伤人员技术与经验的影响,至今很难达到精确评定的要求。
1建筑钢结构的焊缝类型建筑钢结构的焊缝类型主要取决于钢结构本身的特点。
现阶段建筑钢结构主要有两种体系,一种是门式刚架体系,另一种则是网架空间体系,而这两种体系中,门式钢架体系应用的范围更广。
基于这两种结构体系的要求,焊缝的类型主要有两种,一种是对接焊缝,另一种则是T型焊缝。
1.1对接焊缝对接焊缝就是两个母材放在同一个平面或者曲面中,两者的边缘对齐,沿着边缘线进行焊接。
1.2T型焊缝顾名思义,T型焊缝就是将两个母材摆放成T字母的形式然后焊接在一起。
两种结构的解释比较简单,原理也容易理解,为了让焊缝部分的两个母材可以完全熔合在一起,在焊接前应根据工艺的要求,在接头的位置设置合适的坡口,现阶段建筑钢结构焊缝比较常见的坡口有五种主要类型,分别是适合应用与薄板对接焊缝的I型坡口、适合应用于中厚板对接的V型坡口、适合应用于厚板对接的X型接口、适合应用于T型连接的单V型坡口以及K型坡口。
2建筑钢结构的焊缝内部缺陷焊接本身是比较容易受到各方面影响的。
主要的影响因素有焊接的工艺、施工的环境等,而钢结构施工要大量应用焊接技术,钢结构焊缝也就不可避免会出现一些内部的缺陷。
比较常见的内部缺陷是夹渣、未熔合、裂纹、气孔以及未焊透等几类,按照对钢结构焊缝强度的影响程度来划分,单个的气孔和点状的夹渣是一般缺陷,对焊缝强度的影响不会特别大。
钢结构超声波探伤检测方案
钢结构超声波探伤检测方案1 目的超声波探伤的目的是为了发现材料或制件中影响其使用的缺陷或特性,从而对其应用于特定目的的适用性进行评价。
2 适用范围本方案适用于母材厚度不小于4mm 的碳素结构钢和低合金高强度结构钢的全焊透熔化焊对接焊缝超声波检测。
3 检测依据《焊缝无损检测超声检测技术、检测等级和评定》GB/T 11345 《焊缝无损检测超声检测验收等级》GB/T 29712《钢结构超声波探伤及质量分级法》JG/T 203《钢结构工程施工质量验收规范》GB 502054 检测仪器超声波探伤仪5 试验温度0℃~40℃6 检测步骤6.1检测前,应对超声仪的主要技术指标(如斜探头入射点、斜率K值或角度)进行检查确认;应根据所测工件的尺寸调整仪器时基线,并应绘制距离-波幅(DAC)曲线。
6.2距离-波幅(DAC)曲线应由选用的仪器、探头系统在对比试块上的实测数据绘制而成。
当探伤面曲率半径R小于等于W²/4时,距离-波幅(DAC)曲线的绘制应在曲面对比试块上进行。
距离-波幅(DAC)曲线的绘制应符合GB/T 29712-2013《焊缝无损检测超声检测验收等级》要求。
6.3超声波检测应包括谈侧面的修整、涂抹耦合剂、探伤作业、缺陷的评定等步骤。
6.4检测前应对探测面进行修整或打磨,清楚焊接飞溅、油垢及其他杂质,表面粗糙度不应大于 6.3μm。
当采用一次反射或串列式扫查检测时,一侧修整或打磨区域宽度应大于 2.5Kδ;当采用直射检测时,一侧修整或打磨区域宽度应大于1.5 Kδ。
6.5应根据工件的不同厚度选择仪器时基线水平、深度或声程的调节。
当探伤面为平面或曲率半径R大于W²/4时,可在对比试块上进行时基线的调节;当探伤面曲率半径R小于W²/4时,探头楔块应磨成与工件曲面相吻合的形状,反射体的布置可参照对比试块确定,试块宽度应按下式进行计算:b≥2λs/De (6.5)式中:b—试块宽度(mm);λ—波长(mm);S—声程(mm);De—声源有效直径(mm)。
建筑钢结构焊缝超声波探伤实施细则
*公司钢构作业指导书建筑钢结构焊缝超声波探伤文件编号:版本号:编制:批准:生效日期:建筑钢结构焊缝超声波探伤实施细则1. 目的为使测试人员在做建筑钢结构焊缝超声波探伤时有章可循,并使其操作合乎规范。
2. 适用范围适用于母材厚度不小于4mm的碳素钢和低合金钢的钢板对接、T型接头、电渣焊接头;适用于母材壁厚不小于3.5mm,管径不于小48mm的螺栓球节点杆件与锥头或封板对接;适用于母材壁度不小于4mm,球径不小于120mm,管径不小于60 mm的焊接空心球及球管焊缝;适用于母材壁厚不小于6mm、支管管径不于小89mm、局部两面角夹不小于30°、支管壁厚外径比小于13%的圆管相贯接节点碳素钢和低合金钢焊接接头焊。
3. 检测依据GB 50205-2001钢结构工程施工质量验收规范JGJ7-2010空间网格结构技术规程JGJ81-2002建筑钢结构焊接技术规程GB 50661-2011 钢结构焊接规范JG/T203-2007钢结构超声波探伤及质量分级法GB/T11345-2013焊缝无损检测超声检测技术、检测等级和评定4.检验方法概述超声波探伤法的原理是利用超声波探伤仪换能器发射的脉冲超声波,通过良好的耦合方式使超声波入射至被检工件内,超声波在工件内传播遇到异质界面产生反射,反射波被换能器所接收并传至超声波探伤仪示波器。
通过试块或工件底面作为反射体调节时基线以确定缺陷反射回波的位置,调整检测灵敏度以确定缺陷的当量大小。
5.人员要求所有从事超声波探伤的检验员应通过有关部门组织的超声波探伤培训、考试并取得相应的执业资格证书,Ⅰ级检验员具有现场操作资格,但必须在Ⅱ级或Ⅲ级人员的指导或监督下进行,Ⅱ级或Ⅲ级人员可以编制超声波探伤工艺规程和工艺卡以及签发审核检验报告。
超声检验人员的视力应每年检查一次,校正视力不得低于1.0。
6.检测器材6.1超声波探伤仪:采用数字A型脉冲反射式超声波探伤仪,频率范围为0.5-10MHz,且实时采样频率不应小于40MHz;衰减器精度为任意相邻12dB的误差在±1dB以内,最大累计误差不超过1dB;水平线性偏差不大于±2%,垂直线性偏差不大于±3%。
钢结构T形接头对接焊缝超声波检测
钢结构T形接头对接焊缝超声波检测摘要针对T型角焊缝各种不同的探伤方法,对钢结构太板梁T型角焊缝超声波探伤方法进行了比较选择,确定T既符合铜结构标准器方便检测的探伤方法,说明T探伤I艺对保证产品质量的重要性。
关键词角焊缝翼板腹板1 前言目前现代化钢结构厂房的应用越来越多,它涉横梁、吊车梁和焊接工字梁的制造及安装,按照图样技术条件及规范要求,钢结构件的翼板和腹板采用角焊接的焊缝形式,重要部位焊缝必须焊透。
对需要焊透的焊缝按技术条件及规范要求进行检测,以确保角焊缝内不存在未焊透缺陷。
GB 50205 —1995 《钢结构工程施工及验收规范》明确要求用超声波检测方法对角焊缝整个截面进行检测。
执行GB11345—89《钢焊缝手工超声波探伤方法和探伤结果分级》中B级检验等级并达到Ⅱ级评定等级要求,针对这些角焊缝的超声波检测,各种教材和标准中叙述了不同的探伤方法,倒如,用直探头在翼板上进行探测,用钭探头在翼板的内外侧进行探铡,或用钭探头在腹板上进行探测。
那么哪一种方法在实际生产上较方便实用,而又能达到检测要求和目的呢?笔者在角焊缝实际探伤过程中,对各种探伤方法进行了摸索,总结出了针对这些T型角焊缝较好的探伤方法。
2 钢结构中角焊缝检测的目的钢结构构件的制作安装,相对于受国家安全监察的特殊设备锅炉、压力容器,其无损检测的要求及方法、标准、规范是滞后的。
在较早的技术条件中,对于大板梁构件要求焊透的T型角焊缝,仅要求在角焊缝中不得存在未焊透缺陷.对于应达到几级标准及怎样检测未作出规定。
近年来,由于工程监理制度的实施,对钢结构件焊缝的无损检测越来越被重视,超声波检测不但要求对角焊缝中未焊透缺陷进行检测,而且必须对整个焊接截面上的缺陷进行检测,同时要求达到的一级焊缝质量。
设计者的目的是通过提高对钢构件制作质量的要求来降低钢构件的安全系数取值,达到钢构件的轻型化,同时节约材料。
为此,无损检测在钢结构制作安装中得到越来越广泛的应用,而钢结构中的角焊缝检测是钢结构中检测的重中之重。
钢结构焊缝超声波探伤检测报告
钢结构焊缝超声波探伤检测报告一、引言钢结构在现代建筑和工程中广泛应用,为确保钢结构的安全和质量,需要对焊缝进行超声波探伤检测。
本报告旨在总结和分析钢结构焊缝超声波探伤检测的结果,提供相应的结论和建议。
二、方法与原理1. 超声波探伤原理超声波探伤是利用超声波在材料中的传播特性来检测和评估材料的内部缺陷和异物的一种无损检测技术。
在钢结构焊缝超声波探伤中,一般使用纵波和横波两种超声波模式。
2. 设备及仪器本次探伤测试采用了XXX品牌的超声波探伤仪器,配备了适当的传感器和探头。
该仪器具备高精度、高灵敏度和便携性的特点,能够有效地检测钢结构焊缝中的缺陷。
3. 探伤方法首先,对待测的焊缝进行准备工作,包括清洁、除锈等。
然后,将超声波探头置于焊缝表面,以一定的速度进行移动。
仪器将自动记录并显示超声波的传播特性和检测结果。
三、检测结果通过对焊缝进行超声波探伤检测,得到了以下结果:1. 检测到的焊缝缺陷在焊接过程中,可能会出现焊缝的气孔、裂纹、夹杂物等缺陷。
在本次探伤中,共检测出X处焊缝缺陷,主要包括气孔和夹杂物。
2. 缺陷的尺寸和位置通过超声波探伤仪器的分析,确定了焊缝缺陷的尺寸和位置。
其中,气孔的尺寸范围在X~Y毫米之间,主要分布在焊缝的边缘位置。
夹杂物的尺寸范围在X~Y毫米之间,主要位于焊缝的内部位置。
3. 缺陷对钢结构强度的影响通过对焊缝缺陷的分析,评估了其对钢结构强度和稳定性的影响。
结果表明,焊缝缺陷对钢结构的强度和稳定性产生了一定程度的负面影响。
具体的影响程度需要进一步的工程计算和分析。
四、结论与建议1. 结论本次钢结构焊缝超声波探伤检测发现了焊缝中的气孔和夹杂物等缺陷。
这些缺陷对钢结构的强度和稳定性产生一定的影响。
2. 建议针对检测到的焊缝缺陷,建议采取以下措施:- 对发现的气孔进行补焊处理,以确保焊缝的完整性和密实性;- 对发现的夹杂物进行修剪处理,确保其不会对焊缝产生进一步的影响;- 对其他焊接工艺和参数进行进一步优化,以减少焊缝缺陷的发生。
建筑钢结构焊缝超声波探伤实施细则D0
钢构作业指导书建筑钢结构焊缝超声波探伤文件编号:版本号:编制:批准:生效日期:建筑钢结构焊缝超声波探伤实施细则1. 目的为使测试人员在做建筑钢结构焊缝超声波探伤时有章可循,并使其操作合乎规范。
2. 适用范围适用于母材厚度不小于4mm的碳素钢和低合金钢的钢板对接、T型接头、电渣焊接头;适用于母材壁厚不小于3.5mm,管径不于小48mm的螺栓球节点杆件与锥头或封板对接;适用于母材壁度不小于4mm,球径不小于120mm,管径不小于60 mm的焊接空心球及球管焊缝;适用于母材壁厚不小于6mm、支管管径不于小89mm、局部两面角夹不小于30°、支管壁厚外径比小于13%的圆管相贯接节点碳素钢和低合金钢焊接接头焊。
3. 检测依据GB 50205-2001钢结构工程施工质量验收规范JGJ7-2010空间网格结构技术规程JGJ81-2002建筑钢结构焊接技术规程GB 50661-2011 钢结构焊接规范JG/T203-2007钢结构超声波探伤及质量分级法GB/T11345-2013焊缝无损检测超声检测技术、检测等级和评定4.检验方法概述超声波探伤法的原理是利用超声波探伤仪换能器发射的脉冲超声波,通过良好的耦合方式使超声波入射至被检工件内,超声波在工件内传播遇到异质界面产生反射,反射波被换能器所接收并传至超声波探伤仪示波器。
通过试块或工件底面作为反射体调节时基线以确定缺陷反射回波的位置,调整检测灵敏度以确定缺陷的当量大小。
5.人员要求所有从事超声波探伤的检验员应通过有关部门组织的超声波探伤培训、考试并取得相应的执业资格证书,Ⅰ级检验员具有现场操作资格,但必须在Ⅱ级或Ⅲ级人员的指导或监督下进行,Ⅱ级或Ⅲ级人员可以编制超声波探伤工艺规程和工艺卡以及签发审核检验报告。
超声检验人员的视力应每年检查一次,校正视力不得低于1.0。
6.检测器材6.1超声波探伤仪:采用数字A型脉冲反射式超声波探伤仪,频率范围为0.5-10MHz,且实时采样频率不应小于40MHz;衰减器精度为任意相邻12dB的误差在±1dB以内,最大累计误差不超过1dB;水平线性偏差不大于±2%,垂直线性偏差不大于±3%。
钢结构焊缝无损检测中超声波探伤技术探讨
钢结构焊缝无损检测中超声波探伤技术探讨摘要:超声波探伤技术是目前国内外应用最广泛、使用频率最高且发展最快的一种无损检测技术。
它在钢结构焊缝检测中的应用大大提高了工作精度和工作效率。
本文首先阐述了超声波探伤技术的工作原理、技术优势及局限性,然后简要分析了影响超声波探伤技术效果的因素,最后对控制超声波探伤技术效果的对策进行阐述。
关键词:钢结构;焊缝无损检测;超声波探伤技术前言:钢结构的超声波无损检测是在现代科学基础上产生和发展的检测技术,借助先进的技术和设备,在不损坏、不改变被测对象理化状态的情况下,对被检测对象的内部结构进行高灵敏度和高可靠性的检查和测试。
近年来,在科学技术不断发展的背景下,超声波探伤技术在钢结构焊缝无损检测中的应用越来越好,但也暴露出一些不足之处。
一方面取决于所采用的技术和装备的水平,另一方面更重要的是取决于检测人员的知识水平和判断能力。
因此为保证超声波探伤技术对钢结构焊缝无损检测结果的准确可靠性,作者对超声波探伤技术的影响因素实施分析显得十分必要。
1超声探伤技术工作原理声源产生超声波,采用一定的方式使超声波进入工件,超声波在工件中传播并与工件材料以及其中的缺陷相互作用,使其传播方向或特征被改变,改变后的超声波通过检测设备接受,并对其进行处理分析,根据接受的超声波特征,判断内部存在缺陷及其特征。
焊缝检测主要采用斜探头横波检测,倾斜探头使声束倾斜入射,倾斜探头有各种倾斜角度。
当超声波穿过钢的上表面,有缺陷时,一些超声波被反射回来。
距离不同,返回探头的时间也不同。
在示波器上,将显示反射脉冲,称为损伤脉冲。
当无缺陷时,则无损伤脉冲。
当在焊缝中发现缺陷时,可以基于探头在测试件上的位置和显示器上的缺陷回波的高度来确定焊缝缺陷的位置和尺寸,就可确定出焊缝缺陷的位置和大小。
这是因为在探伤前按一定的比例在超声仪荧光屏上作有距离-波幅曲线。
2超声波探伤优势及其局限性超声波探伤优点:缺陷定位较准确;灵敏度高,可检测工件内部尺寸很小的缺陷;检测成本低、速度快、设备轻便且对人体及环境无害等。
超声波探伤在建筑钢结构检测中的应用
超声波探伤在建筑钢结构检测中的应用摘要:旨在探究超声波探伤技术在建筑钢结构检测中的应用。
超声波探伤是一种非破坏性检测方法,它利用超声波在材料中传播的特性,通过检测反射和折射现象来评估材料的质量和完整性。
在建筑领域,这项技术可用于检测钢梁、钢柱以及评估焊缝质量。
通过超声波探伤,可以及早识别质量缺陷和安全隐患,从而提高建筑钢结构的可靠性和安全性。
这一研究为建筑工程领域提供了一种有效的质量控制和安全评估工具,有望在未来的建筑项目中得到广泛应用。
关键词:超声波探伤、建筑钢结构、质量控制、安全评估。
引言:随着建筑工程的不断发展,建筑钢结构在现代建筑中扮演着重要的角色。
因此,确保这些结构的质量和安全至关重要。
超声波探伤技术是一种非破坏性检测方法,已在多个领域得到广泛应用。
本研究旨在探讨超声波探伤技术在建筑钢结构检测中的应用,以提高检测效率和准确性。
一、超声波探伤原理1.1 超声波传播特性超声波探伤技术是一种广泛应用于非破坏性材料检测领域的关键工具。
其核心原理在于超声波的传播特性。
超声波是一种高频声波,其频率通常远超过20,000赫兹,这使得它在材料中传播时表现出独特的性质。
超声波的直线传播特性使其成为理想的探测工具。
它们能够在材料中沿着一条明确定义的路径传播,因此可以准确测量所感兴趣区域的性质。
这种直线传播性质使超声波成为材料内部结构的可视化"探针",允许工程师深入了解材料内部的状况,无需破坏性检测方法。
超声波在不同材料中的传播速度差异为其提供了独特的检测优势。
当超声波从一个材料传播到另一个声速不同的材料中时,会发生折射现象。
这种折射会导致超声波的路径发生弯曲,产生反射和折射波。
通过分析这些波的特性,工程师可以获得有关材料内部的信息,如存在缺陷、界面和异物等。
这些信息对于材料的结构和质量评估至关重要。
1.2 反射和折射现象超声波探伤技术的核心原理之一是反射和折射现象。
这两个现象是超声波在材料中传播时产生的关键效应,为非破坏性材料检测提供了重要的信息。
超声波探伤检测方案
1.1钢结构焊接质量无损检测依据《钢结构工程施工质量验收规范》GB50205-2020及《钢结构超声波探伤及质量分级法》JG/T203-2007规定,采用超声波法对焊缝内部进行探伤检测,设计质量等级为一级的焊缝探伤比例为100%,设计质量等级为二级的焊缝探伤比例为20%。
1.1.1检测区域的选择⑴超声波检测应在焊缝及探伤表面经外观检查合格后方可进行,应划好检测区域,标出检测区段编号。
⑵检测区域的宽度应是焊缝本身再加上焊缝两侧各相当于母材厚度30%的一般区域,这区域最小10mm,最大20mm。
⑶接头移动区应清除焊接飞溅、铁屑、油垢及其它外部杂质。
探伤区域表面应平整光滑,便于探头的自由扫查,其表面粗糙度不应超过6.3um,必要时进行打磨。
a、采用一次反射法或串列式扫查探伤时,探头移动区应大于2.56k,(其中,§为板厚,k为探头值);b、采用直射法探伤时,探头移动区应大于1.256k。
⑷去除余高的焊接,应将余高打磨到与临邻近母材平齐。
保留余高焊缝,如焊缝表面有咬边,较大的隆起和凹陷等也应进行适当修磨,并做圆滑过渡以免影响检测结果的评定。
1.1.2检测频率检测频率f一般在2-5MHz的范围内选择,推荐选用2〜2.5MHz的频率检测,特殊情况下,可选用低于2MHz或高于2.5MHz的检测频率,但必须保证系统灵敏度的要求。
1.1.3仪器、试块、耦合剂、探头1、仪器:CTS-9002+型超声波探伤仪、PXUT-300C型超声波探伤仪2、试块:CSK-IA试块、RB-2试块、CSKTCj试块3、耦合剂应选用适当的液体或模糊状物作耦合剂。
耦合剂应具备有良好透声性和适宜流动性,不应对材料和人体有损伤作用。
同时应便于检测后清理。
典型耦合剂为水、机油、甘油和浆糊。
在试块上调节仪器和产品检测应采用相同的耦合剂。
4、探头:斜探头:频率为2.5-5MHz,前沿为10-20mm,晶片尺寸为6X6、9X9、13X13(mm);直探头:频率为2.5-5MHz,直径为14或20mm。
钢结构焊缝超声波探伤检测作业指导书(含全部附表)
MC-LWI-06(A0)1编制依据(1)《钢结构现场检测技术标准》GB/T 50621-2010;(2)《钢结构工程施工质量验收规范》GB 50205-2001。
2适用范围本方法适用于母材厚度不小于8mm、曲率半径不小于160mm的碳素结构钢和低合金高强度结构钢对接全熔透焊缝,使用A型脉冲反射法手工超声波的质量检测。
3作业程序执行程序形成的记录3.1接受任务编制检测方案。
3.2 根据检测方案的技术要求准备仪器设备。
3.3 进行现场检测做好相关数据的记录填写完成表JSJL-02-05-A《钢结构焊缝超声波探伤记录》。
3.4分析检测数据,编制检测报告。
4检测方法4.1资料搜集探伤前应搜集资料并了解工件的材质、结构、曲率、厚度、焊接方法、焊缝种类、坡口型式、焊缝余高及背面衬垫、沟槽等情况。
4.2 确定检测等级根据质量要求,检验等级分为A、B、C三级。
检验工作的难度系数按A、B、C顺序逐渐増高。
应根据工件的材质、结构、焊接方法、受力状态选用检验级别,如设计和结构上无特别指定,钢结构焊缝质量的超声波探伤宜选用B级检验。
A级检验:采用一种角度探头在焊缝的单面单侧进行检验,只对允许扫查到的焊缝截面进行探测。
一般不要求作横向缺陷的检验。
母材厚度大于50mm时,不得采用A级检验。
B级检验:宜采用一种角度探头在焊缝的单面双侧进行检验,对整个焊缝截面进行探测。
母材厚度大于100mm时,采用双面双侧检验;当受构件的几何条件限制时,可在焊缝的双面单侧采用两种角度的探头进行探伤;条件允许时要求作横向缺陷的检验。
C级检验:至少要采用两种角度探头在焊缝的单面双侧进行检验。
同时要作两个扫查方向和两种探头角度的横向缺陷检验。
母材厚度大于100mm时,宜采用双面双侧检验。
4.3 探头选择对不同检测等级要求和不同板厚,推荐的探伤面、探头角度和探头数量见表4-1。
表4-1 不同板厚所用的探头角度表4-2 不同腹板厚度选用的探头角度表(T形接头与角接头)耦合剂应具有良好的透声性和适宜流动性,不应对材料和人体有损伤作用,同时应便于检测后清理。