开关电源的谐波及其抑制
谐波产生、危害及如何抑制谐波

谐波产生、危害及如何抑制谐波1分析低压配电系统中谐波1-1什么是供电系统的谐波对周期性的非正弦电量进行傅里叶级数分解,除了得到和电网基波频率相同的分量,还包括许多大于电网基波频率分量,这些电量就被称为谐波。
谐波频率和基波频率比值(n=fn/f1)被称之为谐波次数。
电网中有时也会有非整数谐波存在,即为非谐波或称为分数谐波。
谐波其实是一种干扰量,会使电网受到“污染”。
电工技术主要研究谐波是如何产生的、及怎样传输、如何测量、造成危害及抑制。
谐波大小通常用总谐波畸变率来表示,在周期性交流量中的谐波含量的均方根值和它的基波分量的均方根比值(用百分数来表示);电压总谐波畸变率用thdu表示;电流总谐波畸变率用thdi表示。
1-2电网谐波的主要来源(1)由于发电系统中发电机三相绕组在制造过程中很难做到完全对称,铁芯也很难做到绝对均匀一致等原因,所以发电时多少会产生一些谐波,总体来说数量较小。
(2)输配电系统中产生的谐波:主要是输配电系统中电力变压器产生的谐波,由于电力变压器铁芯饱和,磁化曲线的非线性,加上设计时要考虑经济性,其工作磁密选择在磁化曲线上接近于饱和段,就使磁化电流呈现尖顶波形,从而就含有了奇次谐波。
它的大小是与磁路的结构形式、铁芯饱和度相关。
其饱和度越高,电力变压器工作点就会越远地偏离线性,从而造成谐波电流就越大。
(3)用电设备所产生谐波是因为供电系统中存在着非线性负荷,当电流流过和所加的电压不是线性关系时,就会发生非正弦电流,这就是谐波电流。
非线性负荷设备有开关电源(smps)、调速装置、电子荧光灯镇流器、不间断电源、包含磁性铁芯设备以及部分家用电器(如电视机、计算机)等。
1-3半导体整流设备由于半导体广泛应用于开关电源、不间断电源等许多方面,由其产生的谐波给电网造成大量的电污染。
半导体整流装置是采用移相控制,从电网吸收了缺角的正弦波,从而给电网剩下的是另一部分缺角正弦波,在剩下部分中就会含有大量谐波。
开关电源的干扰及其抑制

开关电源的干扰及其抑制开关电源产生EMI的原因较多,其中由基本整流器产生的电流高次谐波干扰和功率转换电路产生的尖峰电压干扰是主要原因.基本整流器:基本整流器的整流过程是产生EMI最常见的原因.这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰.功率转换电路:功率转换电路是开关稳压电源的核心,它产生的尖峰电压是一种有较大幅度的窄脉冲,其频带较宽且谐波比较丰富.产生这种脉冲干扰的主要原因是:①开关管:开关管及其散热器与外壳和电源内部的引线间存在分布电容.当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份.由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流.开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声.②高频变压器:开关电源中的变压器,用作隔离和变压.但由于漏感地原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,变压器对外壳的分布电容形成另一条高频通路,而使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声.③整流二极管:二次侧整流二极管用作高频整流时,要考虑反向恢复时间的因数.往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过).一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几十兆赫.④电容、电感器和导线:开关电源由于工作在较高频率,会使低频的元器件特性发生变化,由此产生噪声.开关电源外部干扰:开关电源外部干扰可以以“共模”或“差模”方式存在.干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化.其中也包括电压变化、频率变化、波形失真、持续噪声或杂波以及瞬变等,在电源干扰的几种干扰类型中,能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响.开关电源干扰耦合途径:开关电源干扰耦合途径有两种方式:一种是传导耦合方式,另一种是辐射耦合方式.1.传导耦合:传导耦合是骚扰源与敏感设备之间的主要耦合途径之一.传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电磁骚扰至敏感设备,产生电磁干扰.按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合.在开关电源中,这三种耦合方式同时存在,互相联系.⑴电路性耦合:电路性耦合是最常见、最简单的传导耦合方式.其又有以下几种:①直接传导耦合:导线经过存在骚扰的环境时,即拾取骚扰能量并沿导线传导至电路而造成对电路的干扰.②共阻抗耦合:由于两个以上电路有公共阻抗,当两个电路的电流流经一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路,这就是共阻抗耦合.形成共阻抗耦合骚扰的有:电源输出阻抗、接地线的公共阻抗等.⑵电容性耦合:电容性耦合也称为电耦合,由于两个电路之间存在寄生电容,使一个电路的电荷通过寄生电容影响到另一条支路.⑶电感性耦合:电感性耦合也称为磁耦合,两个电路之间存在互感时,当干扰源是以电源形式出现时,此电流所产生的磁场通过互感耦合对邻近信号形成干扰.2.辐射耦合:通过辐射途径造成的骚扰耦合称为辐射耦合.辐射耦合是以电磁场的形式将电磁能量从骚扰源经空间传输到接受器.通常存在四种主要耦合途径:天线耦合、导线感应耦合、闭合回路耦合和孔缝耦合.⑴天线与天线间的辐射耦合:在实际工程中,存在大量的无意电磁耦合.例如,开关电源中长的信号线、控制线、输入和输出引线等具有天线效应,能够接收电磁骚扰,形成无意耦合.⑵电磁场对导线的感应耦合:开关电源的电缆线一般是由信号回路的连接线、功率级回路的供电线以及地线一起构成,其中每一根导线都由输入端阻抗、输出端阻抗和返回导线构成一个回路.因此,电缆线是内部电路暴露在机箱外面的部分,最易受到骚扰源辐射场的耦合而感应出骚扰电压或骚扰电流,沿导线进入设备形成辐射骚扰.⑶电磁场对闭合回路的耦合:电磁场对闭合回路的耦合是指回路受感应最大部分的长度小于四分之一波长.在辐射骚扰电磁场的频率比较低的情况下,辐射骚扰电磁场与闭合回路的电磁耦合.⑷电磁场通过孔缝的耦合:电磁场通过孔缝的耦合是指辐射骚扰电磁场通过非金属设备外壳、金属设备外壳上的孔缝、电缆的编织金属屏蔽体等对其内部的电磁骚扰.抑制干扰的一些措施:形成电磁干扰的三要素是干扰源、传播途径和受扰设备.因而,抑制电磁干扰也应该从这三方面着手,采取适当措施.首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度.目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道.常用的方法是屏蔽、接地和滤波.⑴采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰,即用电导率良好的材料对电场屏蔽,用磁导率高的材料对磁场屏蔽.屏蔽有两个目的,一是限制内部辐射的电磁能量泄漏出该内部区域,二是防止外来的辐射干扰进入该内部区域.为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽.⑵所谓接地,就是在两点间建立传导通路,以便将电子设备或元件连接到某些叫作"地"的参考点上.接地是开关电源设备抑制电磁干扰的重要方法,电源某些部分与大地相连可以起到抑制干扰的作用.在电路系统设计中应遵循"一点接地"的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现"一点接地".因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面作为参考地,需要接地的各部分就近接到该参考地上.为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值.在低频和高频共存的电路系统中,应分别将低频电路、高频电路、功率电路的地线单独连接后,再连接到公共参考点上.⑶滤波是抑制传导干扰的有效方法.EMI滤波器作为抑制电源线传导干扰的重要单元,可以抑制来自电网的干扰对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰.在设备或系统的电磁兼容设计中具有极其重要的作用.在滤波电路中,还采用很多专用的滤波元件,如穿心电容器、三端电容器、铁氧体磁环,它们能够改善电路的滤波特性.恰当地设计或选择滤波器,并正确地安装和使用滤波器,是抗干扰技术的重要组成部分.选择滤波器时要注意:①明确工作频率和所要抑制的干扰频率,如两者非常接近,则需要应用频率特性非常陡峭的滤波器,才能把两种频率分开;②保证滤波器在高压情况下能够可靠地工作;③滤波器连续通以最大额定电流时,其温升要低,以保证在该额定电流连续工作时,不破坏滤波器中器件的工作性能;④为使工作时的滤波器频率特性与设计值相符合,要求与它连接的信号源阻抗和负载阻抗的数值等于设计时的规定值;⑤滤波器必须具有屏蔽结构,屏蔽箱盖和本体要有良好的电接触,滤波器的电容引线应尽量短,最好选用低引线短电感的穿心电容;⑥要有较高的工作可靠性,因为作防护电磁干扰用的滤波器,其故障往往比其他元件的故障更难找.安装滤波器时应注意以下几点:①电源线路滤波器应安装在离设备电源入口尽量靠近的地方,不要让未经过滤波器的电源线在设备框内迂回;②滤波器中的电容器引线应尽可能短,以免因引线感抗和容抗在较低频率上谐振;③滤波器的接地导线上有很大的短路电流通过,会引起附加的电磁辐射,故应对滤波器元件本身进行良好的屏蔽和接地处理;④滤波器的输入和输出线不能交叉,否则会因滤波器的输入―输出电容耦合通路引起串扰,从而降低滤波特性,通常的办法是输入和输出端之间加隔板或屏蔽层.。
电力系统谐波的危害性及抑制策略

新能源发电系统的谐波治理方案
增加无功补偿装置
在新能源发电系统中增加无功补偿装置,提高系统功率因数,降 低谐波影响。
采用滤波器
针对谐波问题,采用专门的滤波器对谐波进行过滤和抑制,减少 谐波对系统的影响。
加强监管和管理
加强对新能源发电系统的监管和管理,定期进行电能质量检测和 评估,确保系统符合相关标准和要求。
CHAPTER 06
电力系统谐波研究展望与未 来趋势
新型谐波抑制技术的研究与应用
新型谐波抑制技术的研究
随着科学技术的发展,新型的谐波抑制技术正在不断涌 现,如基于滤波器、电抗器等装置的谐波抑制技术,以 及基于电力电子器件的PWM控制技术等。这些技术能够 更有效地降低电力系统中的谐波含量,提高电力系统的 电能质量。
电力系统谐波的危害 性及抑制策略
汇报人: 日期:
目 录
• 电力系统谐波概述 • 电力系统谐波的危害性 • 电力系统谐波的抑制策略 • 电力系统谐波的监测与治理 • 电力系统谐波对新能源的影响及应对策略 • 电力系统谐波研究展望与未来趋势
CHAPTER 01
电力系统谐波概述
谐波定义
谐波是一个周期性电气量的正弦波分量,其频率是基波频率的整数倍。在电力系统中,谐波 通常是指50Hz或60Hz基波频率的整数倍分量。
电气设备过热会加速其老化,缩短其使用寿命,甚至引发火 灾等严重后果。
产生谐振现象
电力系统中的谐波与某些设备或系统参数之间可能产生谐 振现象。
谐振会导致系统中的谐波放大,对设备造成更大的危害, 甚至损坏设备。
增加电能损耗
谐波电流在输电线路中流动时,会产生额外的电能损耗。 电能损耗会导致能源浪费,增加用户的电费支出。
。
电网谐波的产生及抑制措施分析

电网谐波的产生及抑制措施分析摘要:研究分析谐波产生的原因,为抑制电力系统的谐波干扰提供好的检测方法,对提高电网运行质量、满足用户需求有着重要的实际意义。
关键词:电网谐波、电力电子、措施随着电子工业技术的迅猛发展,各种电力电子装置在电力系统(铁磁性的电力变压器、电抗器等)、工业(电弧炼钢炉和电焊设备、电解设备等)、交通(电气化铁路)及家用电气设备等各种领域均得到广泛应用,电力系统中的非线性负荷明显增多,,由其产生的谐波和无功流入电网,致使电能的生产、传输和利用的效率降低,增大电网损耗,使电气设备过热,产生振动和噪声,并使设备绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
而且,谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。
谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱,对电力系统的安全稳定运行构成极大威胁。
因此,研究分析谐波产生的原因,为抑制电力系统的谐波干扰提供好的检测方法,对提高电网运行质量、满足用户需求有着重要的实际意义。
一、谐波产生的原因在电力系统中,电压和电流波形理论上应是工频下的正弦波,但实际的波形总有不同的非正弦畸变。
从数学的角度分析,任何周期波形都可以被展为傅里叶级数,因此,对于周期T=2∏/ω的非正弦电压u(t)或电流i(t),在满足狄里赫利条件下可以展开成以下形式的傅里叶级数。
即:.式中:clsin(ωt+θ1)为基波分量,cnsin(nωt+θn)为第n次谐波分量。
可以看出,所谓谐波就是一个周期电气量的正弦波分量,其频率为基波频率的整数倍。
由于谐波的频率是基波频率整数倍,因此通常又被称为高次谐波。
公用电网中的谐波产生原因主要和以下两方面有关:1、电源本身以及输配电系统产生的谐波。
由于发电机三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致等制造和结构上的原因,使得电源在发出基波电势的同时也会产生谐波电势,但由于其值很小,一般在分析电力系统谐波问题时可以忽略。
谐波抑制的方法及其特点

电力系统谐波抑制方法及其特点分析随着电力电子技术的发展,接入电网的整流、换流设备和其他各种非线性负荷设备日益增加,这些电气设备产生大量的谐波电流注入电网,危及电力设备、用户设备和电力系统的安全运行。
必须采取措施,抓紧治理,抑制电力系统谐波,把电网中的谐波含量控制在允许范围之内[1]。
电力系统谐波抑制是改善电能质量、净化电网的一个重要方面。
对谐波抑制的方法主要有三种途径:第一种是在谐波源上采取措施,从改进电力电子装置入手,使注入电网的谐波电流减少,也就是最大限度地避免谐波的产生;第二种是在电力电子装置的交流侧利用LC无源滤波器和电力有源滤波器对谐波电流分别提供频域谐波补偿和时域谐波补偿。
这类方法属于对已产生的谐波进行有效抑制的方法;第三种就是改善供电环境[2]。
1、降低谐波源的谐波含量降低谐波源的谐波含量也就是在谐波源上采取措施,最大限度地避免谐波的产生。
这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用,并避免因加装消谐装置而引发的其它负面影响。
具体方法有:1.1 增加换流装置的脉动数换流装置是电网中的主要谐波源之一,其产生的谐波主要集中在特征谐波,非特征谐波含量通常很少,特征频谱为:n=kp士1,则可知脉动数p增加,n也相应增大,而工n、工l/n,故谐波电流将减少。
因此,增加整流脉动数,可平滑波形,减少谐波。
例如:当脉动数由6增加到12时,可有效的消除幅值较大的低频项,从而使谐波电流的有效值大大降低。
1.2 利用脉宽调制(PWM)技术PWM技术,就是在所需的频率周期内,通过半导体器件的导通和关断把直流电压调制成等幅不等宽的系列交流电压脉冲,可达到抑制谐波的目的。
若要消除某次特定谐波,可在控制PWM输出波形的各个转换时刻,保证四分之一波形的对称性,根据输出波形的傅里叶级数展开式,使需要消除的谐波幅值为零,基波幅值为给定量,组成非线性超越方程组计算各个开关通断时刻,达到消除指定谐波和控制基波幅值的目的。
论电网系统中谐波产生\危害及抑制方法

论电网系统中谐波产生\危害及抑制方法随着我国工业的发展,对电力系统要求越来越高,由于各种非线性负载(谐波源)应用普及,产生的谐波对电网的污染日益严重。
因此,谐波及其抑制技术己成为国内外广泛关注的课题。
通过分析谐波产生的原因,进一步分析谐波的危害,最终提出相应的应对方法和综合治理建议。
标签:电力系统;谐波;治理1 谐波产生1.1 电源本身谐波由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。
当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。
1.2 由非线性负载所致1.2.1 非线性负载谐波产生的另一个原因是由于非线性负载。
当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。
1.2.2 主要非线性负载装置(1)开关电源的高次谐波。
开关电源由五部分组成:一次整流、开关振荡回路、二次整流、负载和控制,这几个部分产生的噪声不完全一样。
这几种干扰可以通过电源线等产生辐射干扰,也可以通过电源产生传导干扰。
(2)变压器空载合闸涌流产生谐波。
铁心中磁通变化时,会产生8~15倍额定电流的涌流,由于线圈电阻的存在,变压器空载合闸涌流一般经过几个周波即可达到稳定。
所产生的励磁涌流所含的谐波成份以3次谐波为主。
(3)单相电容器组开断时的瞬态过电压干扰。
电力电子调速系统普遍应用于工业中改进电机效率及灵活性设备,调速装置内电力电子器件对过电压特别敏感,因此线路中瞬态过电压会造成调速系统的过电压保护误跳闸。
由于与中压母线相连的电容器要经常操作,这意味着调速系统误跳闸事故会经常发生。
(4)电压互感器铁磁谐振过电压。
在我国10KV、35KV等级的中性点不接地配电网中,为了监视对地绝缘,一般采用三相五柱式电压互感器。
在正常情况下,三相对地电压是平衡的,但是由于发生单相接地故障等原因,会导致三相对地电压平衡的破坏,还有可能使电压互感器线圈电感L和系统对地电容C在参数上配合,而产生谐振过电压。
开关电源功率因数补偿及谐波限制方法

开关电源功率因数补偿及谐波限制方法在75w 以上的开关电源中一般采用APFC的方法,功率因数较高,谐波限制也比较理想,但对于75W 以下的小功率开关电源由于成本和体积的限制,如果采用APFC的方法,则需要增加成本和增加体积,对于小功率开关电源来讲是不适宜的,如果能根据用户的实际需求,在有限的成本和体积空间范围内,对电路加一定的辅助元件,实现功率因数及谐波限制的有限补偿,减少电网损耗和污染。
根据实验结果,本文介绍借助于辅助电感串入变压器中间抽头,通过主开关管对输入电流进行调制,拓宽电流导角实现功率因数补偿和谐波电流限制。
2 电路结构及原理在AC-DC转换电路中,如果不加PFC辅助环节,由于储能平滑电容的存在,使输入电流产生尖峰。
如图1所示。
电流的导通角很小,造成功率因数低,谐波高。
在AC-DC电路中加入PFC 辅助环节,可使输入电流波形得到改善,拓宽了导通角(实际测量θ从41.2º增加到108.4º),如图2所示。
图1不带辅助调节的整流波形图2带辅助调节的整流波形PFC辅助环节由与中间抽头电压>放出能量对电容C充电,由于,而是,又由于Q的开关频率远高于工频,所以经Q对输入电流进行调制,对电容的充电在整流的每周期内不在是一次完成,而是多次充电,减少了一次充电所造成的能量集中,使输入电流峰值降低。
电流的调制波形如图4所示。
图3电路的基本结构3 参数方程的建立根据电容的充放电过程,把图4放大成图5,可以看到电流与开关管Q导通关断的时序波形。
这里限于篇幅仅讨论电感L中电流在连续和断续临界状态,并且是在最大值情况的参数方程,这对于元件的选择能够起到参考的作用。
(一)电容C上的充电电压值根据变压器T磁通平衡原理:(2);则:-------------(4)----------(8)电容上的最大电压值:图4电流的调制波形图5电路中主要参数的工作波形(二)关键元件参数方程的建立1) 电感L二极管D1和D2的电流和反压由(4)式得电感L二极管D1和D2的电流方程:------(12)当Va>Vd,在主开关管Q导通时,Vd点的电压等于:Vd=------------(14)有效值分别为:----(16);(18)态态态态态态态态态态态态态态态态态------(20)则输入功率为:-------(21)输出功率为:P0= η--------------(24)Lp---------变压器原边总电感η----------电路的总效率T-----------开关周期------------------------------(25)Lp---------变压器原边总电感η----------变压器效率T-----------开关周期---------------(26)当Va>Vd时,电容有充放电过程, 当开关管Q截止时,充电电流值为:------------------------(28)对方程(28)求偏导得:----------------------(30)由方程(30)得电容放电电流为:--------------(32)(参见图5)4参数方程的分析1) 电容C的电压在参数方程(9)中,电容的电压值受匝数N2及占空比D的控制,当D一定时,N2越小,电容C的电压,选择二极管D1D2要引起注意。
电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施供电公司吕向阳【摘要】在电能质量多种指标中,受干扰性负荷影响,谐波是最为普遍的。
该文介绍了电力系统中的主要谐波源、谐波的危害及抑制措施。
关键词谐波抑制措施一、概述在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。
但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。
我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50HZ为基波频率)整数倍的正弦分量,又称为高次谐波。
在供电系统中,产生谐波的根本原因是由于给具有非线形阻抗的电气设备(又称为非线形负荷)供电的结果。
这些非线形负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电能质量变坏。
因此,谐波是电能质量的重要指标之一。
供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气、电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。
二、谐波源谐波源是指向公用电网注入谐波电流或在公用电网中产生谐波电压的电气设备。
在电力的生产、传输、转换和使用的各个环节中都会产生谐波。
在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。
谐波的产生主要是来自下列具有非线形特性的电气设备:(1)具有铁磁饱和特性的铁心设备,如:变压器、电抗器:(2)以具有强烈非线形特性的电弧现象的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的电源设备,如:各种电力交流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用在化工、电气化铁道、冶金、矿山等工矿企业以及各式各样的家用电器中。
以上这些非线形电气设备(或称之为非线形负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们具有其电流不随电压同步变化的非线形的电压—电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还须向这类负荷产生的谐波提供额外的电能。
开关电源的电磁干扰分析及有效的抑制措施

开关电源的电磁干扰分析及有效的抑制措施一、开关电源的概念开关电源就是通过对功率晶体管的导通和关断控制,截取幅值与直流输入相等的矩形脉冲,再通过整流和滤波装置输出稳定的直流电压值。
二、开关电源电磁干扰的产生机理开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;按耦合通道来分,可分为传导干扰和辐射干扰两种。
1、功率开关管开关工作产生的干扰。
开关电源中的功率开关管工作在开关状态,工作时会产生较大的脉冲电压和脉冲电流。
由于在脉冲电流和脉冲电压中含有丰富的高次谐波成分,同时又由于功率开关管导通时整流二极管的恢复特性会形成电流振荡,而在整流二极管上产生的浪涌电压。
2、由于二极管的恢复特性产生的干扰。
当二极管进行高频整流时,由于二极管的PN结,正向电流所储存的电荷在加反向电压时不能马上消失,会形成二极管的反向电流。
这段时间称为反向恢复时间,这时由于加到二极管的反向电压较大,会产生较大损耗和形成较大的干扰来源。
如果二极管在反向电流恢复时的电流变化率di/dt较大,由于电感作用会产生较大的尖峰电压,这就是二极管的恢复噪声。
Di/dt较大时称为硬恢复,Di/dt较小时称为软恢复。
软恢复既可通过吸收回路实现,也可通过谐振开关技术实现。
软恢复对提高开关电源的工作可靠性,减小干扰有很大的好处。
由于肖特基二极管没有载流子蓄积效应,所以恢复噪音很小。
3、由整流滤波电路产生的干扰。
由于交流市电输入的开关电源在输入端接有整流滤波电路,整流二极管的导通角很小,使整流电流的峰值很大,这种脉冲状的二极管整流电流也会产生干扰。
三、抑制开关管电源电磁干扰的措施主要有四种方法,即吸收法、屏蔽技术、滤波技术、接地技术。
1、吸收法,即是在开关管的两端并联RC电路,电容的作用就是把电流中的交流成分吸收掉,但是这时的电感和电容相连就会形成LC振荡回路,所以在其中加上一个电阻,主要的作用就是阻尼作用,把LC振荡回路中产生的能量消耗掉。
现代化开关电源谐波分析及抑制方法

现代化开关电源谐波分析及抑制方法摘要随着电力电子技术在开关电源快速的发展,开关电源的应用在提高系统可靠性和效率方面显得尤为重要。
而开关电源的核心技术是电力电子技术,开关器件在导通和关断时会产生谐波成分和电磁干扰,影响系统的正常工作,降低电网电源功率因素,因此电力电子技术的快速发展,谐波的抑制已成为国内外同行专家关注的重点。
基于此,本文就针对开关电源谐波分析及抑制方法进行分析研究。
关键词开关电源;谐波分析;抑制方法前言开关电源具有效率高、体积小、重量轻、输出电压可调范围大、实现多路输出方便等优点,使用范围日益扩大,尤其在仪器仪表、通信及自动化设备中得到了广泛的应用。
但开关电源的广泛应用会造成严重的谐波干扰,因为谐波会沿线路产生传导干扰和辐射干扰,从而对电网产生污染,并影响用电设备的稳定和安全运行。
因此,无论从保护电网的安全运行,还是从使用电设备正常工作来看,对开关电源的谐波干扰采取一定措施加以抑制具有重要意义。
1 开关电源谐波产生的原因典型的开关电源类设备包括电子镇流日光灯、节能灯、计算机及显示器等,其在输入的交流电压经过输入电路整流、滤波后变成直流电压。
通过变换电路中的开关元件周期性导通、关断,逆变成交流电,再经输出电路将高频次级方波电压整流和滤波成直流后输出。
控制电路一般的控制方式是脉宽调制(PWM)方式,其作用是向驱动电路提供矩形脉冲,通过控制开关元件的占空比来达到改变输出电压的目的。
从原理分析,开关电源产生谐波的原因较多,其中由基本整流器产生的电流高次谐波干扰和变压器型功率转换电路产生的尖峰电压干扰是主要原因。
基本整流器的整流过程是产生EMI最常见的原因。
这是因为正弦波电源通过整流器后变成单向脉动电源已不再是单一频率的电流。
变压器型功率转换电路用以实现变压、变频以及完成输出电压调整,是开关稳压电源的核心,主要由开关管和高频变压器组成。
它产生的尖峰电压是一种有较大幅度的窄脉冲,其频带较宽且谐波比较丰富[1]。
开关电源纹波的产生原因及抑制方法

关于示波器:
有些数字示波器因为干扰和存储深度的原因,无法正确的测量出纹波。这时应更换示波器。这方面有时候虽然老的模拟示波器带宽只有几十兆,但表现要比数字示波器好。
如果是AC/DC变换器,除了上述两种纹波(噪声)以外,还有AC噪声,频率是输入AC电源的频率,为50~60Hz左右。还有一种共模噪声,是由于很多开关电源的功率器件使用外壳作为散热器,产生的等效电容导致的。因为本人是做汽车电子研发的,对于后两种噪声接触较少,所以暂不考虑。
开关电源纹波的测量
泰克公司有专门分开测量上述两种纹波(噪声)的软件,可以看一下参考资料5。同样,关于示波器的接地,电源测试的相关知识,也可以看一下。
开关电源纹波的抑制
对于开关纹波,理论上和实际上都是一定存在的。通常抑制或减少它的做法有三种:
1、加大电感和输出电容滤波
根据开关电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。
同时,开关电源工作时,输入端的电压Vin不变,但是电流是随开关变化的。这时输入电源不会很好地提供电流,通常在靠近电流输入端(以BucK型为例,是SWITcH附近),并联电容来提供电流。
上面这种做法对减小纹波的作用是有限的。因为体积限制,电感不会做的很大;输出电容增加到一定程度,对减小纹波就没有明显的效果了;增加开关频率,又会增加开关损失。所以在要求比较严格时,这种方法并不是很好。关于开关电源的原理等,可以参考各类开关电源设计手册。2、二级滤波,就是再加一级LC滤波器
开关电源系统中的谐波分析与抑制方法研究

实验研究开关电源具有体积小、效率高、重量轻,以及输出电压可调范大等多项优点,因此得到了广泛应用。
开关电源的应用会引起较为严重的谐波干扰,谐波会沿线路形成辐射和传导干扰,这会污染电网,影响电子设备的应用,并且会对电网运行的安全性和稳定性造成不良影响。
可见,采取合理的措施对开关电源谐波干扰进行处理意义重大。
1 谐波对电力系统的危害谐波对电力系统的危害主要体现在以下几个方面:(1)导致无功补偿电容器组引起谐振或谐波电流放大,这会造成电容器由于负荷或过电压受到严重破坏。
同时,也会导致电力电缆出现过负荷,或电压击穿情况。
(2)加大电网在运行过车中的损耗情况,如果发生谐振,或放大时损耗,造成的十分严重。
(3)干扰自动控制装置、继电保护、信息机。
(4)谐波的出现会增加电度表在应用过程中误差[1]。
2 开关电源谐波出现的原因典型的开关电源类设备包括节能灯、计算机、电子镇流日光灯等,输入交流电压后,通过相应的整流,以及滤波后会转变为直流电压。
对电路中的开元件周期性导通、关断,逆变成交流电,然后通过输出电路,实现对高频次方波电压整流和滤波,最后转变为直流后,完成输出[2]。
通常来说,控制电路采用采用脉宽调制方式完成相应的控制操作,其在具体运行过程中的作用是向驱动电路提供矩形脉冲,实际操作期间,通过控制开关元件占空比的方式,完成对输出电压的合理改变。
从原理上入手,开展相应的分析工作,可以发现导致开关电源在应用过程中出现谐波的因素有很多,基木整流器在应用过程中形成电流高次谐波干扰,以及变压器功率转换形成的尖峰电压干扰是导致开关电源在应用期间出现谐波的主要原因。
基木整流器在具体整流过程中容易形成电磁干扰,这主要因为,经过整流器的正弦波,会变为单向脉动电源,其不再是单一频率电流[3]。
变压器性功率转换器在具体应用过程中的主要作用就是对完成对变频、变压、输出电压等各项内容内容的合理调整,其是开关稳定电源的核心内容,其由高频变压器和开关管共同构成。
开关模式电源中的谐波分析与抑制方法

开关模式电源中的谐波分析与抑制方法概述开关电源作为现代电子设备中常用的电源供给方式,具有高效率、小体积和轻重量等优点。
然而,开关电源也会产生一定的谐波电流,对电网和其他设备造成干扰。
因此,谐波分析和抑制成为开关模式电源设计中的重要环节。
1. 谐波分析为了准确分析开关模式电源中的谐波问题,首先需要对谐波进行数学分析和频谱分析。
开关模式电源中产生的谐波主要包括电流谐波和电压谐波两部分。
1.1 电流谐波分析开关电源中的电流谐波主要来自电源输入端电网的非线性负载。
通过使用傅里叶变换等数学方法,可以将电流信号分解为不同频率的谐波成分,进而分析谐波的电流畸变率和对电网的影响。
1.2 电压谐波分析开关电源产生的电压谐波可以通过分析开关功率器件(如MOS管)的开关特性、电源滤波电容的功率容量、电源线路的阻抗等因素得到。
通过频谱分析可以确定电源输出电压中各频率谐波的幅值和相位情况。
2. 谐波抑制方法为了解决开关电源中的谐波问题,可以采取以下措施进行抑制。
2.1 输入滤波器合理设计和选择输入滤波器可以有效地减小开关电源输出端对电网端产生的谐波影响。
输入滤波器主要负责过滤电源输入端电网传来的谐波电流,并通过合适的参数设计使其在谐波频率带处具有较低的阻抗。
2.2 输出滤波器开关电源输出滤波器主要用于减小输出电压中的谐波成分。
常见的输出滤波器包括L型滤波器和π型滤波器等。
通过合适的设计和选择滤波器元件,可以降低输出电压中的谐波幅值,使其满足相关的标准要求。
2.3 谐波抑制技术除了滤波器之外,还可以使用谐波抑制技术来减小开关电源中谐波的影响。
例如,采用多级谐波抑制技术可以有效地降低电流谐波含量;采用谐波主动抑制技术可以实时检测和抑制开关电源中的谐波成分。
2.4 对地干扰的抑制开关电源中的谐波电流往往会通过地线传导到其他设备,引发地干扰问题。
为了解决这个问题,可以通过优化接地方式、增加电磁屏蔽和使用高频绕组等方法来有效抑制对地干扰。
开关电源的谐波及其抑制

开关电源的谐波及其抑制
随着各种整流、换相设备、电弧炉、各种电力电子设备非线性负荷以及多种家用电器和照明设备等大量使用,谐波问题在某些电力系统中已经相当严重。
谐波对电力系统的危害主要有:
(1)对旋转电机产生附加功率损耗和发热,并可能引起振动。
(2)对无功补偿电容器组引起谐振或谐波电流的放大,导致电容器因过负荷或过电压而损坏;对电力电缆也会造成过负荷或过电压击穿。
(3)增加电网的损耗。
当发生谐振或放大时损耗可达到相当大的程度。
(4)对继电保护、自动控制装置、信息机造成误动作和干扰。
浅谈开关电源的谐波及抑制_俞阿龙

浅谈开关电源的谐波及抑制俞阿龙(江苏淮阴师范学院 223001) 摘 要 对开关电源谐波产生的主要原因进行分析,介绍了抑制谐波的常用方法,并给出了实用的谐波抑制电路。
关键词 开关电源 谐波 抑制 功率因数校正1 前 言开关电源具有效率高、体积小、重量轻、输出电压可调范围大、实现多路输出方便等优点,使用范围日益扩大,尤其在仪器仪表、通信及自动化设备中得到了广泛的应用。
但开关电源的广泛应用会造成严重的谐波干扰,因为谐波会沿线路产生传导干扰和辐射干扰,从而对电网产生污染,并影响用电设备的稳定和安全运行。
因此,无论从保护电网的安全运行,还是从使用电设备正常工作来看,对开关电源的谐波干扰采取一定措施加以抑制具有重要意义。
2 开关电源谐波产生的原因分析图1是一个脉宽调制型(PWM )开关电源的电路结构框图。
其工作原理为:220V /50Hz 交流电网电压经整流和滤波变为直流电,然后经高频功率开关逆变成交流电,再由高频变压器降压和高频整流和滤波后以直流输出;输出电压经取样与基准电压进行比较,将比较差值放大后用以调节PWM 的脉宽,再经驱动电路控制逆变电路中功率变换开关的通断比,从而达到控制和稳定输出电压的目的。
对该电路结构进行分析可知,开关电源谐波来源主要有三方面:(1)电网传入的谐波。
因为电网受雷击或雷电感应会产生幅度极高的浪涌电压,接在电网上其他电气设备工作时的谐波及开关时产生的浪涌电压也会馈入电网。
(2)开关电源的输入端整流-滤波电路是一种非线性元件和储能元件的组合,导致电流波形畸变,呈脉冲状,设开关电源的输入正弦电压为u (t ),输入电流i (t )则u (t )=a 0+∑∞n =1U n sin (n ωt +ψn )=u 1(t )(仅有基波)(1)i (t )=b 0+∑∞n =1I n sin (n ωt + n )(2)电流的有效值I =I 21+I 22+…+I 2n(3)电流波形畸变率THD =I 22+I 23+…+I 2n /I 21(4)(3)开关电源的DC /DC 变换部分工作在高频开关状态。
电力谐波的产生原因及其抑制方法

电力谐波的产生原因及其抑制方法随着工业的快速发展,在电力系统中,非线性负荷大量增加。
这样的非线性负荷在电网中产生的干扰越来越严重,也越来越复杂化,使得电网的供电质量越来越差,对同一电网的其他用电设备和小型用户的影响越来越大。
在电力系统中,谐波污染与电磁干扰、功率因数降低成为了三大公害。
一、谐波产生的原因谐波是指一个电气量的正弦波分量.其频率为基波频率的整数倍,不同频率的谐波对不同的电气设备会有不同的影响。
谐波主要由谐波电流源产生,当正弦波(基波)电压施加到非线性负载上时,负载吸收的电流与其上施加的电压波形不一至,其电流发生了畸变。
由于负载与整个网络相连接,这样畸变电流就可以流人到电网中,这样的负载就成了电力系统中的谐波源。
二、谐波源的种类在电力系统中产生谐波的主要谐波源有两种。
1.含有半导体等非线性电气元件的用电设备。
比如工业中常见的各种整流电气装置、大容量变频器、大型交直流变换装置以及其他的电力、电子装置。
2.含有电弧和铁磁材料等的非线性材料的用电设备,比如电弧炉、变压器、发电机组等电气设备。
三、谐波的危害1.使供电线路和用电设备的热损耗增加。
(1) 谐波对线路的影响对供电线路来说,由于集肤效应和邻近效应,线路电阻随着频率的增加会很快增加,在线路中会有很大的电能浪费。
另外,在电力系统中,由于中性线电流都很小,所以其线径一般都很细,当大量的谐波电流流过中性线时,会在其上产生大量的热量,不仅会破坏绝缘,严重时还会造成短路,甚至引起火灾。
而当谐波频率与网络谐振频率相近或相同时,会在线路中产生很高的谐振电压。
严重时会使电力系统或用电设备的绝缘击穿,造成恶性事故。
(2) 对电力变压器的影响谐波电琏的存在增加了电力变压器的磁滞损耗、涡流损耗及铜损,对带有不对称负荷的变压器来说,会大大增加励磁电流的谐波分量。
(3)对电力电容器的影响由于电容器对谐波的阻抗很小,谐波电流叠加到基波电流上,会使电力电容器中流过的电流有很大的增加,使电力电容器的温升增高,引起电容器过负荷甚至爆炸。
开关电源的谐波分析及谐波抑制研究

2.2 FFT分析
对图 1 波形数据进行 FFT(快速傅里叶变换)得 到图 2 所示的幅频图
从图 2 上可以看出,电压、电流中都有谐波。
图 1 具有整流器负载(开关电源)的电压电流波形
图 2 对图 1 作谱分析后的电压、电流幅-频特性
2.3 电压谐波分析
从图 1 看出电压波形是“削顶”的,造成“削顶” 的原因是由于很多开关电源存在,当开关电源工作时, 其电流就是图中的脉动电流(AC),AC 的特点是只 有在电源电压超过滤波电容上的电压时,才有电流流 过整流器,电流呈一脉动状态,当大量这样的负载投 入运行后,需要的峰值功率很大,在这样的条件下, 有两种情况可能造成“削顶”。或者是实际应用变压器 的容量没能按此容量来选择,因此不能满足峰值功率 的要求,或者线路上电阻较大造成线路压降,而线路
i = 2In sin(nω t +φ n )
l
0
(a)
(b)
图 3 L-C 串联谐波抑制原理图
由(13)式看出各级陷波器(n≥2 时)在基频时 都可以等效为一个电容,其容抗为 X e (ω ) 。如果进行
4 结论
实时谐波监测自动投切,可采用图 3(b)所示的 LC 电路结合双向可控硅过零触发控制。
2.4 电流谐波分析
“削顶”现象。
电压波形的“削顶”其实对工作在这个电压下的
所有负载都有影响。不仅如此,大量的子网负载对主
干网也有同样的影响。
产生的电压畸变后,非正弦电压可以分解成傅利
叶级数:
∞
∑ u = 2U n sin(nω t + φ n )
(1)
0
其中,n=1 的部分为基波电流: u1 = 2 ⋅ 240 ⋅ sin( ω t + φ 1 )
供电系统谐波的产生原因和抑制方法

供电系统谐波的产生原因和抑制方法电气系统中的电气设备产生的电压或电流波形非理想的正弦波时,即说明其中含有频率高于50Hz的电压或电流成分,将频率高于50Hz的电流或电压成分称之为谐波。
谐波对电气设备的正常工作有不利影响,因此,研究谐波的危害与抑制方法,对保证电网的电力质量十分必要。
(1)谐波是如何产生的?谐波来自于三个方面:一是发电设备产生的谐波;二是输配电系统产生的谐波;三是供电系统的电气设备(如变频器、电炉等)等产生的谐波,其中以供电系统的电气设备产生的谐波居多,具体如下:1)晶闸管整流设备:由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。
晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。
如果整流装置为单相整流电路时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。
如果整流装置为三相全控桥脉冲整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也含有11次及以上奇次谐波电流。
经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
2)变频装置:变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的使用的增多,对电网造成的谐波也越来越多。
3)电弧炉、电石炉:由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。
其中主要是2~7次的谐波,平均可达基波的8%~20%,最大可达45%。
4)气体放电类电光源:荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文 章 编 号 :0 70 1 ( 9 9 0 — 0 50 1 0 3 1 1 9 ) 30 1 3
一
7
开 关 电 源 的 谐 波 及 其 抑 制
卢成健
( 西 玉 林 师 专 物理 系 . 西 玉林 广 广 57 0 ) 30 0
1
, 1 _ 尸
摘
要 开 关 电 潍是 一 种 性 能 很 好 的 电 源 . 的 倬 积 小 、 量 轻 、 耗 小 、 率 高 、 整 范 画 宽. 是 , 它 重 功 效 调 但 目
关键 词 开 关 电源 ; 冲 ; 波 ; 变 { 率 因数 ; 弦波 ; 脉 谐 畸 功 正 纹渡
- ’- _ —— ~ —— ’一 ’ ~ — —— — ~
分 类 号 T 3 M1
文献 标 识码 : A
0 引 言
开 关 电源 含 有 很 丰 富 的谐 波 , 然 不 影 响 由 开 关 电 源 所 虽
围 3 改 进 后 的 滤 波 电路
所 示 . 中的 R 阻 值 和 功 率要 进 行 台 理 选 择 , 对 1 O 主 电 其 如 IV 压 , 用 l0/w 的 电 阻 就较 为 合 适 过 上 述处 理 后 , 各 选 0 5 经 把
电路在接通电源时 , 电源 电 压 经 D ~D 整 流 后 对 开 关振 t 荡 电路 供 电 , 时 通 过 对 c 同 C 串 联 充 电 , 时 D 、 a或 此 D ( D 、 导 通 , c 一c , D ) 若 : 电源 电压 峰 值 为 U 剐 C 、 充 电 , C 被
田 I 常见开关电谭的整流毒 艘电路
Hale Waihona Puke ! 。j 1 目 前 的 开 关 电 源 电 路 的 谐 波 及 功 率 因 数
常 见 开 关 电 源 电路 整 流 滤 波 部 分 如 图 1所示 , 只 整 流 四 二 极管 只在很 短时 间内 导通. 牡丹 牌 M1 用 1型 彩 电 机 芯 试 验 , 输^端取一小 信号用示 渡器观察 , 到输^ 交流 电压、 在 得 输 凡 电 流 波 形 如 图 2所示 . 样 的 电流 , 奇 坎 谐波 含 量 很 丰 这 其 富 , 次 谐 波 可 高 达 8 ( 基 波 为 10 ) 五 次 谐 波 高 达 三 O 以 0 , 0 , 七 九次 谐 波 高 达 2 , 直 可 以 计 算 到 三 十 九 次 谐 O 一
广 西 民族 学 院 学 报 ( 自然 科 学版 )
第 5卷 第 3期
19 9 9年 8 月
J OURNAL OF GUANGXIUNI VERS T oR TI IY NA ONAL XI S I E
Na ar I S i nc t a ce e
VD . 0 3 j 5 N .
渡
圈2 ■^ 交藏电压电藐浊形 田
减 小 这 些 谐 波 的 一 个 简 单 办 法 是 附 加 一 个 或 多 个 陷 ’ 渡 器 , 对 频 率 只 有 几 百 赫 芝 的谐 波来 说 , 渡 器 的体 积 必 然 要 但 陷 较 大 本 较 高 , Q 值 却 不 会很 高 , 而 滤 波 效 果 不 会 很 理 成 而 因
想t 即不经 济也不实用. 在图 1电路 中, C C T 组成 高频 滤
波 器 , 的 体 积 和 电 感 量 一 般 是 很 小 的 . 能 押 制 频 率 很 高 T 只
的高改谐波 , 防止射频干扰t 对上述的较低次谐波无法抑.
非 正 弦 交流 电压 流 可展 开 成 级 数 : 电
, ‘
太 大 ( U / )使 开 关 电 源 输 出 电 压 常 有 与 类 似 的纹 波 . 达 2,
T
cs 一 ¥o  ̄ 。 cs
由于 开 关 振 荡 及 稳 压 电路 具 有 很 强 的稳 压 作 用 , 入 直 流 电 输 压 的纹 波 幅 度 比输入 电 压 V. 的纹 波幅 度 小 上 百倍 , 且 输 而 出 电压 较 稳 定 的 , 是 这 样 的 输 出 电 压 的 纹 波 对 其 后 面 电 路 但 的 工 作 仍 有 一 定 的 影 响
供电的电路 的正 常工 作 , 对电网供电系统是有不利影响 的 但
目前 , 多电 器 设 备 特 别 是 彩 色 电视 机 都 采 用 了 开关 电源 , 许 而 象 彩 色 电 视机 这 样 的 电器 已被 普 遍 使 用 , 而 开关 电 源 也 进 因 ^ 了 千家 万户 . 此 , 电力 供 电 系 统 输 送 的 功 率 中 , 关 电 因 在 开 源 的 功 率就 占 了一 定 的 比例 . 只有 减小 开 美 电 源 的谐 波 污 染 , 提 高 功 率 因数 , 能 进 一 步提 高 电 网供 电 的效 率 及质 量 . 才
有功功率为:
D 对 c 、 行 串联 充 电 , .c 进 同时 继 续 对 开 关 振 荡 电路 供 电 , 此 时 输 入 电 流 出 现 一 个 充 电尖 峰 ; 电 源 电 压 瞬 时 值 叉 下 降 至 当 低于u / 2时 , ~ D 全 部 截 止 , 由 C- 过 D 、 向 开 D. 再 、 通 C sD 关 振荡 电 路 并 联 放 电 , 此 进 行 周 期 性 变 化 . 见 。 流 二 极 如 可 整 管 导 通 时 间明 显 比 图 l电路 延 长 了 , 入 电 流 的谐 波 明 显 会 输 降低. 在 M 1 型 彩 电机 芯 上 按 图 3电路 进 行 改 进 试 验 . 交 流 l 在
∑Ls( n i
L
至 U 2 当 电 源 电压 瞬 时 值 下 降 至 低 于 U / ,; 2时 , ~D D. 全 部 截止 , c 、 z 由 c 通过 DsD 向 开关 振 荡 电路 并 联 放 电 , , 、 使 值 从 U 2缓 慢 下 降 ; 电 源 电 压 瞬 时 值 叉 上 升 至 约 / 当 / 2
:
争 为 变 数c 称 相 因 .照 述 称 畸 因 , 为 移 数按 上 的 o s
谐波比例 计算 , 值 只达到 0 6 } . 左右 , 即使相移 因数值为 1 功 ,
率 因 数 仍 然 是很 低 的 , 且 不 能 用 该 电 路 是 呈 感 性 还 是 呈 害 而
性来 进行 分析 , 也不能用补偿 的办法来提高功率因数. 提高 要
吱吱 声并提高电路的稳压性能 ; 二是提 高稳 压灵敏 度 , 具体
可 适 当 提 高 误 差 放 大 电 路 的 增 益 , 增 大 脉 宽 调 整 管 的 放 大 或 倍 数 。 把 开 关 管 用一 复 台 管 代 替 ; 是 在 各 路 输 入 电 压 中 附 或 三 加 一个 经 济 实 用 的 R 型滤 渡 器 , 一 步 滤 除 纹 波 , 图 3 c— 进 如
滤渡 , 以延长二极 管的导通时 间、 善输 入 电流的波形 , 可 改 如
图 3所 示
田 4 改 进 后 输入 电压 电流 渡 圈爰 滤 波 电压 波 形 圈
可 以 采 取 几 个 措 施 有 效 地 解 决 上 述 问 题 : 是 改 变 开 关 一 振 荡 电路 的振 荡 频 率 , 之 适 当提 高 , 避 免 开 关 变 压 器 发 出 使 可
占 3 左 右 , 经后 面 的 开 关 振 荡 及 稳 压 电 路 的 稳 压 及 滤 波 , 再 使 最 后 的 输 ^ 直 流 电 压 更 为 稳 定 且 纹 渡 更 小 了 , 到 不
波含 量下降至 约 1 ( 以基波为 10 ) 其五次谐 波下降 至 5 0 , 约 1 , 0 七次谐 波下降至 约 1 , 至三十九次 谐波下降 至 九 2 约 1 . 见, 可 O 电路改进后 , 谐波含量显 著下降 , 畸变因数 ∈值
u 。 以 有 功功 率 为 : 所
P — U 】 】0s 一 U I c s ,c 10
电压输 入端 、 电流输 出端分别 取一小信 号 。 用示波器观察 . 得
到 输 入 电压 玑 输 入 电流 i整 流 滤 波 电压 V- 、 的波 形 如 图 4 a () () 示 试验结果发现, b所 电视 机 工 作 基 本 正 常. 续 对 多 台 机 继 于 试 验 , 现 都 能 收 到 节 目, 有 些 机 子 效 果 差些 , 至 会 从 发 但 甚 开 关 变 压 器 发 出 明显 的 吱 吱 ” 再 在 开 关 稳 压 电 源 主 电 压 声 V ( 1V) 输 入端 取 一 小 信 号 用 示 波 器 观 察 , 1O 的 发现 输 出 直 流 电 压 有 较 大 的 纹 波 , 频 率 为 1 0 , 度 约 为 2 究 其 原 其 0Hz 幅 V 因 , 由 于输 入 至 开关 振 荡 及 稳 压 电路 的 电压 是 的纹 波 幅 度
路输 出电压调节 至正 常值 。 试验发 现 , 整机工 作 十分稳 定正
常 , 示 波器 观察 各 路 输 出直 流 电 压 , 现 其 纹 渡 已小 到 容 许 用 发
的范 围 了
1 6
19 第 3 9年 9 期
● 卢 成健 / 开关 电源的谐 波及 其抑制
进一步对图 4a输入 电流波形进行分析 可知, 三次谐 () 其
功率 因数 。 必 须 减 小 输入 电流 的 畸 变 , 就 是 要 延 长 整 流二 就 也 极 管 的 导 通 时 间 , 输 入 电 流渡 形 更 趋 近 于 正 弦 渡 , 而 降低 使 从 谐波含量.
2
改 进 电 路 之 一
把 单 一 电容 滤 渡 改 为 用 二极 管 、 容 组 成 的 滤 波 网 络来 电
P:
一
I ・d it
手cUi Ⅷ 耋 ̄n 讪 .( 耋 .n s n 1( .“ s i n
∑U, ( +% s )
一
可见 。 只有 同 频 率 的 电压 、 流 才 构 成 有 功 功 率 . 开 关 电 对 电 源 来 说 , 输 入 电 压 可 视 为 较 理 想 的 正 弦 波 。即 “ : 其  ̄ s ( + L,e : 0 则 有 “: /2UIno )b I i * - ,