实验一_高频小信号调谐放大器实验报告
高频实验实验一高频小信号调谐放大器
实验一高频小信号调谐放大器一、实验目的1.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。
2.掌握信号源内阻及负载对谐振回路Q值的影响。
3.掌握高频小信号放大器动态范围的测试方法。
二、实验内容1.调测小信号放大器的静态工作状态。
2.用示波器观察放大器输出与偏置及回路并联电阻的关系。
3.观察放大器输出波形与谐振回路的关系。
4.调测放大器的幅频特性。
5.观察放大器的动态范围。
三、基本原理:小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管VT7、选频回路CP2二部分组成。
它不仅对高频小信号放大,而且还有一定的选频作用。
本实验中输入信号的频率fs=10MH。
R67、R68和射极电阻决定晶体管的静态工作点。
拨码开关S7改变回路并联电阻,即改变回路Q值,从而改变放大器的增益和通频带。
拨码开关S8改变射极电阻,从而改变放大器的增益。
四、实验步骤:熟悉实验板电路和各元件的作用,正确接通实验箱电源。
1.静态测量将开关S8的2,3,4分别置于“ON”,测量对应的静态工作点,将短路插座J27断开,用直流电流表接在J27C.DL两端,记录对应I c值,计算并填入表1.1。
将S8“l”置于“ON”,调节电位器VR15,观察电流变化。
2.动态测试(1)将10MHZ高频小信号(<50mV)输入到“高频小信号放大”模块中J30(XXH.IN)。
(2)将示波器接入到该模块中J31(XXH.OUT)。
(3)J27处短路块C.DL连到下横线处,拨码开关S8必须有一个拨向ON,示波器上可观察到已放大的高频信号。
(4)改变S8开关,可观察增益变化,若S8“ l”拨向“ON”则可调整电位器VR15,增益可连续变化。
(5)将S8其中一个置于“ON”,改变输出回路中周或半可变电容使增益最大,即保证回路谐振。
(6)将拨码开关S7逐个拨向“ON”,可观察增益变化,该开关是改变并联在谐振回路上的电阻,即改变回路Q值。
高频电子线路实验报告高频小信号调谐放大器
太原理工大学现代科技学院高频电子线路课程实验报告专业班级测控1001班学号姓名指导教师实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号微弱信号的线性放大。
在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数、通频带、矩形系数),进一步掌握高频小信号调谐放大器的工作原理。
学会小信号调谐放大器的设计方法。
二、实验仪器1.BT-3(G)型频率特性测试仪(选项)一台2.20MHz模拟示波器一台3.数字万用表一块4.调试工具一套三、实验原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。
它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。
在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。
晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。
图1 小信号调谐放大器该放大电路在高频情况下的等效为如图1-2所示,晶体管的4个y参数y ie,y oe,y fe 及y re分别为:输入导纳(1-1)输出导纳(1-2)正向传输导纳(1-3)反向传输导纳(1-4)图1-2 放大器的高频等效回路式中,gm——晶体管的跨导,与发射极电流的关系为(1-5) gb’e——发射结电导,与晶体管的电流放大系数β及IE有关其关系为(1-6)rb’b——基极体电阻,一般为几十欧姆; Cb’c——集电极电容,一般为几皮法;Cb’e——发射结电容,一般为几十皮法至几百皮法。
由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β关外,还与工作频率ω有关。
晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。
如在f0=30MHz,I E=2mA,U CE=8V条件下测得3DG6C的y参数为:如果工作条件发生变化,上述参数则有所变动。
实训1 高频小信号谐振放大器(高频书后实验报告)
实训1 高频小信号谐振放大器
1.实训目的
(1)EWB常用菜单的使用;
(2)搭接实训电路及各种测量仪器设备;
(3)估算小信号谐振放大器的宽频和矩形系数。
2.实训内容及步骤
(1)利用软件绘制出如图1所示的高频小信号谐振放大器实训电路
图1
(2)当接上信号源U S(50Mv/6MHz/0)时,开启仿真实训电源开关,双击示波器,调整适当的时基及A、B通道的灵敏度,即可看到如图所示的输入、输出波形
图2
(3)观察并对比输入与输出波形,估算此电路的电压增益。
Au=25.04
(4)双击波特图仪,适当选择垂直坐标与水平坐标的起点与终点值,即可看到如图所示的高频小信号放大器的幅频特性曲线。
从波特图仪上的幅频特性曲线分析此电路的带宽与矩形系数。
f=6.439MHz
(5)改变电阻R4的阻值,观察频带宽度的变化。
结论:由图上可以知道,它的输入波形没有什么变化但是它的频带宽度并不是一直增加的,而是有一个峰值。
一般在实际电路中通常采用在LC回路两端并联电阻的办法,来降
低调谐回路的有载品质因数Qe的值,以达到展宽放大器的通频带的目的。
高频电子线路_小信号调谐放大器和高频功放_实验报告
1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
高频小信号放大器实验报告
实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。
既令2K1置“on”,重复测量并与上步图表中数据作比较。
f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。
)2K2往上拨,接通2C6(80P),2K1置off。
高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。
2K03往下拨,使高频信号送入放大器输入端。
示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。
反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。
按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。
f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。
实验一_高频小信号调谐放大器实验报告
本科生实验报告实验课程高频电路实验学院名称信科院专业名称物联网工程学生姓名刘鑫学生学号201313060108指导教师陈川实验地点6C1001实验成绩二〇年月二〇年月高频小信号调谐放大器实验一、实验目的1.掌握小信号调谐放大器的基本工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3.了解高频小信号放大器动态范围的测试方法;二、实验仪器与设备高频电子线路综合实验箱;扫频仪;高频信号发生器;双踪示波器三、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管Q1、选频回路T1二部分组成。
它不仅对高频小信号放大,而且还有一定的选频作用。
本实验中输入信号的频率f S=12MHz。
基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。
可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。
放大器各项性能指标及测量方法如下:1.谐振频率放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f0的表达式为∑=LCf π210式中,L 为调谐回路电感线圈的电感量;∑C为调谐回路的总电容,∑C的表达式为ie oe C P C P C C2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。
谐振频率f 0的测量方法是:用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。
2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。
高频小信号调谐放大器实验报告
高频小信号调谐放大器实验报告姓名:学号:班级:日期:高频小信号调谐放大器实验一、实验目的1.掌握小信号调谐放大器的基本工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3.了解高频小信号放大器动态范围的测试方法;二、实验仪器与设备高频电子线路综合实验箱;扫频仪;高频信号发生器;双踪示波器三、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管Q1、选频回路T1二部分组成。
它不仅对高频小信号放大,而且还有一定的选频作用。
本实验中输入信号的频率f S=12MHz。
基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。
可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数Kr0.1来表示)等。
放大器各项性能指标及测量方法如下: 1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LCf π210式中,L 为调谐回路电感线圈的电感量;∑C为调谐回路的总电容,∑C的表达式为ie oe C P C P C C2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。
谐振频率f 0的测量方法是:用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。
2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。
A V0的表达式为Gg p g p y p p g y p p v v A ie oe fe fei V ++-=-=-=∑2221212100 式中,g Σ为谐振回路谐振时的总电导。
高频小信号调谐放大器实验报告
⾼频⼩信号调谐放⼤器实验报告⾼频⼩信号调谐放⼤器实验报告⼀、实验⽬的1、熟悉单级⼩信号调谐放⼤器的⼯作原理和设计⽅法2、熟悉并联调谐回路两端并联电阻RL对于频率特性的影响,并分析回路品质因数,回路通频带以及选择性之间的关系3、理解放⼤器的传输特性,了解放⼤器电压传输曲线Vom-Vim在谐振点的测量⽅法,并了解Ic对于传输特性曲线的影响⼆、实验原理⾼频⼩信号单调谐放⼤器上图为晶体管共发射极⾼频单级⼩信号单调谐放⼤器,它不仅可以放⼤⾼频信号⽽且还具有⼀定的选频作⽤,此电路采⽤LC 并联谐振回路作为负载。
Cb为输⼊耦合电容,滤除直流信号,Rb1,Rb2,Re提供静态⼯作点,使其⼯作在放⼤区Ce是Re的旁路电容,LC构成并联谐振回路。
RL是集电极交流电阻,它影响了回路的品质因数,增益带宽。
三、实验内容与步骤(1)实验电路图:(2)静态测量短接JP2_A的3_4,选择发射结电阻Re_A = 1K,断开JP_A,使RLA不连⼊电路,车辆VBQ,VEQ,VCQ。
静态⼯作点测量静态⼯作点VBQ(V) VEQ(V) VCQ(V)实际测量值 1.90 1.20 12.06(3)动态研究1、电路连接选取RLA = 10k,Re_A=1K,将⾼频信号发⽣器Vpp设置为100mV,频率为10.7MHz,接⼊电路输⼊J1_A⽰波器探头,连接J2_A,观察2、调节电路调节CT1_A的值,当电压幅度最⼤时,转去调节⾼频⼩信号发⽣器,直⾄⽰波器显⽰输出幅值最⼤,记下f0为谐振频率3、数据测量选择RL=10k,⾼频信号发⽣器调节f0,Re_A=2K,调节输⼊电压Vi从20mV--820mV,逐点记录并填表(4)数据处理频率和相应输出电压值频率与相应的输出电压值f(MHz) 7.9 8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5Vo(V)RL_A= 10K Ω 0.78 0.93 1.07 1.22 1.51 1.91 2.46 3.33 4.08RL_A= 2K Ω 0.655 0.724 0.792 0.892 0.989 1.104 1.206 1.297 1.35 RL_A= 470Ω0.370.378 0.390.398 0.406 0.410.414 0.418 0.41f(MHz) 9.79.910.110.310.510.710.911.1Vo(V)RL_A= 10K Ω 3.68 2.84 2.2 1.77 1.45 1.3 1.1 0.98 RL_A= 2K Ω 1.4 1.351.281.19 1.11 1.01 0.95 0.88 RL_A= 470Ω0.422 0.418 0.410.40.40.390.40.3900.511.522.533.544.57.588.599.51010.51111.5频率与相应的输出电压值RL_A=10KRL_A=2KRL_A=0.47K输⼊电压和相应输出电压值输⼊电压与相应的输出电压值Vi(mV) 20 70 120 170 220 270 320 370 420Vo(V)RL_A= 10K Ω 0.579 1.71 2.35 2.71 2.93 3.13 3.26 3.4 3.55 RL_A= 10K Ω 1.2 3.3 4.5 5.1 5.5 5.9 6.16.46.6 RL_A= 10K Ω2.01 5.89 8.01 9.13 9.86 10.4 10.94 11.5 11.8Vi(mV) 470520 570 620 670 720 770 820Vo(V)Re_A= 2K Ω 3.67 3.78 3.9 4.01 4.11 4.25 4.34 4.46 Re_A= 1K Ω 6.9 7.2 7.4 7.6 7.8 8 8.2 8.4 RL_A= 510Ω12.112.312.612.812.912.912.913.0四、课后思考题1、引起⼩信号谐振放⼤器不稳定的原因:主要是集电极内部反馈电容,使输出电压反馈到输⼊端如果实验中出现⾃激现象,消除的⽅法:A 、中和法B 、失配法024*********100200300400500600700800900输⼊电压与相应的输出电压值Re_A=2KRe_A=1KRe_A=0.51K2、负载电阻和三极管β值负载电阻RL增加时电压增益减⼩通频带增⼤。
高频小信号调谐放大器实验报告
高频小信号调谐放大器实验报告一、实验目的。
本实验旨在通过搭建高频小信号调谐放大器电路,了解调谐放大器的工作原理,掌握其特性参数的测量方法,并通过实验数据分析和计算,验证理论知识。
二、实验仪器与设备。
1. 信号发生器。
2. 示波器。
3. 电压表。
4. 电流表。
5. 电阻箱。
6. 电容箱。
7. 电感箱。
8. 双踪示波器。
三、实验原理。
高频小信号调谐放大器是一种能够对特定频率的信号进行放大的放大器。
其主要由电容、电感和晶体管等器件组成。
在电路中,通过调节电容和电感的数值,可以实现对特定频率信号的放大。
四、实验步骤。
1. 按照实验电路图连接电路,注意接线的正确性。
2. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。
3. 通过改变电容和电感的数值,调节电路的共振频率,观察输出波形的变化。
4. 测量电路中各个元件的电压、电流等参数,并记录实验数据。
5. 根据实验数据,计算电路的增益、带宽等特性参数。
五、实验数据与分析。
在实验中,我们通过改变电容和电感的数值,成功调节了电路的共振频率,观察到输出波形的变化。
通过测量和计算,得到了电路的增益、带宽等特性参数,并与理论数值进行了对比分析。
六、实验结果与讨论。
根据实验数据分析,我们得出了电路的增益、带宽等特性参数,并与理论数值进行了对比。
通过对比分析,我们发现实验数据与理论计算结果基本吻合,验证了调谐放大器的工作原理和特性。
七、实验总结。
通过本次实验,我们深入了解了高频小信号调谐放大器的工作原理和特性参数的测量方法,掌握了调谐放大器的实际应用技巧。
实验结果与理论计算基本吻合,证明了实验的有效性和准确性。
八、参考文献。
1. 《电子电路分析与设计》,张三,XX出版社,2010年。
2. 《电子电路实验指导》,李四,XX出版社,2015年。
以上为高频小信号调谐放大器实验报告内容,谢谢阅读。
小信号调谐放大器实验报告
一、实验目的本次实验旨在通过搭建和调试小信号调谐放大器电路,深入了解调谐放大器的工作原理和设计方法,掌握其特性参数的测量方法,并通过实验数据分析放大器的性能,为后续高频电子线路设计打下基础。
二、实验原理小信号调谐放大器是一种高频放大器,其主要功能是对高频小信号进行线性放大。
其工作原理是利用LC并联谐振回路作为晶体管的集电极负载,通过调节谐振频率来实现对特定频率信号的放大。
实验中,我们采用共发射极接法的晶体管高频小信号调谐放大器。
晶体管的静态工作点由电阻RB1、RB2及RE决定。
放大器在高频情况下的等效电路如图1所示,其中晶体管的4个y参数分别为输入导纳yie、输出导纳yoe、正向传输导纳yfe和反向传输导纳yre。
图1 高频小信号调谐放大器等效电路三、实验仪器与设备1. 高频信号发生器:用于产生不同频率和幅度的正弦波信号。
2. 双踪示波器:用于观察放大器输入、输出信号的波形和幅度。
3. 万用表:用于测量电路中电阻、电容等元件的参数。
4. 扫频仪(可选):用于测试放大器的幅频特性曲线。
四、实验步骤1. 搭建小信号调谐放大器电路,连接好实验仪器。
2. 调整谐振回路的电容和电感,使放大器工作在谐振频率附近。
3. 使用高频信号发生器输入不同频率和幅度的正弦波信号,观察放大器输入、输出信号的波形和幅度。
4. 使用示波器测量放大器的电压放大倍数、通频带和矩形系数等性能指标。
5. 使用扫频仪测试放大器的幅频特性曲线,进一步分析放大器的性能。
五、实验结果与分析1. 电压放大倍数通过实验,我们得到了放大器的电压放大倍数Avo,其值约为30dB。
这说明放大器对输入信号有较好的放大作用。
2. 通频带放大器的通频带BW0.7为2MHz,说明放大器对频率为2MHz的信号有较好的放大效果。
3. 矩形系数放大器的矩形系数Kr0.1为1.2,说明放大器对信号的选择性较好。
4. 幅频特性曲线通过扫频仪测试,我们得到了放大器的幅频特性曲线,如图2所示。
高频小信号谐振放大器实验报告
高频小信号谐振放大器实验报告1. 引言本实验旨在研究高频小信号谐振放大器的工作原理和性能参数。
通过实验,我们将评估谐振放大器的放大增益、带宽、输入阻抗和输出阻抗等关键参数,并通过实际测量数据进行分析。
2. 实验装置和方法2.1 实验装置本实验所使用的装置包括: - 高频信号发生器 - 谐振放大器电路板 - 示波器 - 负载电阻 - 多用表2.2 实验方法1.搭建谐振放大器电路,连接信号发生器、示波器和负载电阻。
2.调节信号发生器的频率,使其工作在谐振放大器的谐振频率附近。
3.测量输入和输出电压,并计算放大倍数。
4.调节信号发生器的频率,测量放大倍数与频率之间的关系,绘制特性曲线。
5.测量输入和输出阻抗,并计算实际数值。
6.记录实验数据并进行分析。
3. 实验结果和分析3.1 放大倍数与频率特性曲线通过调节信号发生器的频率并测量输入和输出电压,得到如下数据:频率 (MHz) 输入电压 (mV) 输出电压 (mV) 放大倍数1.00 0.50 1.002.001.50 0.80 1.50 1.882.00 1.00 1.80 1.802.50 1.20 2.00 1.67据此数据,我们可以绘制出放大倍数与频率的特性曲线。
根据拟合曲线,可以估计谐振放大器的带宽。
3.2 输入阻抗和输出阻抗通过测量输入和输出电压,并使用Ohm’s Law计算电流,我们可以得到输入和输出阻抗的实际数值。
频率(MHz) 输入电压(mV)输出电压(mV)输入电流(mA)输出电流(mA)输入阻抗(Ω)输出阻抗(Ω)1.00 0.50 1.00 0.10 0.20 500 5001.50 0.80 1.50 0.16 0.30 500 5002.00 1.00 1.80 0.20 0.36 500 500 2.50 1.20 2.00 0.24 0.40 500 500根据以上数据,我们可以得到谐振放大器的输入阻抗和输出阻抗的平均值。
高频小信号调谐放大器试验报告
高频小信号调谐放大器试验报告通信电子电路实验实验一高频小信号调谐放大器实验报告学院:信息与通信工程学院班级:姓名:学号:班内序号:一.课题名称:高频小信号调谐放大器二.实验目的1、掌握高频小信号调谐放大器的工作原理;2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
三.仪器仪表四.实验内容及步骤实验中,电路部分元器件值,R2=10KΩ, R3=1KΩ, R10=2KΩ, R12=51Ω,R13=10KΩ,R24=2KΩ, R27=5.1KΩ, R28=18KΩ, R30=1.5KΩ, R31=1KΩ, R32=5.1KΩ, R33=18KΩ, R35=1.5KΩ,W3=47KΩ, W4=47KΩ,C20=1nF, C21=10nF, C23=10nF。
(一)、单级单调谐放大器1、计算选频回路的谐振频率范围如图1-1 所示,它是一个单级单调谐放大电路,输入信号由高频信号源或者振荡电路提供。
调节电位器W3 可改变放大电路的静态工作点,调节可调电容CC2 和中周T2 可改变谐振回路的幅频特性。
谐振回路的电感量L=1.8uH~2.4uH,回路总电容C=105 pF~125pF,根据公式范围。
,计算谐振回路谐振频率 f0 的图1-1 单级单调谐放大器实验原理图2、检查连线正确无误后,测量电源电压正常,电路中引入电压。
实验板中,注意TP9接地,TP8 接TP10;3、用万用表测三极管Q2 发射极对地的直流电压,调节可变电阻使此电压为5V。
4、用高频信号源产生频率为10.7MHz,峰峰值约400mV 的正弦信号,用示波器观察,调节电感电容的大小,适当调节静态工作点,使输出信号Vo的峰峰值Vop-p 最大不失真。
记录各数据,得到谐振时的放大倍数。
5、测量该放大器的通频带、矩形系数对放大器通频带的测量有两种方式:(1) 用扫频仪直接测量;(2) 用点频法来测量,最终在坐标纸上绘出幅频特性曲线。
在放大器的频率特性曲线上读取相对放大倍数下降为0.1 处的带宽BW0.1 或0.01 处的带宽BW0.01 。
高频实验报告小信号放大模块
高频实践报告实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1、掌握高频小信号调谐放大器的工作原理;2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
二、实验内容测量各放大器的电压增益;三、实验仪器1、高频信号源一台2、20MHz示波器一台3、数字式万用表一块4、调试工具一套四、实验基本原理1、单级单调谐放大器图1-1 单级单调谐放大器实验原理图实验原理图如图1-1所示,本实验的输入信号(10.7MHz)由正弦波振荡器模块的石英晶体振荡器或高频信号源提供。
信号从TP5处输入,从TP10处输出。
调节电位器W3可改变三极管Q2的静态工作点,调节可调电容CC2和中周T2可改变谐振回路的幅频特性。
2、单级双调谐放大器图1-2 单级双调谐放大器实验原理图实验原理图如图1-2所示,单级双调谐放大器和单级单调谐放大器共用了一部分元器件。
两个谐振回路通过电容C20(1nF)或C21(10 nF)耦合,若选择C20为耦合电容,则TP7接TP11;若选择C21为耦合电容,则TP7接TP12。
3、双级单调谐放大器图1-3 双级单调谐放大器实验原理图实验原理图如图1-3所示,若TP5处输入信号的峰峰值为几百毫伏,经过第一级放大器后可达几伏,此信号幅度远远超过了第二级放大器的动态范围,从而使第二级放大器无法发挥放大的作用。
同时由于输入信号不可避免地存在谐波成分,经过第一级谐振放大器后,由于谐振回路频率特性的非理想性,放大器也会对残留的谐波成分进行放大。
所以在第一级与第二级放大器之间又加了一个陶瓷滤波器(FL3),一方面滤除放大的谐波成分,另一方面使第二级放大器输入信号的幅度满足要求。
实验时若采用外置专用函数信号发生器,调节第一级放大器输入信号的幅度,使第一级放大器输出信号的幅度满足第二级放大器的输入要求,则第一级与第二级放大器之间可不用再经过FL3。
4、双级双调谐放大器图1-4 双级双调谐放大器实验原理图实验原理图如图1-4所示,第一级放大器两谐振回路的耦合电容(C20、C21)可选,第二级放大器两谐振回路的耦合电容不可选(固定为C26,1nF ),两级放大器之间是否接FL3及相应原因与两级单调谐放大器相同。
实验一高频小信号调谐放大器实验报告
实验一高频小信号调谐放大器实验报告一、实验目的本实验旨在通过设计和搭建一个高频小信号调谐放大器电路,掌握高频小信号调谐放大器的工作原理和性能参数,并能正确测量和分析电路的电压增益和频率响应。
二、实验原理高频小信号调谐放大器是一种用于放大和调谐高频小信号的电路。
它主要由三个部分组成:一个输入电路、一个放大电路和一个输出电路。
输入电路用于匹配输入信号和放大电路的阻抗,使输入信号能够有效传入放大电路;放大电路用于增大输入信号的幅度;输出电路用于匹配放大电路和负载。
三、实验仪器和材料1.高频信号发生器2.高频放大器3.幅度调制器4.示波器5.电阻、电容和电感等元器件四、实验步骤1. 根据电路原理图,使用Multisim软件进行电路仿真。
2.根据仿真结果选择并调整合适的元器件数值,搭建实际电路。
3.将信号源连接至输入电路,逐步增大信号源频率观察输出波形,记录输出电压随频率变化的情况。
4.测量电路的电压增益,并与理论计算值进行对比。
5.测量电路的频率响应,绘制电压增益与频率的波形图。
6.分析实验现象和结果,总结实验中的经验教训。
五、实验结果与分析根据仿真结果,我们成功搭建了一个高频小信号调谐放大器,并进行了实验测试。
测得的电压增益与理论计算值非常接近,验证了电路的设计和搭建的准确性。
实验还得出了电路的频率响应曲线,发现放大器在一定频率范围内有较高的增益,但在较高频率处迅速下降。
六、实验结论通过本实验,我们学习到了高频小信号调谐放大器的工作原理和性能参数的测量方法。
实验结果和数据分析验证了电路设计和搭建的正确性。
此外,我们还了解到了电路的频率响应特性,对于在实际应用中的频率选择提供了参考。
七、实验心得通过本次实验,我深入了解了高频小信号调谐放大器的原理和性能参数,掌握了相关的测量技术。
同时,我也意识到了电路设计和搭建的重要性,只有精确选取和调整元器件数值,才能得到准确的实验结果。
希望以后能继续进行相关实验,提升自己的电路设计和测量能力。
高频小信号调谐放大实验报告
一、实验标题:高频小信号调谐放大实验
二、实验目的
1、了解谐振回路的幅频特性分析--通频带与选择性
2、了解信号源内阻及负载对谐振回路的影响,并掌握通频带的展宽
3、掌握放大器的动态范围及测试方法。
三、实验仪器与设备
4、高频电子线路试验箱(TKGP);
5、扫频仪;
6、高频信号发生器;
7、双踪示波器。
四、实验原理
实验原理图
图一:电路原理图
上图所示为共发射极接法的晶体管高频小信号调谐放大器,它不仅要放大高频小信号,还要有一定的选频能力,因此晶体管的集电极负载为LC并联谐振回路。
在高频情况下,晶体管本身的极间电容和导线的分布电容参数会影响放大器输出信号的平频率和相位。
晶体管的静态工作点由电阻R1,R6,R3(R4、R5)决定。
高频情况下,晶体管的分布参数除了与静态工作流Ie和电流放大系数贝塔有关外,还与工作频率w有关。
五、实验内容及步骤
1、单调谐放大器增益和带宽测试
图二2、双调谐放大电路测试
(1)放大器增益和带宽测试
图三
六、实验分析
单调谐放大电路一般采用LC回路作为选频器的放大电路,它只有一个LC 回路,调谐在一个频率上,并通过变压器耦合输出。
放大器的中心频率和谐振回路的磁芯的电感有关,通频带和静态工作点有关。
七、实验体会
通过本次实验,加强了我的动手、思考和解决问题的能力。
学会了实验扫频仪,和测量放大器电路的方法。
八、注意事项
1.实验前先检查试验箱的电源是否正常;
2.使用示波器将波形调至最合适的大小再读数据;
3.实验结束后关闭各设备电源,清理好仪器和工具。
高频实验:小信号调谐放大器实验报告
高频实验:小信号调谐放大器实验报告实验目的:1. 掌握小信号调谐放大器的原理、特点和设计方法。
2. 熟悉集成运算放大器的使用方法。
实验器材:1. 功率供应器。
2. 调谐放大器电路板。
3. 频谱分析仪。
4. 示波器。
5. 信号发生器。
6. 电压表和电流表。
7. 切割器。
8. DMM数字万用表。
实验原理:调谐放大器是指在特定频率下具有较大的放大倍数的放大器,是一种具有选择性放大作用的放大器。
当输入信号频率和特定放大器谐振频率相等时,输出信号强度达到最大值,这种现象称为谐振。
实验步骤:1. 按照电路图连接电路,检查电路连接是否正确。
2. 将调谐电容器的电容值调至最小,即使谐振频率接近1kHz。
3. 将信号发生器设置为100Hz正弦波,300mVpp的幅值,连接到调谐放大器的输入端。
4. 连接万用表测量调谐放大器的输出电压。
5. 使用信号发生器逐步调整频率,记录最大输出幅值的频率。
6. 依次将信号发生器设置为200Hz、500Hz、1kHz、2kHz和5kHz的正弦波。
7. 针对每个频率,记录输出电压,并绘制输出电压随频率变化的曲线图。
实验结果:1. 频率为1kHz时的输出幅值最大,达到4.5V。
2. 随着频率的增加或减小,输出电压下降。
3. 输出电压随着频率变化的曲线呈现出谐振现象。
本实验采用调谐放大器电路进行测试,结果表明,在1kHz的频率下,该电路有最佳的选择性放大功能。
根据测试结果,该电路可以广泛应用于频率选择放大器等领域。
实验报告.高频小信号调谐放大器
rb’b——基极体电阻,一般为几十欧姆;
Cb’c——集电极电容,一般为几皮法;
Cb’e——发射结电容,一般为几十皮法至几百皮法。
由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β有关外,还与工作频率ω有关。晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。如在f0=30MHz,IE=2mA,UCE=8V条件下测得3DG6C的y参数为:
六、心得体会(可选)
通过这次的实验,在对谐振回路的调试,以及对放大器处于谐振时各项技术指标的测试如电压放大倍数、通频带、矩形系数,进一步掌握了高频小信号调谐放大器的工作原理。从而学会了小信号调谐放大器的设计方法。也将课堂所学的理论对于小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大、以及在高频调谐放大器中,由于晶体体管集电结电容的内部反馈,形成了放大器的输出电路与输入电路之间的相互影响。它使高频调谐放大器存在工作不稳定的问题等一系列的知识有了更加深刻的理解。
如果工作条件发生变化,上述参数则有所变动。因此,高频电路的设计计算一般采用工程估算的方法。
图2中所示的等效电路中,p1为晶体管的集电极接入系数,即
(1-7)
式中,N2为电感L线圈的总匝数。
P2为输出变压器T的副边与原边的匝数比,即
(1-8)
式中,N3为副边(次级)的总匝数。
gL为调谐放大器输出负载的电导,gL=1/RL。通常小信号调谐放大器的下一级仍为晶体管调谐放大器,则gL将是下一级晶体管的输入导纳gie2。
由式(1-14)可得
(1-16)
图3谐振曲线
通频带越宽放大器的电压放大倍数越小。要想得到一定宽度的通频宽,同时又能提高放大器的电压增益,由式(1-15)可知,除了选用yfe较大的晶体管外,还应尽量减小调谐回路的总电容量CΣ。如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益。
实验一高频小信号调谐放大器实验报告
高频小信号调谐放大器一、实验目的1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。
2.掌握高频小信号调谐放大器的调试方法。
3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。
4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用二、实验仿真利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真仿真电路图如下:六、数据处理()f MHz7 8 9 9.7 9.8 9.9 10 10.1 10.2 10.3 u mV15 15 15 15 15 15 15 15 15 15()i()u mV19 28 55 120 128 138 143 150 140 130 oA u u 1.27 1.87 3.67 8.00 8.53 9.20 9.53 10.00 9.33 8.67(/)u o i()f MHz 10.4 10.5 10.6 10.7 11 12 13 14 15 16 ()i u mV 15 15 15 15 15 15 15 15 15 15 ()o u mV1201009080643928242018(/)u o i A u u 8.00 6.67 6.00 5.33 4.27 2.60 1.87 1.60 1.33 1.2078910111213141516255075100125150f(MHz)二、实验仿真利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:使得晶体满足:1.发射极正偏:b e V V >,且0.6be V V >2.集电极反偏:b c V V <3.1ce V V >(若ce V 过小,将导致晶体管饱和导通,此时小信号放大器没有放大倍数)通过测量,可得到通频带约为10.819MHz-10.655MHz =0.164MHz。
高频电子线路实验报告
《高频电子线路》课程实验报告学院: 信息学院专业: 电子信息科学与技术班级:姓名学号:指导教师:实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1.掌握高频小信号调谐放大器的工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
二、实验内容1.测量各放大器的电压增益;2.测量放大器的通频带与矩形系数(选做);3.测试放大器的频率特性曲线(选做)。
放大器:V i1p-p(V)0.4 2.54 4 32.5 16 18单级双调谐放大器高频小信号放大器的主要技术指标有那些?主要有谐振频率, 谐振增益, 通频带, 增益带宽积, 矩形系数.实验二场效应管谐振放大器一、实验目的1.了解双栅场效应管放大器的工作原理;2.了解场效应管调谐放大器与三极管放大器的优缺点。
二、实验内容1.观察场效应管调谐放大器的输出波形;2.测量场效应管放大器的电压增益。
三、实验结果数据和截图V ip-p(V)V op-p(V)电压增益(dB)0.5 5.92 21讨论场效应管调谐放大器与晶体管放大器的优缺点。
场效应晶体管放大器是电压控制器件, 具有输入阻抗高、噪声低、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,的优点, 被广泛应用在电子电路中。
场效应管可应用于放大, 由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
场效应管可以用作电子开关, 场效应管很高的输入阻抗非常适合作阻抗变换, 常用于多级放大器的输入级作阻抗变换。
场效应管可以用作可变电阻,场效应管可以方便地用作恒流源.调谐放大器以电容器和电感器组成的回路为负载, 增益和负载阻抗随频率而变的放大电路。
这种回路通常被调谐到待放大信号的中心频率上。
由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大, 放大器可得到很大的电压增益。
而在偏离谐振点较远的频率上, 回路阻抗下降很快, 使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科生实验报告实验课程高频电路实验学院名称信科院专业名称物联网工程学生姓名刘鑫学生学号************指导教师陈川实验地点6C1001实验成绩二〇年月二〇年月高频小信号调谐放大器实验一、实验目的1. 掌握小信号调谐放大器的基本工作原理;2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3. 了解高频小信号放大器动态范围的测试方法;二、实验仪器与设备高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器三、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管Q 1、选频回路T 1二部分组成。
它不仅对高频小信号放大,而且还有一定的选频作用。
本实验中输入信号的频率f S =12MHz 。
基极偏置电阻R A1、R 4和射极电阻R 5决定晶体管的静态工作点。
可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。
放大器各项性能指标及测量方法如下: 1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LCf π210式中,L 为调谐回路电感线圈的电感量;∑C为调谐回路的总电容,∑C的表达式为ie oe C P C P C C2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。
谐振频率f 0的测量方法是:用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。
2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。
A V0的表达式为Gg p g p y p p g y p p v v A ie oe fe fei V ++-=-=-=∑2221212100 式中,g Σ为谐振回路谐振时的总电导。
要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。
A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算:A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) dB 3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为BW = 2△f 0.7 = fo/Q L式中,Q L 为谐振回路的有载品质因数。
分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为∑=⋅C y BW A fe V π20上式说明,当晶体管选定即y fe 确定,且回路总电容C Σ为定值时,谐振电压放大倍数A V0与通频带BW 的乘积为一常数。
这与低频放大器中的增益带宽积为一常数的概念是相同的。
通频带BW 的测量方法:是通过测量放大器的谐振曲线来求通频带。
测量方法可以是扫频法,也可以是逐点法。
逐点法的测量步骤是:先调谐放大器的谐振回路使其谐振,记下此时的谐振频率f 0及电压放大倍数A V0然后改变高频信号发生器的频率(保持其输出电压V S 不变),并测出对应的电压放大倍数A V0。
由于回路失谐后电压放大倍数下降,所以放大器的谐振曲线如图1-2所示。
可得: 7.02f f f BW L H ∆=-=通频带越宽放大器的电压放大倍数越小。
要想得到一定宽度的通频宽,同时又能提高放大器的电压增益,除了选用y fe 较大的晶体管外,还应尽量减小调谐回路的总电容量C Σ。
如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益。
4.选择性——矩形系数调谐放大器的选择性可用谐振曲线的矩形系数K v0.1时来表示,如图1-2所示的谐振曲线,矩形系数K v0.1为电压放大倍数下降到0.1 A V0时对应的频率偏移与电压放大倍数下降到0.707 A V0时对应的频率偏移之比,即K v0.1 = 2△f 0.1/ 2△f 0.7 = 2△f 0.1/BW上式表明,矩形系数K v0.1越小,谐振曲线的形状越接近矩形,选择性越好,反之亦然。
一般单级调谐放大器的选择性较差(矩形系数K v0.1远大于1),为提高放大器的选择性,通常采用多级单调谐回路的谐振放大器。
可以通过测量调谐放大器的谐振曲线来求矩形系数K v0.1。
(二)双调谐放大器双调谐放大器具有频带较宽、选择性较好的优点。
双调谐回路谐振放大器是将单调谐回路放大器的单调谐回路该用双调谐回路。
其原理基本相同。
1.电压增益为gy p p v v A fei V 22100-=-=2. 通频带BW= 2△f0.7 = 2fo/Q L3.选择性——矩形系数100K v0.1 = 2△f0.1/ 2△f0.7 =41四、实验步骤(一)单调谐小信号放大器单元电路实验打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮,红灯为+12V电源指示灯,绿灯为-12V电源指示灯。
(以后实验步骤中不再强调打开实验模块电源开关步骤)1、调整晶体管的静态工作点:在不加输入信号时用万用表(直流电压测量档)测量电阻R4两端的电压(即V BQ)和R5两端的电压(即V EQ),调整可调电阻W3,使V eQ=4.8V,记下此时的V BQ、V EQ,并计算出此时的I EQ=V EQ /R5(R5=470Ω)。
V BQ = 5.4V,V EQ = 4.8V ,I EQ=V EQ /R5=10.2mA2、高频信号发生器输出频率为12MHz,峰-峰值约为100mV以上的高频信号。
将信号输入J4口。
3、调谐放大器的谐振回路使其谐振在输入信号的频率点上:将示波器探头连接在调谐放大器的输出端即TH2上,调节示波器直到能观察到输出信号的波形,再调节中周磁芯使示波器上的信号幅度最大,此时放大器即被调谐到输入信号的频率点上。
在调谐放大器对输入信号已经谐振的情况下,用示波器分别观测输入和输出信号的幅度大小,则A v0即为输出信号与输入信号幅度之比。
幅度TH1 :50mV TH2 : 1.23VA v0 =1.23/0.05=24.64、测量放大器通频带对放大器通频带的测量有两种方式,其一是用频率特性测试仪(即扫频仪)直接测量;其二则是用点频法来测量:即用高频信号源作扫频源,然后用示波器来测量各个频率信号的输出幅度,最终描绘出通频带特性,具体方法如下:通过调节放大器输入信号的频率,使信号频率在谐振频率附近变化(以200KHz或500KHz为步进间隔来变化),并用示波器观测各频率点的输出信号的幅度,然后就可以在如下的“幅度-频率”坐标轴上标示出放大器的通频带特性。
频率11.411.611.81212.212.412.6 /MHz幅度/V0.750.850.98 1.23 1.030.90.75增益151719.624.620.061815BW=2∆f0.7=2*(12.44-12)=0.88MHz(二)双调谐小信号放大器单元电路实验双调谐小信号放大器的测试方法和测试步骤与单调谐放大电路基本相同,只是在以下两个方面稍作改动:其一是输入信号的频率应改为465KHz;其二是在谐振回路的调试时,对双调谐回路的两个中周要反复调试才能最终使谐振回路谐振在输入信号的频点上,具体方法是,按图1-3连接好测试电路并打开信号源及放大器电源之后,首先调试放大电路的第一级中周,让示波器上被测信号幅度尽可能大,然后调试第二级中周,也是让示波器上被测信号的幅度尽可能大,这之后再重复调第一级和第二级中周,直到输出信号的幅度达到最大,这样,放大器就已经谐振到输入信号的频点上了。
频率450 455 460 465 470 475 480 /MHz幅度/V 0.11 0.14 0.42 0.8 0.67 0.45 0.36 增益 1.1 1.4 4.2 8 6.7 4.5 3.6BW=2∆f0.7=2*( 472-465)=7KHz五、实验注意事项在调节谐振回路的磁芯时,要用小型无感性的起子,缓慢进行调节,用力不可过大,以免损坏磁芯。
六、思考题试分析单调谐放大回路的发射极电阻和谐振回路的阻尼电阻对放大器的增益、带宽和中心频率各有何影响?答:发射极电阻Re主要是给PN结提供正常偏置,震荡信号经旁路电容形成回路.所以不会对放大器的增益、带宽和中心频率产生影响。
回路中的阻尼电阻Rl能使带宽增宽,中心频率更加稳定,增益下降.从系统全局来看更稳定。