集成运放构成正弦波-方波和三角波发生器
集成运算放大器组成的波形变换与产生电路
Vi V Ref
Vo VOM Vi A V Ref Vo V Ref Vi
t
VO VOM t -VOM
- V OM
(b)传输特性 (c)波形变换 图 6—1 开环比较器及其传输特性 如果引入正反馈,可以构成具有回线形状传输特性的滞回比较器。图 6—2 (a) 所示为 一反相输入的滞回比较器,该电路 当 VO = VOM 时
R1 R ⋅C R2
R1 VZ R2
5.正弦波信号发生器 图 6—6 所示电路是由运放构成的 RC 桥式振荡电路,它是由选频网络(为 RC 串并联 网络,它兼作正反馈网络)和同相输入比例放大器组成。
R 10K C 0.01uF
Vf
A
VO Rf D1 R2 10K D2
R 10K
C 0.01uF R1 10K RP 47K
R1 V R2 Z
V VZ
VO1 VO2
A1
R2
R 10K R5 10K
2K
A2
VO2
R1 10K
20K VZ 6V
t
- R1 VZ R2 - VZ
DZ
(a)三角波发生器电路图 ( b) 波形图 图 6—5 三角波发生器
设电源接通时, VO1 = VZ ,则 VO 2 线性下降,当 VO 2 下降到 −
(a)滞回比较器
Vi + R47K Dz
Vo
±Vz ±6V
图 6—3
具有限幅的滞回比较器
3.方波发生器 方波发生器是一种能产生方波的信号发生电路, 由于方波包含各次谐波分量, 因此方波
发生器又称为多谐振荡电路。 方波发生器的基本电路如图 6—4 所示,它是由一个反相输入的滞回比较器(其传输特 性见图 6—2 (b))和一个 RC 积分电路组成。
集成运放构成正弦波-方波和三角波发生器
集成运放构成正弦波-⽅波和三⾓波发⽣器实验⼗⼀集成运算放⼤器的基本应⽤(Ⅳ)─波形发⽣器─⼀、实验⽬的1、学习⽤集成运放构成正弦波、⽅波和三⾓波发⽣器。
2、学习波形发⽣器的调整和主要性能指标的测试⽅法。
⼆、实验原理由集成运放构成的正弦波、⽅波和三⾓波发⽣器有多种形式,本实验选⽤最常⽤的,线路⽐较简单的⼏种电路加以分析。
1、RC 桥式正弦波振荡器(⽂⽒电桥振荡器)图11-1为RC 桥式正弦波振荡器。
其中RC 串、并联电路构成正反馈⽀路,同时兼作选频⽹络,R 1、R 2、R W 及⼆极管等元件构成负反馈和稳幅环节。
调节电位器R W ,可以改变负反馈深度,以满⾜振荡的振幅条件和改善波形。
利⽤两个反向并联⼆极管D 1、D 2正向电阻的⾮线性特性来实现稳幅。
D 1、D 2采⽤硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。
R 3的接⼊是为了削弱⼆极管⾮线性的影响,以改善波形失真。
电路的振荡频率2πRC 1f O起振的幅值条件1fR R ≥2 式中R f =R W +R 2+(R 3 // r D ),r D — ⼆极管正向导通电阻。
调整反馈电阻R f (调R W ),使电路起振,且波形失真最⼩。
如不能起振,则说明负反馈太强,应适当加⼤R f 。
如波形失真严重,则应适当减⼩R f 。
改变选频⽹络的参数C 或 R ,即可调节振荡频率。
⼀般采⽤改变电容C 作频率量程切换,⽽调节R 作量程内的频率细调。
图11-1 RC 桥式正弦波振荡器2、⽅波发⽣器由集成运放构成的⽅波发⽣器和三⾓波发⽣器,⼀般均包括⽐较器和RC 积分器两⼤部分。
图11-2所⽰为由滞回⽐较器及简单RC 积分电路组成的⽅波—三⾓波发⽣器。
它的特点是线路简单,但三⾓波的线性度较差。
主要⽤于产⽣⽅波,或对三⾓波要求不⾼的场合。
电路振荡频率式中 R 1=R 1'+R W ' R 2=R 2'+R W "⽅波输出幅值 U om =±U Z三⾓波输出幅值调节电位器R W (即改变R 2/R 1),可以改变振荡频率,但三⾓波的幅值也随之变化。
课程设计——波形发生器
波形发生器设计一.摘要本文以AT89C51单片机为核心,采用C语言的编程方法,外加DAC0832数模转换模块与集成运放模块,构成了函数波形发生器。
可产生方波、三角波、正弦波、锯齿波等多种波形,波形的频率可用程序改变,并可根据需要选择输出波形。
其中运用软硬件结合的方法实现设计功能,具有线路简单、结构紧凑、性能优越等特点。
关键词:51单片机;DAC;函数波形发生器二.设计要求1.产生正弦波、方波、三角波;2.幅度可以设定;3.出频率能达到1MHZ。
4. 发挥部分(自选)三.设计目的1、巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决实际课题设计的能力。
2、培养针对课题需要,选择和查阅有关手册、图表及文献资料的能力,提高组成系统、编程、调试的动脑动手能力。
3、通过对课题设计方案的分析、选择、比较,熟悉运用单片机系统开发、软硬件设计的方法内容及步骤。
4,掌握各个接口芯片(如0832等)的功能特性及接口方法,并能运用其实现一个简单的单片机应用系统功能器件。
四.设计方案波形发生器的实现方法通常有以下几种:方案一:采用模拟电路搭建函数信号发生器,它可以同时产生方波、三角波、正弦波。
但是这种模块产生的不能产生任意的波形(例如梯形波),并且频率调节很不方便。
方案二:采用锁相式频率合成器,利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需频率上,该方案性能良好,但难以达到输出频率覆盖系数的要求,且电路复杂。
方案三:采用AT89S52单片机和DAC0832芯片,直接连接键盘和显示。
该种方案主要对AT89S52单片机的各个I/O口充分利用。
P1口是连接键盘, P2口接显示电路,P0口连接DAC0832输出波形。
这样总体来说,能对单片机各个接口都利用上,而不在多用其它芯片,从而减小了系统的成本。
也对按照系统便携式低频信号发生器的要求所完成。
占用空间小,使用芯片少,低功耗。
综合考虑,方案三各项性能和指标都优于其他几种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片及器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案三。
用集成运放组成的正弦波、方波、三角波产生电路
物理与电子工程学院《模拟电路》课程设计题目:用集成运放组成的正弦波、方波、三角波产生电路专业电子信息工程专业班级14级电信1班学号1430140227学生姓名邓清凤指导教师黄川完成日期:2015 年12 月目录1 设计任务与要求 (3)2 设计方案 (3)3设计原理分析 (5)4实验设备与器件 (8)4.1元器件的引脚及其个数 (8)4.2其它器件与设备 (8)5实验内容 (9)5.1 RC正弦波振荡器 (9)5.2方波发生器 (11)5.3三角波发生器 (13)6 总结思考 (14)7 参考文献 (15)用集成运放组成的正弦波、方波、三角波产生电路姓名:邓清凤电子信息工程专业[摘要]本设计是用12V直流电源提供一个输入信号,函数信号发生器一般是指自动产生正弦波、方波、三角波的电压波形的电路或仪器。
电路形式可采用由运放及分立元件构成:也可以采用单片机集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题采用UA741芯片搭建电路来实现方波、三角波、正弦波的电路。
[关键词]直流稳压电源12V UA741集成芯片波形函数信号发生器1 设计任务与要求(1)并且在proteus中仿真出来在同一个示波器中展示正弦波、方波、三角波。
(2)在面包板上搭建电路,并完成电路的测试。
(3)撰写课程设计报告。
(4)答辩、并提交课程设计报告书2 设计方案方案一:采用UA741芯片用集成运放组成的正弦波、方波、三角波产生电路优点:分立元件结构简单,可用常用分立元器件,容易实现,技术成熟,完全能够达到技术参数的要求,造价成本低。
缺点:设计、调试难度太大,周期太长,精确度不是太高。
图1 集成运放组成的正弦波、方波、三角波产生电路方案二:用8038制作的多波形信号发生器优点:具有在发生温度变化时产生低的频率漂移,最大不超过50ppm/℃;具有正弦波、三角波和方波等多种函数信号输出;正弦波输出具有低于1%的失真度;三角波输出具有0.1%高线性度;具有0.001Hz~1MHz的频率输出范围;工作变化周期宽,2%~98%之间任意可调;高的电平输出范围,从TTL电平至28V;易于使用,只需要很少的外部条件缺点:成本较高。
方波三角波正玄波函数发生器设计方案
路则法---2902230674 方波-三角波-正玄波函数发生器设计目录1 函数发生器的总方案及原理框图1.1 电路设计原理框图1.2 电路设计类型2设计的目的及任务2.1 课程设计的目的2.2 课程设计的任务与要求2.3 课程设计的技术指标3部分选择电路及其原理3.1集成函数发生器8038简介.2 方波---三角波转换电路的工作原理4 电路仿真4.1 方波---三角波发生电路的仿真4.2 三角波---正弦波转换电路的仿真4.3正弦波---方波---三角波电路输出5电路的原理5.1电路图及元件原理5.2 电路各部分作用5.3 总电路的安装与调试6心得体会8 仪器仪表明细清单9 参考文献1.函数发生器总方案及原理框图一、主原理框图1.1 555定时器的工作原理555定时器是一种功能强大的模拟数字混合集成电路,其组成电路框图如图22.32所示。
555定时器有二个比较器A1和A2,有一个RS触发器,R和S高电平有效。
三极管VT1对清零起跟随作用,起缓冲作用。
三极管VT2是放电管,将对外电路的元件提供放电通路。
比较器的输入端有一个由三个5kW电阻组成的分压器,由此可以获得和两个分压值,一般称为阈值。
555定时器的1脚是接地端GND,2脚是低触发端TL,3脚是输出端OUT,4脚是清除端Rd,5脚是电压控制端CV,6脚是高触发端TH,7脚是放电端DIS,8脚是电源端VCC。
555定时器的输出端电流可以达到200mA,因此可以直接驱动与这个电流数值相当的负载,如继电器、扬声器、发光二极管等。
2、单稳类电路单稳工作方式,它可分为3种。
见图示。
第1种<图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种<图2)是脉冲启动型单稳,也可以分为2个不同的单元。
正弦波、方波、三角波发生电路解析
一、设计目的及要求:1.1、设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2).熟悉集成电路:集成运算放大器LM324,并掌握其工作原理。
1.2、设计要求: (1)设计波形产生电路。
(2)信号频率范围:100Hz ——1000Hz 。
(3)信号波形:正弦波。
二、实验方案:方案一:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。
但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。
如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。
反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。
为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。
选频网络由R 、C 和L 、C 等电抗性元件组成。
正弦波振荡器的名称一般由选频网络来命名。
正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。
产生正弦波的条件与负反馈放大电路产生自激的条件十分类似。
只不过负反馈放大电路中是由于信号频率达到了通频带的两端,产生了足够的附加相移,从而使负反馈变成了正反馈。
在振荡电路中加的就是正反馈,振荡建立后只是一种频率的信号,无所谓附加相移。
(a)负反馈放大电路 (b)正反馈振荡电路图1 振荡器的方框图比较图1(a) 和 (b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。
由于振荡电路的输入信号i X =0,所以i X =fX 。
由于正、负号的改变,正反馈的放大倍数为:F AA A -=1f,式中A 是放大电路的放大倍数,.F 是反馈网络的放大倍数。
振荡条件:1..=F A幅度平衡条件:|..F A |=1相位平衡条件:ϕAF = ϕA +ϕF = ±2n π振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求1|..|>F A 这称为起振条件。
方波-三角波-正弦波函数发生器设计
湖北民族学院课程设计报告课程设计题目课程:电子线路课程设计专业:班级:学号:学生姓名:指导教师:2014年 6 月20 日信息工程学院课程设计任务书2014年6月20日信息工程学院课程设计成绩评定表摘要函数信号发生器是一种能够产生多种波形,如方波、三角波、正弦波的电路。
函数发生器在电路实验和设备检测中具有十分广泛的用途。
通过对函数波形发生器的原理以及构成分析,可设计一个能变换出方波、三角波、正弦波、方波的函数波形发生器。
该系统通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在示波器上观察波形及数据,得到结果。
其中电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角波-正弦波转换电路看到正弦波,得到想要的信号。
该系统利用了Protues电路仿真软件进行电路图的绘制以及仿真。
Protues软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。
凭借Protues,可以立即创建具有完整组件库的电路图,并让设计者实现相应的技术指标。
本课题采用集成芯片ICL8038制作方波-三角波-正弦波函数发生器的设计方法,经过protues仿真得出了方波、三角波、正弦波、方波-正弦波转换及三角波-正弦波转换的波形图。
关键词:电源,波形,比较器,积分器,转换电路,低通滤波,Protues目录1引言-------------------------------------------------------------- 51.1课程设计任务------------------------------------------------- 51.2课程设计的目的----------------------------------------------- 51.3课程设计要求------------------------------------------------ 52 任务提出与方案论证------------------------------------------------ 62.1函数发生器的概述--------------------------------------------- 62.2方案论证 --------------------------------------------------- 63 总体设计---------------------------------------------------------- 83.1总电路图----------------------------------------------------- 83.2 电路仿真与调试技术------------------------------------------ 94 详细设计及仿真--------------------------------------------------- 10 4.1 方波发生电路的工作原理与运放741工作原理-------------------- 10 4.2方波—三角波产生电路的工作原理------------------------------ 104.3三角波—正弦波转换电路的工作原理---------------------------- 114.4整体仿真效果图---------------------------------------------- 135 总结------------------------------------------------------------- 14 参考文献----------------------------------------------------------- 151引言现在世界中电子技术和电子产品的应用越加广泛,人们对电子技术的要求也越来越高。
波形发生器(课程设计)
波形发生器的设计1.设计目的(1)掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。
(2)学会安装与调试由分立器件与集成电路组成的多级电子电路小系统。
2.设计任务设计一台波形信号发生器,具体要求如下:(1)输出波形:正弦波、方波、三角波。
(2)频率范围:3Hz -30Hz ,30Hz -300Hz ,300Hz -3KHz ,3KHz -30KHz 等4个波段。
(3)频率控制方式:通过改变RC 时间常数手控信号频率。
(4)输出电压:方波峰—峰值V U pp 24≤;三角波峰-峰值V 8U pp =,正弦波峰-峰V 1U pp >。
3.设计要求(1)完成全电路的理论设计(2)参数的计算和有关器件的选择(3)PCB 电路的设计(4)撰写设计报告书一份;A3 图纸2张。
报告书要求写明以下主要内容:总体方案的选择和设计 ;各个单元电路的选择和设计;PCB 电路的设计4、参考资料(l )李立主编. 电工学实验指导. 北京:高等教育出版社,2005(2)高吉祥主编. 电子技术基础实验与课程设计. 北京:电子工业出版社,2004(3)谢云,等编著.现代电子技术实践课程指导.北京:机械工业出版社,2003目录一. 设计的方案的选择与论证 (3)1.1 设计方案 (3)1.1.1 设计方案1 (3)1.1.2 设计方案2 (4)1.1.3 设计方案3 (5)1.2 方案选择 (6)二. 单元电路的设计 (6)2.1 方案设计 (6)2.1.1 正弦波电路 (6)2.1.2 方波电路 (11)2.1.3 三角波电路 (12)2.2 参数的选择 (13)三、仿真 (14)3.1 软件介绍 (14)3.2 仿真的过程与结果 (15)四、PCB制版 (15)4.1 软件简介 (15)4.2 PCB电路板设计步骤 (20)五、总结与心得 (21)六、附录 (22)6.1 材料清单 (22)6.2 原理图 (23)6.3 PCB板图 (24)七、参考文献 (25)一.设计方案的选择与论证产生正弦波、三角波、方波的电路方案有多种。
方波——三角波——正弦波函数信号发生器
目录1 函数发生器的总方案及原理框图 (1)1.1 电路设计原理框图 (1)1.2 电路设计方案设计 (1)2设计的目的及任务 (2)2.1 课程设计的目的 (2)2.2 课程设计的任务与要求 (2)2.3 课程设计的技术指标 (2)3 各部分电路设计 (3)3.1 方波发生电路的工作原理 (3)3.2 方波---三角波转换电路的工作原理 (3)3.3 三角波---正弦波转换电路的工作原理 (6)3.4电路的参数选择及计算 (8)3.5 总电路图 (10)4 电路仿真 (11)4.1 方波---三角波发生电路的仿真 (11)4.2 三角波---正弦波转换电路的仿真 (12)5电路的安装与调试 (13)5.1 方波---三角波发生电路的安装与调试 (13)5.2 三角波---正弦波转换电路的安装与调试 (13)5.3 总电路的安装与调试 (13)5.4 电路安装与调试中遇到的问题及分析解决方法 (13)6电路的实验结果 (14)6.1 方波---三角波发生电路的实验结果 (14)6.2 三角波---正弦波转换电路的实验结果 (14)6.3 实测电路波形、误差分析及改进方法 (15)7 实验总结 (17)8 仪器仪表明细清单 (18)9 参考文献 (19)1.函数发生器总方案及原理框图1.1 原理框图1.2 函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。
北邮通电实验报告
北京邮电大学电子电路综合设计实验实验报告课题名称:函数信号发生器的设计与调测院系:通信工程班级:2012211119学号:姓名:班内序号:摘要:本实验要求实现生成合适幅度和频率的方波、三角波、正弦波。
方波三角波发生器由集成运放电路构成,包括比较器与RC积分器组成。
方波发生器的基本电路由带正反馈的比较器及RC组成的负反馈构成,三角波主要由积分电路产生。
三角波转换为正弦波,则是通过差分电路实现。
该电路振荡频率和幅度便于调节,输出方波幅度大小由稳压管的稳压值决定,方波经积分得到三角波,而正弦波发生电路中两个电位器实现正弦波幅度与电路的对称性调节,实现较理想的正弦波输出波形。
关键词:函数信号发生器、方波、三角波、正弦波设计任务要求:设计一个方波-三角波-正弦波信号发生器,供电电源为±12V。
信号输出频率能在1~10kHz范围内连续可调,无明显失真。
方波信号输出电压Uopp=12V(误差小于20%),上升下降沿小于10us。
三角波信号输出电压Uopp=8V(误差小于20%)。
正弦波信号输出电压Uopp≥1V,无明显失真。
设计思路及总体结构框图:原理框图:设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。
此次实验采用滞回比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。
利用电位器实现频率和正弦波幅度的调节。
由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。
其中方波三角波生成电路为基本电路,添加电位器调节其频率。
正弦波生成电路采用差分放大器,由于差分放大电路具有工作点稳定、输入阻抗高、抗干扰能力较强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
系统的组成框图:分块电路和总体电路的设计:方波三角波信号发生电路:由于采用了运算放大器组成的积分电路,可得到比较理想的方波和三角波。
模电课程设计【范本模板】
指导老师:专业:学号:姓名:一、设计题目:信号发生器设计二、设计目的:掌握方波—三角波—正弦波的设计方法和调试技术。
三、设计内容与要求:信号发生器是常用的测试仪器,常用的信号源有正弦波、方波、三角波、锯齿波、阶梯波等.①RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz,输出幅值300mV~5V可调、负载1KΩ。
②矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。
③三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ.④多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围100Hz~3KHz、输出幅值≥5V、负载电阻1KΩ.四、设计思路及实验前的理论原理:1、正弦波产生电路(由放大电路、选频网络和反馈网络组成)从结构上看,RC正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。
振幅平衡和相位平衡是正弦波振荡电路产生持续振荡的两个条件。
其中,振荡频率是由相位平衡条件所决定的。
刚开始时,Rf略大于R1的两倍,这样放大倍数才会略大于3,电路才能够起振.一段时间后,可以利用非线性元件来自动调整反馈的强弱以维持输出电压恒定,也可以将Rf 用滑动变阻器代替,人为调节放大倍数,从而使电路能够产生幅度稳定、几乎不失真的正弦波.其选频网络的频率特性如下:1211,;11rj cr r j c Z r Z j c j c j c r j c ωωωωωω+=+===++ 反馈网络的反馈系数为2212();13()v Z j cR F s Z Z j cR j cR ωωω==+++由此可得RC 串并联选频网络的幅频响应及相频响应2003()v F j ωωωω=+-00()arctan ;3f ωωωωϕ-=-可以计算,当00112f f rc rc ωωπ====或时,幅频响应的幅值为最大,即max 1;3F =相应的相频响应的相位角为零,即0;f ϕ=此时输出电压的幅值最大,并且输出电压为输入电压的3倍。
模电课程设计报告 正弦波 方波 三角波发生器
宁波大红鹰学院《模拟电子技术》课程设计报告课题名称:信号发生器分院:机械与电气工程学院教研室:电气工程及其自动化班级:姓名:学号:指导教师:严金龙李燕二○一三年十二月课题名称一、设计任务1.1设计要求1.利用集成运算放大器LM358设计一个简易信号发生器,要求能产生正弦波、方波和三角波三种波形。
2.采用双电源供电形式:电源12CC V V =+、12EE V V =-; 输出信号满足:(1)正弦波:V pp >=2V ;方波:V pp =13.5V ;三角波:V pp =8V ; (2)频率:110HZ ; (3)波形无明显失真。
1.2系统框图方波发生电路积分电路产生RC自激震荡产二、硬件设计2.1正弦波发生电路图1 正弦波RC串并联选频网络如下图(a)所示,它在正弦波振荡电路中既为选频网络,又为正反馈网络,所以其输入电压为,输出电压为。
当信号频率足够低时,,因而网络的简化电路及其电压和电流的向量如图(b)所示。
超前,当频率趋于零时,相位超前趋近于+900,且趋近于零。
当信号频率足够高时,,因而网络的简化电路及其电压和电流的向量如图(c)所示。
滞后,当频率趋近于无穷大时,相位滞后趋近于-900,且趋近于零。
当信号频率从零逐渐变化到无穷大时,的相位将从+900逐渐变化到-900。
因此,对于RC串并联选频网络,必定存在一个频率f0,当f=f0时,=同相。
通过计算可求出RC串并联选频网络的频率特性,如下图所示,其谐振频率。
为使f0=110hz,即使RC=1/220*3.14,确定了C的值就得到一个电阻的值。
R=1.447(1.45)KΩ,C=1uf。
RC桥式正弦波振荡电路:因为正弦波振荡器的起振条件是,从幅频特性曲线可得,当f=f0时,F=1/3,所以当A>3时,即RC串并联选频网络匹配一个电压放大倍数略大于3的正反馈放大器时,就可构成正弦波振荡器。
从理论上讲,任何满足放大倍数要求的放大电路与RC串并联选频网络都可组成正弦波振荡电路;但是,实际上,所选用的放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻,以减小放大电路对选频特性的影响,使振荡频率几乎仅仅决定于选频网络。
正弦波、方波、三角波发生电路
正弦波、方波、三角波发生电路一、设计目的及要求:1.1、设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2).熟悉集成电路:集成运算放大器LM324,并掌握其工作原理。
1.2、设计要求:(1)设计波形产生电路。
(2)信号频率范围:100Hz——1000Hz。
(3)信号波形:正弦波。
二、实验方案:方案一:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。
但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。
如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。
反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。
为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。
选频网络由R、C和L、C等电抗性元件组成。
正弦波振荡器的名称一般由选频网络来命名。
正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。
产生正弦波的条件与负反馈放大电路产生自激的条件十分类似。
只不过负反馈放大电路中是由于信号频率达到了通频带的两端,产生了足够的附加相移,从而使负反馈变成了正反馈。
在振荡电路中加的就是正反馈,振荡建立后只是一种频率的信号,无所谓附加相移。
(a)负反馈放大电路(b)正反馈振荡电路图1 振荡器的方框图比较图1(a) 和(b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。
由于??=X?。
由于正、负号的改变,正反馈的放大倍数为:?=0,所以X振荡电路的输入信号Xiif??Af.?A?,式中A是放大电路的放大倍数,F是反馈网络的放大倍数。
1?AF..振荡条件:AF?1..幅度平衡条件:?AF?=1相位平衡条件:?AF = ?A+?F = ?2n?..振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求|AF|?1..这称为起振条件。
方波三角波正弦波发生器课程设计报告
宁波大红鹰学院《模拟电子技术》课程设计报告课题名称:方波三角波正弦波发生器分院:机械与电气工程学院教研室:电气工程及其自动化班级:姓名:学号:惺惺惜惺指导教师:惺惺惜惺惺二○一三年十二月方波三角波正弦波发生器一、设计任务1、熟悉电路的基本功能原理,学会用集成运算放大器组成方波、三角波及正弦波发生器;2、学习方波、三角波、正弦波发生器的设计方法和设计流程;3、掌握方波、三角波、正弦波发生器的调试与测量方法。
4、能正确焊装、检测、调试电路。
二、硬件设计1、元器件选择(1)集成电路: LM358D;(2)稳压二极管: 6.2V;(3)电阻:E24系列,碳膜电阻,1/4W,精度5%51 KΩ、10KΩ、400 KΩ。
(4)电容:电解电容0.33uf、10uf。
(5)电位器:10K、50K。
(6)二极管:IN4148。
2、发生原理方波、三角波、正弦波、信号发生器的原理框图首先由LM358D组成的振荡器产生正弦波,然后由过零比较器将正弦波转化为方波波,最后用积分电路将方波转化为三角波。
此电路具有良好的正弦波和方波信号。
但经过积分器电路产生的同步三角波信号,存在难度。
原因是积分器电路的积分时间常数是不变的,而随着方波信号频率的改变,积分电路输出的三角波幅度同时改变。
若要保持三角波幅度不变,需同时改变积分时间常数的大小。
3、正弦波发生电路电路中RC串、并联电路构成正反馈支路,同时兼做选频网络,R1、R3、R5及二极管等元件构成反馈和稳幅环节。
调节电位器R5,可以改变负反馈深度,满足振荡的振幅条件和改善波形。
利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现稳幅。
VD1、VD2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。
R3的接入是为了削弱二极管非线性的影响,以改善波形失真。
注意:R1、R2、C1、C2构成RC串并联电路,故R1=R2,C1=C2。
电容C1,C2.电阻R4,R5是整个电路频率大小的关键电路的振荡频率fo=1/2πRC调整反馈电阻R5,使电路起振,且波形失真最小。
集成运放构成的方波三角波发生器
−
������1 ������7
……………………⑥
������1 ≈ 从而由方程⑥⑦得到: ������������4 = −������8 ( ∴ ∆������������������ = ������������4������������ ≈
������������ ������������������ ������′ +������������������
′ ������6 +������������3
������5 +������6 +������������3
× 2������������������ − ������������������ ………………⑦
′ ������������1 ������6 + 2������������3 − ������5 − ������������3 + ������ ) ′ ������ + ������������4 (������5 + ������6 + ������������3 )������7 ������������
1
������������ = −
������������������3 4(������13 +2������������2 )������
1
…………………………④
又,在������1中,由“虚短”和“虚断”知,使得方波发生翻转的������������2 满足: ������������2 =
������2 ������1 +������2
1 1 2
×
������+������������1 ������4
→ = ������ =
模拟电子电路课程设计方案——正弦波三角波方波函数发生器
课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:正弦波-三角波-方波函数发生器初始条件:具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选有关电子器件;能够使用实验室仪器调试。
要求达成的主要任务:(包含课程设计工作量及其技术要求,以及说明书撰写等详细要求)1、频次范围三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz;2、正弦波Uopp≈3V,三角波Uopp≈5V,方波Uopp≈14V;3、幅度连续可调,线性失真小;4、安装调试并达成切合学校要求的设计说明书时间安排:一周,此中3天硬件设计,2天硬件调试指导教师署名:年月日系主任(或责任教师)署名:年月日目录1.综述...........................................................1 1.1信号发生器概论...................................................1 1.2 Multisim简介....................................................21.3集成运放lm324简介...............................................32.方案设计与论证...............................................4 2.1方案一...................................................4 2.2方案二..................................................42.3方案三..................................................53.单元电路设计..............................................6 3.1正弦波发生电路的工作原理...............................6 3.2正弦波变换成方波的工作原理.............................8 3.3方波变换成三角波的工作原理.............................93.4正负12V直流稳压电源的设计............................104.电路仿真................................................124.1总波形发生电路............................................124.2正弦波仿真................................................134.3方波仿真...................................................144.2三角波仿真...............................................145.实物制作与调试..........................................155.1焊接过程.............................................155.2 实物图...............................................155.3调试波形.............................................186.数据记录................................................197.课设总结................................................208.参照书目................................................219.附录....................................................22 本科生课程设计成绩评定表....................................241.综述在人们认识自然、改造自然的过程中,常常需要对各种各种的电子信号进行丈量,因此怎样依据被丈量电子信号的不同特色和丈量要求,灵巧、快速的采纳不同特色的信号源成了现代丈量技术值得深入研究的课题。
正弦波-方波-三角波发生电路设计
东华理工大学长江学院课程设计报告正弦波-方波-三角波发生电路设计学生姓名:专业:班级:指导教师:正弦波-方波-三角波发生电路设计函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生正弦波,再将正弦波变成方波-三角波或将方波变成三角波等等。
本课题采用先产生正弦波,再将方波变换成三角波的电路设计方法,本课题中函数发生器电路组成框图如下所示:由比较器和积分器组成正弦波产生电路,比较器输出的方波经积分器得到三角波,目录1、正弦波发生器 (3)2、方波发生器 (4)3、三角波发生器 (7)4、正弦波-方波-三角波发生器 (9)5、总电路图、元器件清单 (10)6、心得体会及参考文献 (11)简述:方波、正弦波、三角波是电子电路中经常用到的信号,设计一个正弦波-方波-三角波发生电路。
具体技术要求如下:(1)正弦波-方波-三角波的频率在100Hz-20KHz范围内连续可调;(2)正弦波和方波的信输出幅度为6V,三角波的输出幅度在0-2V之间连续可调;正弦波的失真度r5%;(4)设计上述电路工作所需的直流稳压电源电路。
使用仪器及测量仪表:选用元器件(1).集成运放F007(a741);(2)稳压及开关二极管;(3)电阻、电容、电位器若干。
测量仪表(1)直流稳压电源;(2)示波器;(3)万用表(4)频率计(5)交流电压表一、正弦波发生器其振荡频率为1kHz。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十一 集成运算放大器的基本应用(Ⅳ)─ 波形发生器 ─一、实验目的1、 学习用集成运放构成正弦波、方波和三角波发生器。
2、 学习波形发生器的调整和主要性能指标的测试方法。
二、实验原理由集成运放构成的正弦波、方波和三角波发生器有多种形式,本实验选用最常用的,线路比较简单的几种电路加以分析。
1、 RC 桥式正弦波振荡器(文氏电桥振荡器)图11-1为RC 桥式正弦波振荡器。
其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W 及二极管等元件构成负反馈和稳幅环节。
调节电位器R W ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。
利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。
D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。
R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。
电路的振荡频率2πRC 1f O起振的幅值条件1fR R ≥2 式中R f =R W +R 2+(R 3 // r D ),r D — 二极管正向导通电阻。
调整反馈电阻R f (调R W ),使电路起振,且波形失真最小。
如不能起振,则说明负反馈太强,应适当加大R f 。
如波形失真严重,则应适当减小R f 。
改变选频网络的参数C 或 R ,即可调节振荡频率。
一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。
图11-1 RC 桥式正弦波振荡器2、方波发生器由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC 积分器两大部分。
图11-2所示为由滞回比较器及简单RC 积分电路组成的方波—三角波发生器。
它的特点是线路简单,但三角波的线性度较差。
主要用于产生方波,或对三角波要求不高的场合。
电路振荡频率式中 R 1=R 1'+R W ' R 2=R 2'+R W "方波输出幅值 U om =±U Z三角波输出幅值调节电位器R W (即改变R 2/R 1),可以改变振荡频率,但三角波的幅值也随之变化。
如要互不影响,则可通过改变R f (或C f )来实现振荡频率的调节。
Z212cm U R R R U +=)R 2R Ln(1C 2R 1f 12f f o +=图11-2 方波发生器3、三角波和方波发生器如把滞回比较器和积分器首尾相接形成正反馈闭环系统,如图11-3 所示,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。
图11-4为方波、三角波发生器输出波形图。
由于采用运放组成的积分电路,因此可实现恒流充电,使三角波线性大大改善。
图11-3 三角波、方波发生器电路振荡频率 fW f 12O )C R (R 4R R f +=方波幅值 U ′om =±U Z 三角波幅值 Z 21om U R R U =调节R W 可以改变振荡频率,改变比值21R R 可调节三角波的幅值。
图11-4 方波、三角波发生器输出波形图三、实验设备与器件1、±12V 直流电源2、双踪示波器3、交流毫伏表4、频率计5、集成运算放大器 μA741×26、二极管 IN4148×27、 稳压管 2CW231×1 电阻器、电容器若干。
四、实验内容1、 RC 桥式正弦波振荡器 按图11-1连接实验电路。
1) 接通±12V 电源,调节电位器R W ,使输出波形从无到有,从正弦波到出现失真。
描绘u O 的波形,记下临界起振、正弦波输出及失真情况下的R W 值,分析负反馈强弱对起振条件及输出波形的影响。
2) 调节电位器R W ,使输出电压u O 幅值最大且不失真,用交流毫伏表分别测量输出电压U O 、反馈电压U+和U-,分析研究振荡的幅值条件。
3) 用示波器或频率计测量振荡频率f O ,然后在选频网络的两个电阻 R 上并联同一阻值电阻,观察记录振荡频率的变化情况, 并与理论值进行比较。
4) 断开二极管D 1、D 2,重复2)的内容,将测试结果与2)进行比较, 分析D 1、D 2的稳幅作用。
*5) RC 串并联网络幅频特性观察将RC 串并联网络与运放断开,由函数信号发生器注入3V 左右正弦信号, 并用双踪示波器同时观察RC 串并联网络输入、输出波形。
保持输入幅值(3V )不变,从低到高改变频率,当信号源达某一频率时,RC 串并联网络输出将达最大值(约1V ),且输入、输出同相位。
此时的信号源频率2πRC 1f f 0==2、方波发生器按图11-2连接实验电路。
1) 将电位器R W 调至中心位置,用双踪示波器观察并描绘方波u O 及三角波u C 的波形(注意对应关系),测量其幅值及频率,记录之。
2) 改变R W 动点的位置,观察u O 、u C 幅值及频率变化情况。
把动点调至最上端和最下端,测出频率范围,记录之。
3) 将R W 恢复至中心位置,将一只稳压管短接,观察u O 波形,分析D Z 的限幅作用。
3、三角波和方波发生器 按图11-3连接实验电路。
1) 将电位器R W 调至合适位置,用双踪示波器观察并描绘三角波输出u 0及方波输出u O ′,测其幅值、频率及R W 值,记录之。
2) 改变R W 的位置,观察对u O 、u O ′幅值及频率的影响。
3) 改变R 1(或R 2), 观察对u O 、u O ′幅值及频率的影响。
五、实验总结1、正弦波发生器1) 列表整理实验数据,画出波形,把实测频率与理论值进行比较2) 根据实验分析RC振荡器的振幅条件3) 讨论二极管D1、D2的稳幅作用。
2、方波发生器1) 列表整理实验数据,在同一座标纸上,按比例画出方波和三角波的波形图(标出时间和电压幅值)。
2) 分析RW 变化时,对uO波形的幅值及频率的影响。
3) 讨论DZ的限幅作用。
3、三角波和方波发生器1) 整理实验数据,把实测频率与理论值进行比较。
2) 在同一坐标纸上,按比例画出三角波及方波的波形,并标明时间和电压幅值。
3) 分析电路参数变化(R1,R2和RW)对输出波形频率及幅值的影响。
六、预习要求1、复习有关RC正弦波振荡器、三角波及方波发生器的工作原理,并估算图11-1、11-2、11-3电路的振荡频率。
2、设计实验表格3、为什么在RC正弦波振荡电路中要引入负反馈支路?为什么要增加二极管D1和D2?它们是怎样稳幅的?4、电路参数变化对图11-2、11-3产生的方波和三角波频率及电压幅值有什么影响?(或者:怎样改变图11-2、11-3电路中方波及三角波的频率及幅值?)5、在波形发生器各电路中,“相位补偿”和“调零”是否需要?为什么?6、怎样测量非正弦波电压的幅值?实验十二 RC 正弦波振荡器一、实验目的1、 进一步学习RC 正弦波振荡器的组成及其振荡条件2、 学会测量、调试振荡器 二、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。
若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。
1、 RC 移相振荡器电路型式如图12-1所示,选择R >>R i 。
图12-1 RC 移相振荡器原理图振荡频率 RC62π1f O =起振条件 放大器A 的电压放大倍数|A&|>29 电路特点 简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。
频率范围 几赫~数十千赫。
2、 RC 串并联网络(文氏桥)振荡器 电路型式如图12-2所示。
振荡频率 RC21f O π=起振条件 |A&|>3 电路特点 可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
图12-2 RC 串并联网络振荡器原理图3、 双T 选频网络振荡器电路型式如图12-3所示。
图12-3 双T 选频网络振荡器原理图振荡频率 5RC 1f 0=起振条件 2R R <' |F A &&|>1 电路特点 选频特性好,调频困难,适于产生单一频率的振荡。
注:本实验采用两级共射极分立元件放大器组成RC正弦波振荡器。
三、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、频率计5、直流电压表6、 3DG12×2 或 9013×2电阻、电容、电位器等四、实验内容1、 RC串并联选频网络振荡器(1)按图12-4组接线路图12-4 RC串并联选频网络振荡器(2) 断开RC串并联网络,测量放大器静态工作点及电压放大倍数。
(3) 接通RC串并联网络,并使电路起振,用示波器观测输出电压u波形,O 使获得满意的正弦信号,记录波形及其参数。
调节Rf(4) 测量振荡频率,并与计算值进行比较。
(5) 改变R或C值,观察振荡频率变化情况。
(6) RC串并联网络幅频特性的观察将RC串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。
且输入、输出同相位,此时信号源频率为2πRC 1f f ο== 2、 双T 选频网络振荡器 (1) 按图12-5组接线路(2) 断开双T 网络,调试T 1管静态工作点,使U C1为6~7V 。
(3) 接入双T 网络,用示波器观察输出波形。
若不起振,调节R W1,使电路起振。
(4) 测量电路振荡频率,并与计算值比较。
图12-5 双T 网络RC 正弦波振荡器* 3、 RC 移相式振荡器的组装与调试(1) 按图12-6组接线路(2) 断开RC 移相电路,调整放大器的静态工作点,测量放大器电压放大倍数。
(3) 接通RC 移相电路,调节R B2使电路起振,并使输出波形幅度最大,用示波器观测输出电压u O 波形,同时用频率计和示波器测量振荡频率,并与理论值比较。
* 参数自选,时间不够可不作。
图12-6 RC移相式振荡器五、实验总结1、由给定电路参数计算振荡频率,并与实测值比较,分析误差产生的原因。
2、总结三类RC振荡器的特点。
六、预习要求1、复习教材有关三种类型RC振荡器的结构与工作原理。
2、计算三种实验电路的振荡频率。
3、如何用示波器来测量振荡电路的振荡频率。