第六章 同步电机的稳态分析

合集下载

《电力系统分析理论》课件第6章 同步发电机的基本方程

《电力系统分析理论》课件第6章 同步发电机的基本方程
由于两个绕组的空间位置相 差120度,a相绕组的证磁通 交链到b相绕组就成了负磁 通,因此互感系数为负。
第六章 同步发电机的基本方程
用傅里叶系数表示,取基波:
LabLba[m0 m2co2s(a300)] LbcLcb[m0 m2co2s(a900)] LcaLac[m0 m2co2s(a1500)]
d q
i 0
32cso1iansa
coas(120)
sina(120)
1
coas(120)
sina(120)
1
ia ib ic
2
2
2
或缩记为:
id0 qPaibc
(61)7
第六章 同步发电机的基本方程
利用逆变换,可以得到:
coas coas(120)
sina sina(120)
电流的正方向与磁链的正方向符
a
dy
+
a
+
D
Q
D
ω
fQ
c +D +x
合右手螺旋定则,定子各绕组中 b
D
c
电流的正方向与磁链的正方向符
+z
b
合右手螺旋定则
q
第六章 同步发电机的基本方程
➢ 感应电势:与电流正方向 一致
➢ 定子电流:中性点流向机 v f 端
➢ 定子电压:电流流出端为 正
➢ 转子电压:提供正向电流 的励磁电压是正的
vf
f
Rf
0
0
if
00
D Q
0
0 0
RD 0
0 RQ
iD iQ
v为各绕组端电i为 压各 ;绕组电流;
(61)

第六章同步电机的稳态分析

第六章同步电机的稳态分析

表征电枢合成磁场的等效磁极
ns
δ
S
N
(a) 发电机
Te
ns
N0
S0
主极 表征电枢合成磁场的等效磁极
ns ns
S
N
(b) 补偿机
N0
Te=
0
S0
主极 表征电枢合成磁场的等效磁极
ns
S
δ
N
(c) 电动机
N0 主极 S0
ns
Te
五、同步电机的励磁方式
指同步电机获得直流励磁电流的方式; 而供给励磁电流的整个系统,称为励磁系统。
B
紫色为流入 红色为流出
ns
A
0
C
f
N
设转子 顺时针旋转
S
主极磁通
主磁通0
主极漏磁通f
f ( 0.1~ 0.2) 0
主磁路包括气隙、电枢齿、电枢轭、磁极极身 和转子轭五部分。
1、空载时的电磁关系 激磁电动势的有效值 E 4 . 44 fN k 0 1 w 1 0
If
定子上装有三相对称绕组互差120°电角度。 转子上安放直流励磁绕组。 B
紫色为流入 红色为流出
N
A
C
集电环 电刷
设转子 顺时针旋转
ns
S
+-
当同步发电机被原动机拖动以同步转速旋转, 转子励磁绕组通入直流励磁电流时,转子将 产生主极磁动势及相应的主极磁场(包括在 气隙中以同步转速旋转的主磁场和主极漏磁 场)。 主磁场通过气隙并与定子绕组交链,在定子 绕组中感应出三相交流电动势,若定子绕组 带有负载,发电机将输出电功率。
1、电动势的波形 若主磁场的气隙磁密沿圆周按正弦规律分布, 则定子导体感应电动势随时间按正弦规律变化:

同步发电机的稳态运行特性及

同步发电机的稳态运行特性及
总结词
同步发电机在稳态运行时存在功率极限和稳定极限,这些极限决定了发电机的运 行范围和稳定性。
详细描述
功率极限包括额定功率和最大允许功率,分别表示发电机在正常工作条件下的输 出能力和承受的最大功率。稳定极限则表示发电机在受到扰动后恢复稳态运行的 能力。
同步发电机的运行状态与调整范围
总结词
同步发电机的运行状态可分为正常运行状态、异常运行状态 和停机状态,每种状态都有相应的调整范围。
详细描述
正常运行状态下,发电机根据负载需求在一定范围内调整输 出功率和电压。异常运行状态下,发电机可能需要采取措施 来恢复稳定或避免损坏。停机状态下,发电机停止运行并进 行维护检查。
03
CHAPTER
同步发电机的稳态运行分析
同步发电机的有功功率与无功功率调节
有功功率调节
有功功率的调节主要通过原动机输入 功率的改变来实现,包括对汽轮机或 水轮机的控制。调节有功功率可以稳 定电网频率,满足系统负荷需求。
大型火力发电厂通常配备多台同步发电机组,以满足高峰用电需求和备用容量的需 求。
水力发电站中的应用
水力发电站利用水流驱动水轮机 带动同步发电机旋转,产生电能。
同步发电机在水力发电站中起到 将水能转化为电能的作用,同时
保持电力系统的稳定运行。
水力发电站通常在河流、水库等 水资源丰富的地区建设,以满足
当地及周边地区的用电需求。
当发电机向系统提供有功功率并吸收一定的无功功率时,称为滞相运行。滞相运行会导致发电机端电压下降,需 通过增加励磁电流来维持电压稳定。
同步发电机的调压与调频
调压
同步发电机的调压方式主要有两种,一是通过调节励磁电流改变机端电压;二是通过调 节原动机的输入功率改变频率,进而影响机端电压。调压的主要目的是维持发电机端电

电力系统暂态分析:第六章 电力系统稳定性问题概述

电力系统暂态分析:第六章 电力系统稳定性问题概述

M E max
2M E max S Scr
Scr S
• 四、自动调节励磁系统包括: • 1、自动调节励磁系统包括: • 主励磁系统和自动调节励磁装置
• 主励磁系统是从励磁电源到发电机励磁绕组的励 磁主回路:
• 自动调节励磁装置根据发电机的运行参数,如端 电压、电流等,自动地调节主励磁系统的参数。
➢两机系统
PE1 E12G11 E1E2 Y12 sin(12 12 ) PE12 E22G22 E1E2 Y12 sin(12 12 )
PE1 PE2 δ12
• 三、异步电动机转子运动方程和电磁转矩
• 异步电动机组的转子运动方程为
TJ
0
d*
dt
(M E
Mm)
• TJ 为异步电动机组的惯性时间常数,一般约为
Re
E i
n

jYˆij
j1
n
n
Ei E j (Gij cos ij Bij sin ij ) Ei2Gii Ei Ej Yij sin( ij ij )
j 1
j 1
ji
导纳角 ij
tg1
Gij Bij
➢任一台发电机的功率角的改变,将引起全系统各机 组电磁功率的变化。稳定分析是全系统的综合问题。
➢ 机电暂态过程主要是电力系统的稳定性问题。电力系 统稳定性问题就是当系统在某一正常运行状态下受到某种干 扰后,能否经过一定的时间后回到原来的运行状态或者过渡 到一个新的稳态运行状态的问题。
如果能够,则认为系统在该正常运行状态下是稳定
的。
反之,若系统不能回到
原来的运行状态或者不能建
立一个新的稳态运行状态,
J02 SB
Wk

第六章同步电机的稳态分析

第六章同步电机的稳态分析

第六章 同步电机的稳态分析6-4 同步发电机电枢反应的性质取决于什么?交轴和直轴电枢反应对同步发电机的运行有何影响?答:同步发电机电枢反应的性质取决于电枢磁动势和主磁场在空间的相对位置,即激磁电动势0∙E 和负载电流∙I 之间的相角差0ψ。

交轴电枢反应产生交轴电枢磁动势,与产生电磁转矩及能量转换直接相关;直轴电枢反应产生直轴电枢磁动势,起到增磁或者去磁的作用,与电机的无功功率和功率因数的超前或滞后相关。

6-6 为什么分析凸极同步电机时要用双反应理论?凸极同步发电机负载运行时,若0ψ既不等于 0,又不等于 90,问电枢磁场的基波与电枢磁动势的基波在空间是否同相,为什么(不计磁饱和)?答:因为凸极电机的气隙不均匀,分析时需用双反应理论。

当负载运行时,若0ψ既不等于0,又不等于90,电枢磁场的基波与电枢磁动势的基波在空间的相位不同,因为交、直轴的磁路不同,相同大小的磁势产生的磁通不同,如右图。

6-8 有一台70000KV A ,60000KW ,13.8KV ,(星形联结)的三相水轮发电机,交直轴同步电抗的标幺值分别为,7.0,0.1==**q d x x 试求额定负载时发电机的激磁电动势*0E (不计磁饱和与定子电阻)。

解:额定功率因数76cos ==N N N S P ϕ ,∴ 31=N ϕ 设01∠=*∙U ,则311-∠=*∙I8.23486.17.03101∠=⨯-∠+∠=⋅+=**∙*∙*∙j x I j U Eq Q∴ 8.23=N δ8.548.23310=+=+=N N δϕψ)(sin )(00*********-⋅+=-+=q d Q q d d Q x x I E x x I E E ψ731.1)7.00.1(8.54sin 486.1=-+=6-15 有一台*d x =0.8, .0=*q x 5的凸极同步发电机与电网并联运行,已知发电机1aq ad F ad B 1aq的端电压和负载为1=*U ,1=*I ,8.0cos =ϕ(滞后),电枢电阻略去不计。

第六章同步电机稳态分析

第六章同步电机稳态分析

第六章同步电机稳态分析第六章同步电机的稳态分析前⾔:①同步电机是⼀种交流电机,主要作发电机使⽤;也可作电动机和调相机(专门⽤于电⽹的⽆功补偿)使⽤;②同步电机定义:同步电机转速n与定⼦电流频率f和极对数p保持严格不变的关系,即p fn60 ;③主要内容:电枢反应;有功和⽆功调节;并联运⾏;不对称和突然短路6.1同步发电机的基本结构和运⾏状态1.旋转磁极式定⼦-放置三相交流绕组转⼦-放置励磁绕组(主磁极) 凸极式隐极式2旋转电枢式定⼦-放置励磁绕组(主磁极)转⼦-放置三相交流绕组(需三个滑环引出或引⼊三相电流)⼀、同步电机基本结构(⼀)隐极同步电机(以汽论发电机为例)特点:转速⾼为保证频率f=50Hz,则发电机的极对数P少(⼀般为⼆极,2P=2)离⼼⼒⼤,需细长转⼦(隐极式)0.5mm硅钢⽚叠压⽽成定⼦铁⼼⼤型电机由扇型⽚拼成圆形1. 定⼦矩形开⼝槽,径向,轴向通风道定⼦绕组-三相双层绕组,扁铜线绕制⽽成,采⽤成型线圈外壳-⽤钢板焊接⽽成2.转⼦ (1)由合⾦钢锻成,与转轴制成⼀个整体,外园开槽,⼤齿和⼩齿(2)励磁绕组为同⼼式绕组(3)采⽤⾼强度铝合⾦槽楔,端部采⽤保护环固定3.滑环(集电环)与电刷装置(⼆)凸极同步电机(以⽔轮发电机为例)特点:转速低为保证f=50Hz,则需发电机的极对数P增⼤为保证放置P对磁极,则需转⼦的直径⼤.1.定⼦ : 定⼦铁⼼-硅钢⽚叠成,直径可达20多⽶,矩形开⼝槽.励磁绕组由扁铜线绕制⽽成阻尼绕组(起动绕组)-由铜条和端环构成,⽤于同步电动机异步起动.⼆、同步电机的运⾏状态1. 稳态运⾏情况下,定转⼦磁场相对静⽌2. 功率⾓δ-定⼦合成磁场轴线与主极磁场(转⼦磁场)轴线之间夹⾓.(⽤电⾓度表⽰)3. 三种运⾏状态(1)发电机运⾏①物理过程:直流电流→电刷→滑环→励磁绕组→磁场原动机拖动转⼦绕组感应三相交流电动势(频率为60pnf ),接⼊负载后,三相对称电流,定⼦旋转磁场以n1旋转. ②特点:<1>功率⾓δ>0(即主极磁场超前定⼦合成磁场) <2>转⼦受到制动性质的电磁转矩Te<3>f ∝1n ,为保证f=50Hz 恒定,需保证1n 恒定,应输⼊转矩T1与Te 平衡.(2)补偿机运⾏状态(或空载运⾏状态) 当δ=0时→Te=0①物理过程:转⼦同发电机运⾏状态,-主极磁场以1n 旋转定⼦接⼊三相对称电源-定⼦合成磁场以1n 旋转②特点:<1>δ=0.(主磁场与定⼦合成磁场重合) <2>电机内没有有功功率转换(3)电动机运⾏当δ<0时→Te →(即主机磁场滞后定⼦合成磁场①物理过程:定⼦接三相电源-定⼦合成磁场以1n 旋转转⼦接直流电源-恒定磁场,去掉原动机.②特点:<1>δ<0<2>外施T2↑→δ↑→Te ↑(与T2+T0平衡)保证n=1n =常数 <3>转⼦转速n=1n =60f/p,即当f ⼀定,p ⼀定时,n 恒定.三.同步电机的励磁⽅式励磁系统-共给励磁电流的整个系统-直流励磁机励磁系统,整流器励磁系统励磁系统应满⾜的条件:(1)能稳定的提供发电机从空载到满载(及过载)所需的I f (2)当电⽹电压u 减⼩时,能快速强⾏励磁,提⾼系统的稳定性.(3)当电机内部发⽣短路故障时,能快速灭磁. (4)运⾏可靠,维护⽅便,简单,经济. 1. 直流励磁机励磁副励磁机(并励直流发电机)→主励磁机(他励直流发电机)→同步发电机 *⼀般励磁机与同步发电机同轴特点:采⽤独⽴电源(直流发电机)与交流电⽹没关系,运⾏可靠. 2. 静⽌整流器励磁(1)他励式静⽌流器励磁系统副励磁机(中频三相同步发电机)(电磁式或永磁式)→主励磁机(三相同步发电机)→同步发电机───────────────┛特点:①副励磁机先他励待建⽴电压后改为他励(3)励磁电流由电⽹或主发电机提供3. 旋转整流器励磁(⽆触点式或⽆刷励磁)副励磁机(永磁式三相同步发电机)→主励磁机(旋转电枢式)→主发电机┕──────────────┛特点:(1)主励磁为旋转电枢式 (2)采⽤旋转整流器 4. 三次谐波励磁特点:(1)发电机定⼦嵌⼊三次谐波绕组(2)将三次谐波电压整流后→主发电机励磁(3)⾃励恒压(负载电流↑→电枢反应↑→波形畸变↑→φ3↑→E 3↑→I 3↑→I f ↑→稳压;负载电流↑→端电压↓→稳压) 四.额定值1.额定容量S N (或额定功率P N )-指输出功率发电机⽤视在功率(KVA)或有功功率电动机⽤有功功率(KW)表⽰补偿机⽤⽆功功率(Kvar)表⽰2.额定电压U N —定⼦线电压(V)3.额定电流I N —定⼦线电流(A)4.其他: N ?cos ,ηN ,f N ,n N ,θN ,U fN ,I fN 等三相同步发电机 cos N N N N P I ? 三相同步电动机 N N N N N I U P ?ηcos 3=6.2 空载和负载时同步发电机的磁场⼀、空载运⾏1.定义:n=n N 、I=0时E 0=f(I f )2.空载时电磁过程:Φ0→01044.4Φ=w fNk E (频率为60pn f =) I f →F f →Φf σ→只增加磁极部分的饱和程度3.空载特性曲线特性曲线:E 0=f(I f )E 0f ) 磁化曲线 U N f ) f (orF f )分析:I f 较⼩时,磁路不饱和,f I E ∝0直线;I f 较⼤时,磁路饱和,fI E 与0不成⽐例;不考虑饱和,E 0=f(I f )为⽓隙线。

第六章同步电机稳态分析

第六章同步电机稳态分析

2 空载电势
只有主磁通才在定子绕组中产生感应电势 主磁通0
三相电势 对称
E 0A E000
E0BE01200 E0CE01200
漏磁通
E 04.4f4N 1kN 1 0
•励磁电势大小取决于?
当空载运行时,励磁电势随励磁电流变化的关系,称 为空载特性,其为同步电机的一条基本特性。 如图6—12所示
No
S
ns
Te
No
Te
Te 0
N So
主极
N
So N
So

同 发电机 步
电 机 的 三 补偿机 种 运

状 电动机 态
第9章 同步电动机
四、三相同步电机的基本结构
1. 主要部件
①定子铁心: 由硅钢片叠成。 (1) 定子(电枢) ②定子绕组: 对称三相绕组。
③机座和端盖等。 ①转子铁心:
由整块铸(锻)钢制成。 (2) 转子 ②励磁绕组:
工作时施加直流励磁。 ③阻尼绕组和转轴等。 按转子结构的不同:隐极式、凸极式。 阻尼绕组
凸极式 3 ~
+
N
×

S
隐极式 3 ~
+ -
·····
N S
× × × ×
×
优点:制造方便; 缺点:机械强度较差。 应用:在离心力较小、转速较低的中小 型电机中或用在水轮发电机中。
优点:机械强度好 缺点:制造工艺较复杂; 应用:因此多用在离心力较大、转速 较高的电机中。例如汽轮发电机多采 用隐极结构。
◆载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势 或者感应电流的载体。
◆切割运动:原动机拖动转子旋转(给电 机输入机械能),极性相间的励磁磁场 随轴一起旋转并顺次切割定子各相绕组。

同步发电机稳定性分析

同步发电机稳定性分析

【摘要】发电机的稳定问题,在我国是按照静态、暂态、动态划分的,同步发电机在运行中经受微小的扰动后,若能够自动保持同步运行,则说明该机具有静态稳定运行的能力。

运行中的发电机负荷有时也会发生大的变化,这会对发电机产生大的扰动,此时发电机能否保持同步运行就是属于暂态和动态的问题了。

【关键词】发电机;静态稳定;暂态稳定;动态稳定同步发电机在运行中除负荷有缓慢或微小的变化外,突变也会时有发生,这会对发电机产生大的扰动。

现将发电机的静态稳定、暂态稳定、动态稳定做一简要的分析。

一、静态稳定电力用户中的用电负荷随时都在发生变化,造成电力负荷也会随之波动,对发电机而言,几乎能够立即适应负荷的变化;但对于原动机来说,由于受到调速机构灵敏度的限制和时滞等,却不能立即适应这种这种变化。

此时发电机应能承受这种扰动,迅速恢复同步稳定运行,这是电力系统维持正常生产的基本条件。

下面用功角特性分析发电机稳定性。

设原动机输入的功率为p1,在发电机的功角特性曲线上,对应于p1可能有两个平衡点a 和b(见图1),其对应的功角为δa和δb。

但实际上只有在a点才能实现稳定运行。

因为在a点运行时,若负荷波动引起有功率有微量的减少,发电机转速则加快,功角将变为δa+△δa=δa’,发电机的功率随之增加△pa,其工作点波动到a’。

但此时气门开度未变,原动机输入的功率并不会因δ角变化而改变。

因此,功角虽有微小变化,输入功率仍保持在p1值。

发电机有功负荷减少的结果,破坏了发电机与原动机之间的转矩平衡,并且发电机的电磁转矩超过了原动机输入的转矩,剩余转矩△m〈0,故对发电机转轴起制动作用,使发电机转速减慢,引起功角δ向减小的方向移动,一旦扰动消失,发电机便回到a点运行。

同理,如果负荷波动使有功功率微量的增加,剩余转矩△m〉0,则使发电机转速加快,使功角δ向增大的方向移动,最后发电机也回到a点运行,因此a点是能实现稳定运行得点。

而b点则不同,当功角增加△δb时却带来发电机的功率减少。

同步电机的稳态运行

同步电机的稳态运行

和 可以用相应的负电抗压降来表示 6-10 将式(6-10)代入式(6-9),并考虑 ,可得
式中,Xd和Xq分别称为直轴同步电抗和交轴同步电抗,它们是表征对称稳态运行时电枢漏磁和直轴或交轴电枢反应的一个综合参数。上式就是凸极同步发电机的电压方程。图6-19表示与上式相对应的相量图。
四、额定值
6.1 同步电机的基本结构和运行状态
返回
空载运行时,同步电机内仅有由励磁电流所建立的主极磁场。图6—l0表示一台四极电机空载时的磁通示意图。从图可见,主极磁通分成主磁通Φ0和漏磁通Φfσ两部分,前者通过气隙并与定子绕组相交链,后者不通过气隙,仅与励磁绕组相交链。主磁通所经过的主磁路包括空气隙电枢 齿、电枢轭、磁极极身和转子轭等五部分。
采用发电机惯例,以输出电流作为电枢电流的正方向时,电枢的电压方程为
因为电枢反应电动势Ea正比于电枢反应磁通Φa不计磁饱和时,Φa又正比于电枢磁动势Fa和电枢电流I,即
1
2
3
4
5
(6—6)
(6—5)
将式(6—6)代人式(6—5),可得
(6—7)
式中,Xs称为隐极同步电机的同步电抗,Xs=Xa+Xσ,它是对称稳态运行时表征电枢反应和电枢漏磁这两个效应的一个综合参数。不计饱和时,Xs是一个常值。
与 不同相时
c) 超前 时得时-空统一矢量图
: 一、不考虑磁饱和时 6.3 隐极同步发电机的电压方程、相量图和等效电路
在时间相位上, 滞后于 以90°电角度,若不计定子铁耗, 与 同相位,则 将滞后于 以90°电角度于是 亦可写成负电抗压降的形式,即
1
再从气隙电动势 减去电枢绕组的电阻和漏抗压降,使得电枢的端电压 ,即
2

第六章 同步电机的稳态分析0

第六章 同步电机的稳态分析0
由于电枢磁动势和主磁极均以同步转速旋转,它们之间的相对位置始终保持不变,所以 在其它任意瞬间,电枢磁动势的轴线恒与转子交轴重合。
由此可见, 0 0 时,电枢磁动势是一个纯交轴磁动势
1.2.3电动机状态
若转子主磁场滞后于电枢合成磁场,即δ<0 ,则转子上将受到一个与其转向相同的电磁 转矩。此时转子输出机械功率,定子从电网吸收电功率,电机作为电动机运行。
1.3同步电机的励磁方式 供给同步电机励磁的装置,称为励磁系统。励磁系统是同步电机的重要组成部分,对 电机的运行性能有重要影响。根据获得磁场方式的不同,励磁方式可分为电励磁和永 磁励磁。
凸极同步电机通常分为卧式和立式两种结构。绝大部分同步电动机、同步补偿机和由 内燃机或冲击式水轮机拖动的同步发电机都采用卧式结构。低速、大容量的水轮发电 机和大型水泵电动机则采用立式结构。
与隐极式电机相比,大型水轮发电机转速低、极数多,要求转动惯量大,故其特点是 直径大、长度短。在低速水轮发电机中,定子铁心外径和长度之比可达5~7或更大。
负载时,电枢绕组接对称三相负载,电枢绕组中将流过三相对称电流,此时电枢绕组 就会产生电枢磁动势及相应的电枢磁场,若仅考虑其基波,则它与转子的转速和转向 相同,相对于转子静止。
负载时,电机气隙内的磁场由电枢磁动势和励磁磁动势共同作用所产生。与空载时相 比,电机的气隙磁场发生了变化。电枢磁动势的基波对气隙基波磁场的影响称为电枢 反应。
第六章 同步电机
同步电机是一种应用广泛的交流电机,其显著特点是转子转速n与定子电流频率f具有 固定的关系,n=ns=60f/p。同步电机既可作为发电机运行,也可作为电动机或补偿机 (调相机)运行。
•同步电机主要作为发电机运行,如火电厂和核电厂的汽轮发电机、水电站的水轮发电 机等。现代社会中使用的交流电能几乎全部是由同步发电机产生的。目前大型汽轮发 电机和水轮发电机的单机容量均已超过1000MW。在一些特殊的供电系统中,也广泛使 用同步发电机,如内燃机驱动的中小型同步发电机,以燃气轮机为原动机的高速同步 发电机,以及以风力机为原动机的低速同步发电机等。

同步电机(第六章)

同步电机(第六章)

列出电压方程:
E 0 E ad E aq U I Ra j I X
Fad Fa sin 0 Faq Fa cos 0

I f Ff 0 E 0
I


Id
Fad ad E ad Faq aq E aq
U E I ( Ra jX )





Ea a Fa I
所以:
Ea j I Xa


Xa是电枢反应磁通相应的电抗,称为电枢反应电抗。 (电枢电流产生电枢反应磁场,在定子每相绕组中感应 电势可以表示为电枢绕组相电流与电枢反应电抗的乘积) 所以:
E 0 U E a I ( Ra jX ) U I Ra jI ( X X a ) U I Ra j I X s
(3) 灯泡贯流式水轮发电机
(4)转子结构
10000kw水轮机转子
凸极极通常有卧式和立式两种结构,通常同步电动机、 同步补偿机、内燃机和冲击式水轮机拖动同步发电机采用 卧式结构,而大型水轮发电机采用立式结构,立式水轮发 电机的推力轴承是关键部件。
除了转子励磁绕组,通常在转子上还装有阻尼绕组。 起抑制转子转速的作用。在同步电动机和补偿机中,主要
汽轮发电机一般采用细长结构
(国产200MW汽轮发电机)
(国产600MW汽轮发电机)
Stator of Turbo-dynamo with 330MW Made in China (国产330MW汽轮发电机)
Stator Core of Turbo-dynamo with 330MW Made in China (国产330MW汽轮发电机定子铁心)

电机学第6章同步电机

电机学第6章同步电机
0
C
d轴
900
Fa
S
X
N
电枢反应性质:
Ff
B轴
A B
既有交轴,还有直轴 去磁电枢反应
Z
C轴
此种情况下
I Id Iq
I d I sin ---直轴分量 I d 与E0成900 I q I cos ---交轴分量 I q与E0同相位
Fa Fad Faq Fad Fa sin ---直轴分量电流产生的合成磁动势 Faq Fa cos ---交轴分量电流产生的合成磁动势
00 900 d、q

F ad F aq
交轴直 削弱 轴去磁 交轴直 增强 轴助磁
下降 下降 R、L 下降 上升 R、C
900 00 d、q

F ad F aq
6.3 隐极同步发电机的电压方程、相量图和等效电路 隐极(Cylindrical-rotor)发电机的电磁过程: 不考虑磁饱和
转子
汽轮发电机结构
返回
汽轮发电机结构
定子铁心
返回
汽轮发电机结构
国产200MW汽轮发电机定子
汽轮发电机结构
国产200MW汽轮发电机定子铁心
汽轮发电机结构
返回
汽轮发电机结构
转子
C A
定子绕组
B
机械端口 电端口 定子铁心
返回
汽轮发电机结构
返回
汽轮发电机结构
国产300MW汽轮发电机
汽轮发电机结构
0
f
空载时电磁关系:
If
Ff
Φ fσ Φ
0
E0
E0 0
气隙线
空载电动势 E0大小:

同步电机的稳态分析

同步电机的稳态分析

对旋转磁极式按转子主极的形状同步电机又可分为隐极式和凸 极式两种基本型式
第二页,编辑于星期六:二十点 五分。
1、隐极式同步电机
同步速为 3000r/min
提高运行速度可提 高汽轮机的运行效率, 减小机组尺寸和造价。 由于转速高,所以直径 较小,转子本体长度L 和直径D的比L/D=2—6 。 容量越大,比值越大, 汽轮发电机均为卧式结 构。
UN 单位为KV
额定电流
IN 单位为A, KA
额定功率因数 cos N
额定频率 f N 单位为Hz
额定转速 额定温升
n N单位为r/min θN
额定励磁电流和电压 IfN 、UfN
注: 发电机:PN SN cosN 3U N I N cosN
电动机:PN SN cosNN 3U N I N cosNN 第二十三页,编辑于星期六:二十点 五分。
(3)当同步机内部发生短路故障时,应能快速灭磁。 目前采用的励磁系统可分为两类:
1、直流发电机励磁系统 2、交流整流励磁系统 励磁系统对同步电动机的性能有重要影响。
第十五页,编辑于星期六:二十点 五分。
1、直流励磁机励磁
直流励磁机与同步发电机同 轴并采用并励接法。
Rt接到自动调节装置,自动调 节If
交流主励磁机的励磁,由同轴的交流副励磁机经静止的晶闸管整流后供给。 电压调整器的作用同上。
第二十一页,编辑于星期六:二十点 五分。
旋转整流励磁系统
第二十二页,编辑于星期六:二十点 五分。
四、额定值
额定容量 额定电压
发电机:SN 指出线端的额定视在功率( KVA、MVA) 电动机:PN 指轴上输出的有功功率(KW) 补偿机:SN 指出线端的额定无功功率( KVAR、MVAR)

华中科技大学_电机学_第六章_同步电机(完美解析)

华中科技大学_电机学_第六章_同步电机(完美解析)

对电动机是轴上输出的额定机械功率
PN 3U N I N cos N N
额定转速nN:电机额定运行时的转速
额定频率f (Hz) 额定励磁电流IfN(A) 额定励磁电压UfN(V)
10
6.2 同步电机的运行原理
同步发电机空载运行 同步电机的电枢反应 隐极同步发电机的负载运行
凸极同步发电机的负载运行
Ra I


E

U
由 得到:
Xd=Xσ+Xad Xq=Xσ+Xaq
27
四、凸极同步发电机的负载运行
2. 考虑饱和
计及饱和后,叠加原理不能应用,气隙合成磁场由合成磁动 势来决定,即交、直轴各自的合成磁动势及感应电动势可分别根 据实际饱和情况由空载特性求取。 ' E If Fd Ff d d ' F I d ad E I ' F E I q aq aq aq
U=U Nφ,必须增加 If △AEF称为特性三角形,其中:
AE IX σ AF I f 为等效励磁电流
I 不变, 特性三角形不变
33
四、外特性及电压调整率
n=nN、If=常数、cos =常数时, U= f (I) 的关系曲线称为外特性。 电流 I 引起电压 U 变化的原因: 定子漏阻抗压降影响 电枢反应影响 电压调整率:
1. 定义
If Ff 随转子旋转 转速为 n
基波
E0(

接三相对称负载
三相对称电流 iabc(f)
旋转磁势基波 (电枢磁势)

在空间相对静止,联合建立气隙磁场 Bδ 电枢绕组感应电动势 E δ
Фδ
电枢反应:电枢电流产生的磁动势对励磁磁场的影响

第6章 同步电机

第6章 同步电机


1.功率方程和电磁功率
由图6—27可见 故同步电机的电磁功率亦可写成
上式的第一部分与感应电机的电磁功率 表达式相同,第二部分则是同步电机常用的。 对于隐极同步电机,由于EQ=E0,故有
图6-27 从相量图导出 Ecosψ=Ucosφ+IRa
2.转矩方程
把功率方程(6—18)除以同步角速度,可得转矩方程
和 E 可以用相应的负电抗压降来表示 E ad aq
(6-15) 式中,Xad和Xaq分别称为直轴电枢反应电抗和交轴电枢反应电抗,将 I I ,可得 式(6-15)代入式(6-13),并考虑I
d q
式中,Xd和Xq分别称为直轴同步电抗和交轴同步电抗,它们是表征对 称稳态运行时电枢漏磁和直轴或交轴电枢反应的一个综合参数。上式就 是凸极同步发电机的电压方程。图6-20表示与上式相对应的相量图。



1.不考虑磁饱和
采用发电机惯例,以输出电流作为电枢电流的正方向时,电枢的电压 方程为 (6—6) 因为电枢反应电动势Ea正比于电枢反应磁通Φa,不计磁饱和时,Φa 又正比于电枢磁动势Fa和电枢电流I,即
与I 滞后于 Φ 以90°电角度,若不计定子铁耗,Φ 在时间相位上, E a a a 以90°电角度,于是亦可写成负电抗压降的 同相位,则 E 将滞后于 I a 形式,即
1.双反应理论
图6-19 凸极同步电机的气隙比磁导和直轴、交轴电枢反应 a)电枢表面不同位置处的气隙比磁导 b)直轴电枢磁动势所产生的直轴 电枢反应 c)交轴电枢磁动势所产生的交轴电枢反应
2.不考虑磁饱和时凸极同步发电机的电压方程和相 量图
不考虑磁饱和时同步发电机负载运行时物理量的关系:
If

电力系统分析第六章

电力系统分析第六章

调相机供应QC1、并联电容器供应QC2和静止补偿器供应的Q C3
16
定期作无功功率平衡计算的内容:
1 参考累计的运行资料来确定未来的、有代表性的预 想有功功率日负荷曲线 2 确定出现无功功率日最大负荷时系统中有功功率符 合的分配。 3 假设各无功功率电源的容量与配置情况以及某些枢 纽的电压水平 4 计算系统中的潮流分布 5 根据潮流分布情况,统计出平衡关系中各项数据, 判断系统中无功功率能否平衡 6 如统计结果表明系统中无功功率一缺额,则应变更 上述条件,重作潮流计算,如始综无法平衡,则考虑 增设无功电源的方案
71
4
2 变压器中的无功功率损耗
变压器中的无功功率损耗分两部分,即 励磁支路损耗和绕组漏抗中损耗。 1励磁支路损耗的百分值基本上等于漏抗中损耗,在变压器满载时,基 本上等于短路电压U k ,约为10%,
5
3 电力线路上的无功功率损耗
电力线路上的无功功率损耗也分两部分,即并 联电纳和串联电抗中的无功功率损耗。 1 并联电纳中的这种损耗又称充电损耗,与线 路电压的平方成正比,呈容性。 2 串联电抗中的这种损耗与负荷电流的平方成 正比,呈感性。 当通过线路输送的有功功率大于自然功率时, 线路将消耗感性无功功率;当通过线路输送的 有功功率小于自然功率时,线路将消耗容性无 功功率。
31
32
33
综上可见,在保证系统中无功功率平衡的基础上, 如同调整控制频率一样.调整控制电压,使其偏移 和波动保持在允许范围内,是系统运行的又一重要 问题。
34
3-2 电力系统的电压管理
35
36
37
38
39
40
41
42
43
44
45
46

同步电机的稳态运行

同步电机的稳态运行

可靠性
同步电机的可靠性是指其在规定的工作条件 下和预定时间内完成规定功能的能力。可靠 性高的电机能保证长期稳定运行,减少故障 和维护的需求,从而提高系统的整体可靠性。
稳态运行的调节与控制
调节
同步电机的稳态运行调节是指通过改变电机的输入电压、电流或频率等参数,以实现电机的转速、转 矩等输出量的调节。调节的目的是使电机在各种工况下都能高效、稳定地运行。
要点二
详细描述
例如,分布式发电系统中的同步电机可以与可再生能源相 结合,实现能源的高效利用;在智能制造领域,同步电机 可以与机器人技术相结合,实现自动化生产线的精准控制 。
THANKS
感谢观看
冷却系统
设计合理的冷却系统,确保电机在长时间运行中保持稳定。
优化控制
矢量控制
采用矢量控制技术,实 现电机转矩的高精度控 制。
滑差控制
根据负载变化调整滑差, 提高电机运行稳定性。
参数优化
对控制参数进行优化, 以获得更好的稳态运行 效果。
优化维护
定期检查
定期对电机进行检查,确保各部件完好无损。
润滑管理
详细描述
同步电机的工作原理基于磁场与电流的相互作用。当电流通 过励磁绕组时,产生磁场。该磁场与电机的转子相互作用, 产生转矩,驱动转子旋转。在稳态运行时,磁场与电流保持 同步,使得电机运行稳定。
同步电机的应用场景
总结词
同步电机广泛应用于电力、化工、冶金等领域,用于驱动各种机械负载,如泵、压缩机、 风机等。
主要包括电机的电压、电流、功率、效率、转矩 等参数的计算和分析,以及电机性能的评估和优 化。
分析的意义
通过对同步电机稳态运行的分析,可以深入了解 电机的性能和运行特性,为电机的设计和优化提 供理论依据和实践指导。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章同步电机的稳态分析6.1同步电机的基本结构和运行状态一、同步电机的基本结构按照结构型式,同步电机可以分为旋转电枢式和旋转磁极式两类。

旋转电枢式——电枢装设在转子上,主磁极装设在定子上。

这种结构在小容量同步电机中得到一定的应用。

旋转磁极式——主磁极装设在转子上,电枢装设在定子上。

对于高压、大容量的同步电机,通常采用旋转磁极式结构。

由于励磁部分的容量和电压常较电枢小得多,电刷和集电环的负载就大为减轻,工作条件得以改善。

目前,旋转磁极式结构已成为中、大型同步电机的基本结构型式。

在旋转磁极式电机中,按照主极的形状,又可分成隐极式和凸极式,如图6-l所示。

隐极式——转于做成圆柱形,气隙为均匀;凸极式——转子有明显的凸出的磁极,气隙为不均匀。

对于高速的同步电机(3000r/min).从转子机械强度和妥善地固定励磁绕组考虑,采用励磁绕组分布于转子表面槽内的隐极式结构较为可靠.对于低速电机(1000r/min及以下),转子的离心力较小,故采用制造简单、励磁绕组集中安放的凸极式结构较为合理。

大型同步发电机通常采用汽柁机或水轮机作为原动机来拖动,前者称为汽轮发电机,后者称为水轮发电机。

由于汽轮机是一种高速原动机,所以汽轮发电机一般采用隐极式结构。

水轮机则是一种低速原动机,所以水轮发电机一般都是凸极式结构。

同步电动机、由内燃机拖动的同步发电机以及同步补偿机.大多做成凸极式,少数两极的高速同步电动机亦有做成隐极式的。

隐极同步电机以汽轮发电机为例来说明隐极同步电机的结构。

现代的汽轮发电机一般都是两极的,同步转速为3000r/min(对50Hz的电机)。

由于转速高,所以汽轮发电机的直径较小,长度较长.汽轮发电机均为卧式结构,图6—2表示一台汽轮发电机的外形图。

汽轮发电机的定子由定子铁心、定于绕组、机座、端盖等部件组成。

定子铁心一般用厚o .5mm 的DR360硅钢片叠成,每叠厚度为3—6cm ,叠与叠之间留有宽0.8~lcm 的通风槽。

整个铁心用非磁性压板压紧.固定在机座上。

大容量汽轮发电机的转子周速可达170—180m/s 。

由于周速高,转子受到极大的机械应力,因此转子一般都用整块具有良好导磁性的高强度合金钢锻成.沿转子表面约2/3部分铣有轴向凹槽,励磁绕组就嵌放在这些槽里;不开槽的部分组成一个“大齿”,嵌线部分和大齿一起构成了主磁极(图6-la)。

为把励磁绕组可靠地固定在转子上,转子槽楔采用非磁性的金属槽楔,端部套上用高强度非磁性钢段成的护环。

图6-3表示一台嵌完线的汽轮发电机的转子。

由于汽轮发电机的机身比较细长,转子和电机中部的通风比较困难.所以良好的通风、冷却系统城对汽轮发电机非常重要。

凸极同步电机凸极同步电机通常分为卧式(横式)和立式两种结构。

绝大部分同步电动机、同步补偿机和用内燃机或冲击式水轮机拖动的同步发电机都采用卧式结构。

低速、大容量的水轮发电机和大型水泵电动机则采用立式结构。

卧式同步电机的定子结构与感应电机基本相同,定子亦由机座、铁心和定子绕组δδδδ等部件组成;转子则由主磁极、磁轭、励磁绕组、集电环和转轴等部件组成。

图6—4表示一台已经装配好的凸极同步电动机的转子。

大型水轮发电机通常都是立式结构。

由于它的转速低、极数多,要求转动惯量大。

故其特点是直径大、长度短。

在立式水轮发电机中,整个机组转动部分的重量以及作用在水轮机转子上的水推力均由推力轴承支撑,并通过机架传递到地基上,如图6—5所示。

图6—6表示一台大型水轮发电机的分瓣图6—2汽轮发电机的外形图 图6—3 汽轮发电机的转子图6—4 凸极同步电动机的转子定子。

除励磁绕组外,同步电机的转子上还常装有阻尼绕组。

阻尼绕组与笼型感应电机转子的笼形绕组结构相似,它由插入主极极靴槽中的铜条和两端的端环焊成一个闭合绕组。

在同步发电机中,阻尼绕组起抑制转子转速振荡的作用;在同步电动机和补偿机中,主要作为起动绕组用。

二、同步电机的运行状态当同步电机的定子(电枢)绕组中通过对称的三相电流时.定子将产生一个以同步转速推移的旋转磁场。

稳态情况下,转子转速亦是同步转速,于是定子旋转磁场恒与直流励磁的转子主极磁场保持相对静止,它们之间相互作用并产生电磁转矩.进行能量转换。

同步电机有三种运行状态:发电机、电动机和补偿机。

发电机把机械能转换为电能,电动机把电能转换为机械能,补偿机中没有有功功率的转换,专门发出或吸收无功功率、调节电网的功率因数。

分析表明,同步电机运行于哪一种状态.主要取决于定子合成磁场与转子主磁场之间的夹角δ,δ称为功率角。

若转子主磁场超前于定子合成磁场,δ>0,此时转于上将受到一个与其旋转方向相反的制动性质的电磁转矩,如图6—7a 所示。

为使转子能以同步转速持续旋转.转子必须从原动机输入驱动转矩。

此时转子输入机械功率,定子绕组向电网或负载输出电功率,电机作发电机运行。

若转子主磁场与定子合成磁场的轴线重合,δ=0,则电磁转矩为零,如图6—7b 所示。

此时电机内没有有功功率的转换,电机处于补偿机状态或空载状态。

若转子主磁场滞后于定子合成磁场,δ<0,则转子上将受到一个与其转向相同的驱动性质的电磁转矩,如图6—7c 所示。

此时定子从电网吸收电功率,转子可拖动负图6—5 立式水轮发电机示意图图6—6大型水轮发电机的分瓣定子载而输出机械功率,电机作为电动机运行。

三、同步电机的励磁方式供给同步电机励磁的装置,称为励磁系统。

下面对它作一简介。

直流励磁机励磁直流励磁机通常与同步发电机同轴,井采用并励或他励接法。

他励时,励磁机的励磁由另一台与主励磁机同轴的副励磁机供给,如图6—8所示。

为使同步发电机的输出电压保持恒定,常在励磁电路中加进一个反映负载大小的自动调节系统,使发电机的负载电流增加时,励碰电流相应地增大.这样的系统称为复式励磁系统。

整流器励磁整流器励磁又分为静止式和旋转式两种。

图6-9表示静止整流器励磁系统的原理图。

田中主励磁机是一台与同步发电机同轴连接的三相100Hz发电机,其交流输出经静止三相桥式不可控整流器整流后,通过集电环接到主发电机的励磁绕组,供给其直流励磁;主励磁机的励磁由交流副励磁机发出的交流电经静止可控整流器整流后供给。

副励磁机是一台中频三相同步发电机(有时采用永磁发电机),它也与主发电机同轴连接。

副励磁机的励磁,开始时由外部直流电源供给,待电压建起后再转为自励。

根据主发电机端电压的偏差和负载大小,通过电压调整器对主励磁机的励磁进行调节,即可实现对主发电机励磁的自动调节。

由于取消了直流励磁机,这种励磁系统维护方便,励磁容量得以提高,因而在大容量汽轮发电机中获得广泛的应用。

当励磁电流超过2000A时,为避免集电环的过热,可采用取消集电环的旋转整流器励磁系统。

此系统的主励磁机是与主发电机同轴连接的旋转电枢式三相同步发电机,电枢的交流输出经与主轴一起旋转的不可控整流器整流后,直接送到主发电机的转子励磁绕组,供给其励磁。

因为主励磁机的电枢,整流装置与主发电机的励磁绕组三者为同轴旋转,不再需要集电环和电刷装置,所以这种系统又称为无刷励磁系统.无刷励磁系统运行比较可靠,这种系统大多用于大、中容量的汽轮发电机、补偿机以及在防燃、防爆等特殊环境中工作的同步电动机。

在小型同步发电机中,还经常采用具有结构简单和具有自励恒压等特点的三次谐波励磁、电抗移相励磁等励磁方式。

四、额定值同步电机的额定值有(1)额定容S N(或额定功率P N) 指额定运行时电机的输辅出功率。

同步发电机的额定容量既可用视在功率表示,亦可用有功功率表示;同步电动机的额定功率是指轴上输出的机械功率;补偿机则用无功功率表示。

(2)额定电压U N指额定运行时定子的线电压。

(3)额定电流I N指额定运行时定子的线电流。

(4)额定功率因数cosΦ指额定运行时电机的功率因数。

(5)额定频率f N指额定运行时电枢的频率。

我国标准工频规定为50Hz。

(6)额定转速n N指额定运行时电机的转速,对同步电机而言,即为同步转速。

除上述额定值以外,铭牌上还常常列出一些其他的运行数据,例如额定负载时的温升ΘN,额定励磁电流和电压I fN、U fN等。

6.2 空载和负载时同步发电机的磁场一、空载运行用原动机施动同步发电机到同步转速,励磁绕组通入直流励磁电流,电枢绕组开路(或电枢电流为零)的情况,称为同步发电机的空载运行。

空载运行时,同步电机内仅有由励磁电流所建立的主极磁场。

图6—l0表示一台四极电机空载时的磁通示意图。

从图可见,主极磁通分成主磁通Φ0和漏磁通Φfσ两部分,前者通过气隙并与定子绕组相交链,后者不通过气隙,仅与励磁绕组相交链。

主磁通所经过的主磁路包括空气隙、电枢齿、电枢轭、磁极极身和转子轭等五部分。

当转子以同步转速旋转时,主磁场将在气隙中形成一个旋转磁场,它“切割”对称的三相定子绕组后,就会在定子绕组内感应出一组频率为f的对称三相电动势,称为激磁电动势,0000∠=E E A ,000120-∠=E E A ,000120∠=E E A(6—1) 忽略高次谐波时,激磁电动势(相电动势)的有效值Eo =4.44fN 1k w1Φ0,其中Φ0为每极的主磁通量。

这样,改变直流励磁电流I f ,便可得到不同的主磁通Φ0。

和相应的激磁电动势E 0,从而得到空载特性E 0=f(I f ),如图6—11所示。

空载特性是同步电机的一条基本特性。

空载曲线的下部是一条直线,与下部相切的直线称为气隙线。

随着Φ0的增大,铁心逐渐饱和,空载曲线就逐渐弯曲。

二、对称负载时的电枢反应同步发电机带上对称负载后,电枢绕组中将流过对称三相电流,此时电枢绕组就会产生电枢磁动势及相应的电枢磁场,其基波与转子同向、同速旋转。

负载时,气隙内的磁场由电枢磁动势和主极磁动势共同作用产生,电枢磁动势的基波在气隙中所产生的磁场就称为电枢反应。

电枢反应的性质(增磁、去磁或交磁)取决于电枢磁动势和主磁场在空间的相对位置。

分析表明,此相对位置取决于激磁电动势E 0和扭载电流I 之间的相角差Ψ0(Ψ0称为内功率因数角)。

下面分成两种情况来分析。

I与0E 同相时 图6—12a 表示一台两极同步发电机的示意图。

为简明计,图中电枢绕组每相用一个集中线圈来表示,0E 和I的正方向规定为从绕组首端流出,从尾端流入.在图6—12a 所示瞬间,主极轴线与电枢A 相绕组的轴线正交,A 相链过的主磁通为零;因为电动势滞后于感生它的磁通90°,故A 相激磁电动势A 0E的瞬时值达到正的最大值,其方向如图中所示(从X 入,从A 出);B 、C 两相的激磁电动势B 0E ,和C 0E 分别滞后于A 0E 以120°和240°,如图6—12b 所示。

设电枢电流I 与激磁电动势0E 同相位,即内功率因数角Ψ0=0°,则在图示瞬间,A 相电流亦将达到正的最大值,B 相和C 相电流分别滞后于A 相电流以120°和240°,如图6—12b 中所示。

相关文档
最新文档