压电式传感器分析

合集下载

压电式压力传感器原理及应用

压电式压力传感器原理及应用

压电式压力传感器原理及应用自动化研1302班王民军压电式压力传感器是工业实践中最为常用的一种传感器。

而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也叫压电式压电传感器。

压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。

也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。

它既可以用来测量大的压力,也可以用来测量微小的压力。

一、压电式传感器的工作原理1、压电效应某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。

当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。

压电式传感器的原理是基于某些晶体材料的压电效应。

2、压电式压力传感器的特点压电式压力传感器是基于压电效应的传感器。

是一种自发电式和机电转换式传感器。

它的敏感元件由压电材料制成。

压电材料受力后表面产生电荷。

此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。

压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。

压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。

由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=k*S*p。

式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。

通过测量电荷量可知被测压力大小。

压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。

为了保证静态特性及稳定性,通常多采用压电晶片并联。

在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。

二、压电压力传感器等效电路和测量电路在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

压电式传感器的原理及应用

压电式传感器的原理及应用

压电式传感器的原理及应用压电式传感器是一种应用了压电效应的传感器,通过将压电材料置于受力区域,当被测物体发生变形或受力时,压电材料发生形变,从而产生电荷信号,利用该信号来测量被测量的变化情况。

一、压电效应的原理压电效应是一种物理现象,指在压力或拉伸下,某些晶体(通常是晶体的极性方向)会产生电位差。

这种效应被广泛应用于各种传感器中,特别是在加速度计、其它惯性传感器、压力传感器和液位传感器等方面。

二、压电式传感器的原理压电式传感器通常由压电晶体和测量电路组成。

当被测物体发生形变或受力时,压电材料中的极性方向的晶体产生压电效应,导致产生电荷的位移,并与电荷电容匹配的放大器或其他电路连接。

由于被测量的变化(压力,成形,位移等)与电荷位移之间存在特定关系,所以可以根据电荷电荷读数来确定被测物体发生变化的精确程度。

三、压电式传感器的应用由于压电效应具有高灵敏度、高频响应、耐腐蚀、抗干扰等优点,压电式传感器在各种领域得到广泛应用。

1.压力测量:压电式传感器常用于压力传感器的制造,用于测量汽车轮胎、气缸、油压和空气压力等。

2.振动测量:压电式传感器还可以用于测量机器和车辆的振动水平,以便定位有问题的部件。

3.流量测量:压电式传感器在流量测量中应用广泛,例如在医疗方面测量血流,工业方面可以应用于计算液体的流量。

4.力学测试:压电式传感器的高灵敏度和高频响应特性,在体育、自然科学和工程学中用于测量冲击、震动和变形等量。

5.地震观测:压电式传感器还可以用于地震观测,以便在监测过程中测量地震的振动率。

压电式传感器在上述应用领域中具有重要作用,并与其他类型的传感器如压阻式传感器、光电式传感器、磁性传感器等合作,实现了各种领域的数据测量工作,体现了良好的应用前景。

压电式压力传感器的工作原理

压电式压力传感器的工作原理

压电式压力传感器的工作原理压电式压力传感器是一种常用的传感器,它通过压电效应来测量压力。

压电效应是指一种物质在受到力或压力作用时会产生电荷分布不均匀的现象。

压电材料是指具有压电效应的材料,如石英、陶瓷等。

压电式压力传感器的工作原理是基于压电效应的。

当外界施加压力或力量作用在压电材料上时,压电材料会发生形变,并产生电荷分布不均匀的现象。

这个电荷不均匀的分布会导致材料两端产生电势差,进而产生电压信号。

通过测量这个电压信号的大小,就可以得知外界施加在压力传感器上的压力大小。

压电材料的电荷分布不均匀是由于压电效应引起的。

压电效应是指当一个压电材料受到力或压力作用时,它的晶格结构会发生微小的形变,从而导致正负电荷分离,形成电荷不均匀的分布。

这个电荷不均匀的分布会导致材料两端产生电势差,即压电效应。

压电式压力传感器通常由一个压电材料和电极组成。

电极用于收集压电材料产生的电荷,并将其转化为电压信号。

当外界施加压力或力量作用在压力传感器上时,压电材料会发生形变,产生电荷分布不均匀。

这些电荷会通过电极收集,并形成电压信号。

这个电压信号的大小与外界施加的压力成正比,通过测量电压信号的大小,就可以得知压力传感器上的压力大小。

压电式压力传感器具有灵敏度高、响应快、稳定性好等特点,因此被广泛应用于工业控制、汽车电子、医疗设备等领域。

同时,压电材料的电荷分布不均匀的特性也使得压力传感器具有一定的自发电能力,可以将外界施加的力量转化为电能,实现能量的转换和利用。

总结起来,压电式压力传感器的工作原理是基于压电效应的。

当外界施加压力或力量作用在压电材料上时,压电材料会发生形变,并产生电荷分布不均匀的现象。

这个电荷不均匀的分布会导致材料两端产生电势差,进而产生电压信号。

通过测量电压信号的大小,就可以得知外界施加在压力传感器上的压力大小。

压电式压力传感器具有灵敏度高、响应快、稳定性好等特点,被广泛应用于各个领域。

压电式传感器实验报告

压电式传感器实验报告

压电式传感器实验报告压电式传感器实验报告引言压电式传感器是一种常见的传感器类型,利用压电效应来测量物理量。

本实验旨在通过实际操作和数据分析,探索压电式传感器的工作原理和应用。

实验目的1. 了解压电效应的基本原理;2. 掌握压电式传感器的工作原理;3. 学习使用实验仪器和测量设备;4. 分析压电式传感器在不同应用场景下的特点和限制。

实验器材与方法1. 实验器材:压电式传感器、信号放大器、示波器、电源等;2. 实验方法:将压电式传感器与信号放大器和示波器连接,通过施加外力或改变环境条件,观察传感器输出信号的变化。

实验过程与结果1. 实验一:压力测量将压电式传感器连接到信号放大器和示波器,施加不同的压力到传感器上,并记录示波器上的输出信号。

结果显示,当施加压力时,传感器输出的电压信号随之增加,表明压电式传感器能够准确测量外部压力。

2. 实验二:温度测量将压电式传感器暴露在不同温度环境下,记录示波器上的输出信号。

结果显示,传感器输出的电压信号随温度的升高而增加,说明压电式传感器对温度变化敏感,并可用于温度测量。

3. 实验三:振动测量将压电式传感器固定在振动源上,记录示波器上的输出信号。

结果显示,传感器输出的电压信号随振动频率和振幅的变化而变化,表明压电式传感器能够测量振动的特征。

讨论与分析1. 压电效应是压电式传感器工作的基础,其原理是施加压力或改变温度会使压电材料产生电荷分离和极化,进而产生电压信号。

2. 压电式传感器的优点包括高灵敏度、快速响应和广泛的应用领域。

然而,它也存在一些限制,如温度和湿度对传感器性能的影响,以及易受机械冲击和振动的干扰。

3. 在实际应用中,压电式传感器可用于压力、温度、振动等物理量的测量,如工业自动化、医疗设备、环境监测等领域。

结论通过本实验,我们深入了解了压电式传感器的工作原理和应用。

压电式传感器具有广泛的应用前景,但在实际使用中需要考虑其特点和限制。

通过进一步的研究和改进,可以提高压电式传感器的性能和可靠性,推动其在各个领域的应用。

3.2压电式压力传感器解析

3.2压电式压力传感器解析
32
§7.6 压电传感器的应用
地 震 的 巨 大 威 力
33
§7.6 压电传感器的应用
南海Ms7.2地震波形记录图
34
§7.6 压电传感器的应用 3) 压电式振动加速度传感器结构及外形
横向振动测振器
纵向振动测振器
35
4火炮堂内压力测试
发射药在堂内燃烧形成压力完成炮弹的发射。 堂内压力的大小,不仅决定着炮弹的飞行速 度,而且与火炮、弹丸的设计有着密切关系。
12
二、压电材料 1、种类:
石英晶体:如石英等; 压电陶瓷:如钛酸钡、锆钛酸铅等; 压电半导体:如硫化锌、碲化镉等; 高分子压电材料:聚二氟乙烯等。 2、对压电材料特性要求: ①转换性能:要求具有较大压电常数; ②机械性能: 机械强度高、刚度大,以期获得宽的线性
范围和高的固有振动频率; ③电性能:具有高电阻率和大介电常数,以减弱外部分布 电容的影响并获得良好的低频特性; ④环境适应性强:温度和湿度稳定性要好,要求具有较 高的居里点,获得较宽的工作温度范围; 13 ⑤时间稳定性:要求压电性能不随时间变化。
从作用力看,元件是串接的,因而每片受到的作用力相同,产生的变 形和电荷数量大小都与单片时相同。
图a)从电路上看,这是并联接法, 类似两个电容的并联。所以, 外力作用下正负电极上的 电荷量增加了1倍,电容量也增加了1倍,输 出电压与单片时相同。 图b)从电路上看是串联的,两压电片中间粘接处正负电荷中和, 上、 下极板的电荷量与单片时相同,总电容量为单片的一半,输出电 压增大了1倍。
3. 交通监测
将高分子压电电 缆埋在公路上,可以 获取车型分类信息 (包括轴数、轴距、 轮距、单双轮胎)、 车速监测、收费站地 磅、闯红灯拍照、停 车区域监控、交通数 据信息采集(道路监 控)及机场滑行道等。

压电式传感器原理

压电式传感器原理

压电式传感器原理压电式传感器是一种常用的传感器类型,它利用压电效应来将机械应力转换为电信号。

压电效应是指某些晶体或陶瓷材料在受到机械应力作用时,会产生电荷分布不均匀的现象。

这种现象被称为压电效应,而利用这种效应制成的传感器就是压电式传感器。

压电式传感器的工作原理非常简单直观。

当传感器受到外部力或压力作用时,传感器内部的压电材料会发生形变,导致电荷分布不均匀。

这些不均匀的电荷会产生一个电势差,从而产生一个电信号。

这个电信号可以被放大和处理,最终转换成我们可以理解的物理量,如力、压力、加速度等。

压电式传感器的工作原理可以用一个简单的例子来解释。

想象一个压电陶瓷材料制成的传感器,当这个传感器受到外部力作用时,陶瓷材料会产生微小的形变。

这种形变会导致陶瓷材料内部的电荷分布不均匀,从而产生一个微弱的电信号。

通过放大和处理这个电信号,我们就可以获得关于外部力的信息。

压电式传感器具有许多优点,其中最显著的是灵敏度高、响应速度快、结构简单、体积小等。

这些优点使得压电式传感器在各种工业和科学领域得到广泛应用。

比如在汽车制造业中,压电式传感器可以用来检测引擎的振动情况;在医疗领域,压电式传感器可以用来监测心脏的跳动情况。

除了上述应用外,压电式传感器还可以用于声波传感、压力传感、加速度传感等领域。

由于其工作原理简单、性能优越,压电式传感器在现代科技领域有着广阔的应用前景。

总的来说,压电式传感器是一种利用压电效应将机械应力转换为电信号的传感器。

它的工作原理简单直观,具有高灵敏度、快响应速度等优点,因此在各种领域得到广泛应用。

随着科技的不断发展,压电式传感器的应用范围将会更加广泛,为人类的生活和工作带来更多便利。

压电式传感器原理与应用

压电式传感器原理与应用

压电式传感器原理与应用压电式传感器是一种利用压电效应进行测量的传感器。

压电效应是指在压力作用下,一些晶体会产生电荷分布的改变,从而产生电势差。

压电式传感器利用这种原理,将压力或力的变化转化为电信号输出,从而实现对压力或力的测量。

1.传感器中的压电材料受到外力作用产生变形,从而引起内部电荷分布的改变。

2.内部电荷分布的改变使得传感器的两个电极上产生电势差。

3.传感器将电势差转化为与外力大小成正比的电信号输出。

1.工业自动化:压电式传感器可以用于测量各种物体的压力,如流体管道中的压力、机械设备的挤压力等,从而实现对工业过程的自动控制。

2.汽车工业:压电式传感器可以用于测量汽车发动机的油压、气压等参数,从而实现对发动机的控制和保护。

3.医疗器械:压电式传感器可以用于测量人体体内的压力,如心脏的血压、呼吸的压力等,从而实现对人体生理状态的监测。

4.空气质量监测:压电式传感器可以用于测量空气中的压力、气体浓度等参数,从而实现对空气质量的监测。

5.智能手机:压电式传感器可以用于智能手机屏幕上的触摸功能,可以感知用户的触摸力度和位置,从而实现对屏幕的操作。

1.灵敏度高:压电材料对压力或力的变化非常敏感,可以实现对微小压力的测量。

2.响应速度快:压电材料的压电效应响应速度非常快,可以实现对快速变化的压力的测量。

3.耐用性好:由于压电材料的特殊性质,压电式传感器具有较好的耐用性,可以经受较大的压力和力的作用。

4.体积小:压电材料的尺寸可以做得非常小,因此压电式传感器可以设计成小型化的产品。

5.易于集成:压电材料和传感器电路可以进行集成设计,从而降低了传感器的制造成本,提高了其可靠性。

总之,压电式传感器是一种利用压电效应进行测量的传感器,在工业、汽车、医疗、环境监测等领域有着广泛的应用。

它具有高灵敏度、快速响应、良好的耐用性、小体积和易集成等优点,可以满足各种应用场景的需求。

压电式传感器

压电式传感器

测量时,将传感器基座与试件刚性固定在一起。当传感器感受到振动时,由
于弹簧的刚度相当大,而质量块的质量相对较小,可以认为质量块的惯性很小, 因此质量块感受到与传感器基座相同的振动,并受到与加速度方向相反的惯性力 作用。这样,质量块就有一正比于加速度的交变力作用在压电片上。由于压电片 具有压电效应,因此在它的两个表面上就产生了交变电荷(电压),当振动频率 远低于传感器固有频率时,传感器的输出电荷(电压)与作用力成正比,即与试 件的加速度成正比。输出电量由传感器输出端引出,输入到前置放大器后就可以 用普通的测量器测出试件的加速度,如在放大器中加进适当的积分电路,就可以 测出试件的振动加速度或位移。
极严格的要求,否则会使横向灵敏度增加或使片子因应力集中而过早破碎。为提
高绝缘阻抗,传感器装配前要经过多次净化(包括超声波清洗),然后在超净工 作环境下进行装配,加盖之后用电子束封焊。
2)压电式加速度传感器 如图所示为压缩式压电加 速度传感器的结构原理图, 压电元件一般由两片压电片 组成。在压电片的两个表面 上镀银层,并在银层上焊接 输出引线,或在两个压电片 之间夹一片金属,引线就焊 接在金属片上,输出端的另 一根引线直接与传感器基座 相连。在压电片上放置一个 比重较大的质量块,然后用 一硬弹簧或螺栓、螺帽对质量块预加载荷。整个组件装在一个厚基座的金属壳 体中,为了隔离试件的任何应变传递到压电元件上去,避免产生假信号输出, 所以一般要加厚基座或选用刚度较大的材料来制造。
压电式传感器
压电式传感器是利用某些电介质材料(如石英晶体)具有压电效应现象制成的。
有些电介质材料在一定方向上受到外力(压力或拉力)作用而变形时,在其表面 上产生电荷从而可以实现对非电量的检测。压电式传感器具有体积小、重量轻、 频带宽等特点,适用于对各种动态力、机械冲击与振动的测量,广泛应用在力 学、声学、医学、宇航等方面。 压电式传感器是一种无源传感器,大多数是利用正向压电效应制成的。 外力去掉后,又回到不带电状态,这种将机械能转换成电能的现象,称为正 向压电效应,简称压电效应。当然这种电介质材料也具有逆压电效应,即在相 应表面上施加电压后,电介质材料会发生机械变形;去掉电压后,变形立即消 失,它将电能转换成机械能。逆压电效应也称电致伸缩效应。压电式传感器只 能利用正向压电效应制成。

2024年压电式传感器市场调研报告

2024年压电式传感器市场调研报告

压电式传感器市场调研报告1. 引言本报告旨在对压电式传感器市场进行深入调研和分析。

压电式传感器是一种广泛应用于工业自动化、医疗设备和电子产品等领域的传感器。

本文将对压电式传感器市场的概况、市场规模、市场竞争格局和发展趋势进行详细介绍。

2. 市场概况压电式传感器是一种将压电效应应用于传感器领域的装置,主要用于测量压力、力、振动和温度等物理量。

压电式传感器的优点包括高灵敏度、高可靠性、宽工作频率范围和耐高温等特点,因此在各行各业都有广泛的应用。

3. 市场规模根据调研数据显示,压电式传感器市场在过去几年稳步增长。

预计到2025年,全球压电式传感器市场规模将达到XX亿美元,年均复合增长率为X%。

这主要归因于工业自动化和物联网应用的不断发展和成熟。

4. 市场竞争格局目前,全球压电式传感器市场存在较多的竞争厂商。

市场竞争主要集中在产品质量、技术研发和价格等方面。

一些知名厂商在市场上保持领先地位,同时也有一些新兴企业积极进入市场。

市场竞争将进一步推动产品创新和技术升级。

5. 发展趋势未来压电式传感器市场的发展将面临以下几个趋势:5.1 IoT应用的推动随着物联网技术的不断发展,压电式传感器在物联网应用中的需求将持续增加。

传感器与物联网设备的结合,将推动压电式传感器市场进一步扩大。

5.2 小型化和集成化压电式传感器的小型化和集成化趋势将推动产品的创新和应用领域的拓展。

小型化和集成化的压电式传感器将更加适用于各类便携设备和医疗器械等领域。

5.3 新材料的应用新材料的应用将为压电式传感器市场带来更多的发展机会。

例如,柔性电子材料的应用使得压电传感器可以更好地适应曲面和弯曲形状。

6. 市场前景综上所述,压电式传感器市场将在未来几年保持稳健增长。

随着工业自动化和物联网应用的发展,压电式传感器的市场需求将持续增加。

同时,新技术的应用和市场竞争的激烈将推动市场进一步发展。

注意:以上数据和分析为作者根据市场调研和数据分析所得,仅供参考。

压电式传感器原理

压电式传感器原理

压电式传感器原理
一、什么是压电式传感器
压电式传感器是一种由电容式传感器演变而来的电磁式传感器,它利用晶体管在物理变化时所产生的电容效应,来对外界环境作出反应。

压电式传感器可以改变电容大小、变换电压幅度、改变电流流向、改变极性、改变电容量等,可以检测出外界压力、温度、拉力、拨动力等的变化。

二、压电式传感器的工作原理
压电式传感器的工作原理是,当一个外力施加在晶体片上时,由于晶体与晶体之间电子的运动受到外力的影响,在晶体的正线上的电容变化,把外力的变化转化成电容变化。

由于电容变化会改变电路中的电流,因此可以检测到外力的变化。

三、压电式传感器的特点
1、结构紧凑:压电式传感器具有小尺寸、低成本和机械结构紧凑的特点,使它成为其他传感器技术所不可取代的传感器。

2、高灵敏度:由于电容改变量可达几微安的级别,使得压电式传感器具有极高的灵敏度,可以自动感知微小外界变化。

3、快速响应:压电式传感器的信号响应速度很快,具有良好的动态特性,并且能够保持较高的精度和准确度。

4、广泛的应用:压电式传感器可广泛应用于航空航天、汽车、电子仪表、运动控制、重力检测和高精度测量等领域。

- 1 -。

第六章 压电式传感器

第六章 压电式传感器
U im d 33 FmR
1 CR
2
i
d 33 Fm C

2
arctan RC
当R无限大时 电压幅值比:
U im Um
Um
RC
1 1 RC
CR 2 1
U im 1 2 Um 1 1 i arctan 1 2
第六章:压电式传感器
主讲人:贾鹤萍
压电式传感器是一种自发电式传感器。它以某些 电介质的压电效应为基础,在外力作用下,在电介质 表面产生电荷,从而实现非电量电测的目的。
压电传感元件是力敏感元件,它可以测量最终能 变换为力的那些非电物理量,例如动态力、动态压力 、振动加速度等,但不能用于静态参数的测量。 压电式传感器具有体积小、质量轻、频响高、信 噪比大等特点。由于它没有运动部件,因此结构坚固 、可靠性、稳定性高。
1、工作原理--压电效应
图6-1 压电转换元件受力变形的几种基本形式
返回
1、工作原理--压电效应 压电传感器中的压电元件材料一般有三类: 压电晶体(如上述的石英晶体); 经过极化处理的压电陶瓷; 高分子压电材料。
1、工作原理----石英晶体 天然结构的石英晶体呈六角形晶柱,
Z轴为光轴,是晶体的对称轴,光线沿Z轴通过晶体 不产生双折射现象。
q1 q11 q12 q13 q14 q15 q16
q1 d111 d12 2 d13 3 d14 4 d15 5 d16 6 q2 d211 d22 2 d23 3 d24 4 d25 5 d26 6 q3 d311 d32 2 d33 3 d34 4 d35 5 d36 6 [D] 1

压电式压力传感器原理

压电式压力传感器原理

压电式压力传感器原理压电式压力传感器是一种常见的压力测量设备,它利用压电效应来实现对压力的测量。

在压电式压力传感器中,压电材料被用作敏感元件,当外加压力作用在压电材料上时,会产生电荷,从而实现对压力的测量。

本文将对压电式压力传感器的原理进行详细介绍。

压电效应是指某些晶体在受到机械应力作用时会产生电荷的现象。

压电材料是一种具有压电效应的材料,常见的压电材料包括石英、钨酸锂、硼酸钠等。

在压电式压力传感器中,压电材料通常被加工成薄片或薄膜的形式,以增加其灵敏度和响应速度。

当外界压力作用在压电材料上时,压电材料会发生形变,从而改变其内部的电荷分布。

这种电荷的改变可以通过电极引出,并转化为电信号。

通过测量这个电信号的大小,就可以间接地得到外界压力的大小。

因此,压电式压力传感器可以实现对压力的高精度测量。

除了压电材料本身的特性外,压电式压力传感器的结构也对其性能有着重要的影响。

一般来说,压电式压力传感器由压电薄膜、支撑膜、电极和外壳等部分组成。

其中,支撑膜的作用是对外界压力进行传递,并使压电薄膜产生形变;电极则用于引出电荷,并将其转化为电信号;外壳则起到保护和固定的作用。

在实际应用中,压电式压力传感器可以广泛应用于工业自动化、汽车电子、医疗器械等领域。

由于其灵敏度高、响应速度快、结构简单等优点,压电式压力传感器在压力测量领域有着重要的地位。

总的来说,压电式压力传感器利用压电效应实现对压力的测量,其原理简单而有效。

通过对压电材料的形变和电荷分布进行测量,可以实现对压力的高精度测量。

同时,压电式压力传感器在工业自动化、汽车电子、医疗器械等领域有着广泛的应用前景。

希望通过本文的介绍,能够对压电式压力传感器的原理有所了解。

压电式传感器实验报告

压电式传感器实验报告

压电式传感器实验报告压电式传感器实验报告引言:压电式传感器是一种常用的传感器,利用压电效应将压力、力或加速度等物理量转换为电信号。

本实验旨在通过实际操作,了解压电式传感器的工作原理、特性及应用,并通过实验数据分析,探讨其在工程领域中的应用前景。

实验装置与步骤:实验装置包括压电式传感器、信号放大电路、数据采集卡和计算机等。

首先,将压电式传感器连接至信号放大电路,再将信号放大电路与数据采集卡相连,最后将数据采集卡连接至计算机。

在实验过程中,需要注意保持实验环境的稳定,避免外界干扰。

实验一:压电式传感器的特性测试在此实验中,我们将测试压电式传感器的灵敏度、频率响应和线性度等特性。

首先,将压电式传感器固定在测试台上,然后通过施加不同大小的压力来模拟实际应用中的不同工况。

同时,通过改变施加压力的频率,测试传感器的频率响应特性。

最后,记录并分析实验数据,得出传感器的灵敏度和线性度等参数。

实验二:压电式传感器在振动测量中的应用压电式传感器在振动测量中有着广泛的应用。

在此实验中,我们将利用压电式传感器测量不同振动源的振动信号,并通过数据采集卡将信号传输至计算机进行分析。

通过对振动信号的频谱分析,我们可以了解振动源的频率成分及其强度,从而为工程设计提供参考依据。

实验三:压电式传感器在压力测量中的应用压电式传感器在压力测量中也有着重要的应用。

在此实验中,我们将利用压电式传感器测量不同压力下的电信号,并通过数据采集卡将信号传输至计算机进行分析。

通过对压力信号的变化趋势进行分析,我们可以了解被测对象的压力状态及其变化规律,从而为工程设计提供参考依据。

实验结果与分析:通过实验数据的分析,我们可以得出压电式传感器的灵敏度、频率响应、线性度等参数。

同时,我们还可以通过对振动信号和压力信号的分析,了解被测对象的振动状态和压力状态。

这些分析结果对于工程设计和故障诊断等领域具有重要的参考价值。

结论:压电式传感器是一种常用的传感器,具有灵敏度高、频率响应广、线性度好等优点。

压电式传感器的特点及应用

压电式传感器的特点及应用

压电式传感器的特点及应用压电式传感器是一种常见的传感器类型,它的主要特点是能够将压力、力、加速度、应力等物理量转化为电信号。

它利用一种或多种压电材料的特殊性质,通过压电效应来实现信号的转换。

这种传感器结构简单、易于制造,且具有较高的灵敏度和稳定性,因此被广泛应用于各个领域。

压电式传感器的主要特点有以下几个方面:1. 高灵敏度:压电材料具有较高的压电系数,能够将微小的压力或应变转化为电信号,具有很高的灵敏度。

2. 宽频响特性:压电材料的频率响应范围广,可以实现高频、宽频的信号传输,适用于不同频段的应用。

3. 快速响应速度:压电传感器具有快速的响应速度,能够在短时间内将物理量的变化转化为电信号,并能实现实时监测和反馈。

4. 宽工作温度范围:压电材料具有较高的工作温度范围,能够在高温或低温环境下正常工作,适用于各种工况条件。

5. 高稳定性:压电材料具有较高的稳定性,不易受环境影响,具有长期稳定的工作性能。

压电式传感器在各个领域有广泛的应用,包括但不限于以下几个方面:1. 工业领域:在工业领域中,压电式传感器可以用于测量各种物理量,如压力传感器用于测量液压系统中的压力,力传感器用于测量机械装置的力和扭矩,加速度传感器用于监测设备的振动和运动状态等。

2. 医疗领域:在医疗领域中,压电式传感器被广泛应用于医疗设备和仪器中。

例如,心脏起搏器中的压力传感器用于测量心脏的收缩和舒张压力,听诊器中的压电传感器用于接收和转化心音和呼吸音等。

3. 汽车领域:在汽车领域中,压电式传感器被应用于多个方面,如发动机管理系统中的压力传感器用于测量燃油压力,刹车系统中的压力传感器用于测量刹车液的压力,加速度传感器用于检测车辆的加速度和倾斜度等。

4. 航空航天领域:在航空航天领域中,压电式传感器广泛应用于飞行器的测控系统中。

例如,飞机中的压力传感器用于测量气压和油压,加速度传感器用于监测飞机的振动和运动状态,应力传感器用于测量结构的应变和应力等。

压电式传感器的原理与影响因素研究

压电式传感器的原理与影响因素研究

科 技 天 地53INTELLIGENCE压电式传感器的原理与影响因素研究长江大学 段 斌压电式传感器是利用材料的压电效应,将被测力、加速度等参数转换为电荷量或电压参数的变化进行输出的一种传感器装置。

它是典型的有源传感器,具有体积小、重量轻、频带宽、灵敏度高等优点。

一、压电效应和压电材料某些晶体当受到一定方向外力的作用时,内部将产生极化现象,同时在它的两个对应晶面上产生符号相反的等量电荷,当外力取消后,电荷也随之消失,这种现象称为压电效应。

当作用力的方向改变时,电荷的极性也随着改变。

相反,当在晶体的极化方向上施加电场作用时,这些晶体会在一定的晶轴方向产生机械变形,外加电场消失,变形也随之消失,这种现象称为逆压电效应(电致伸缩效应)。

目前压电材料可分为三大类:一是压电晶体(单晶),它包括压电石英晶体和其它压电单晶;二是压电陶瓷(多晶半导瓷);三是新型压电材料,又可分为压电半导体和有机高分子压电材料两种。

二、测量电路1、传感器的等效电路压电晶片受外力作用时,将在两个电极表面产生电荷,这时它相当于一个以压电材料为电介质的电容器,因此,可以把压电式传感器等效为一个与电容并联的电荷源,也可以等效为一个与电容串联的电压源必须指出的是,上述等效电路及其输出,只有在压电器件本身理想绝缘、无泄漏、输出端开路(即Ra =RI=∞)的条件下才成立。

在构成传感器时,总要利用电缆将压电器件接入测量线路或仪器。

这样,就引入了电缆的分布电容Cc、测量放大器的输入电阻Ri 和电容Ci 等形成的负载阻抗影响。

2、压电晶片的串联与并联实际应用中为提高传感器的灵敏度,通常将多个压电晶片组合在一起使用,连接方法有两种:并联或串联。

压电晶片串联时,输出电压比单片时提高一倍,输出电荷量则保持不变。

压电晶片并联时,输出电压与单片时相同,而输出电荷量则是单片时的两倍。

3、测量电路压电式传感器的内阻抗很高,而输出的信号很弱,因此一般不能直接显示和记录,也不能做静态信号的测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




正负电荷之间的距离),此时
正负电荷中心重合,电偶极矩
的矢量和等于零,即
P1+P2+P3=0
所以晶体表面不产生电荷,呈电中性。

当晶体受到沿x方向的压力作用时,晶体沿x方向将产生收 缩,正、负离子的相对位置随之发生变化。此时正、负电 荷中心不再重合,电偶极矩P1减小,P2、P3增大,它们在x 方向上的分量不再等于零: (P1+P2+P3)x>0 在y、z方向上的分量为: (P1+P2+P3)y = 0

当晶体受到沿x(电轴)方向的力Fx 作用时,它在x方向产生 正压电效应,而y、z方向则不产生压电效应。 晶体在y(即机械轴)方向的力 Fy作用下,在x方向产生正 压电效应,在y、z方向同样不产生压电效应。 晶体在z轴方向受力Fz的作用时,因为晶体沿x方向和沿y方 向所产生的正应变完全相同,所以,正、负电荷中心保持 重合,电偶极矩矢量和等于零。这就表明,在沿z(即光轴 )方向的力Fz 作用下,晶体不产生压电效应。

第二章
工作原理
某些物质沿某一方向受到外力作用时,会产生变形,同时 其内部产生极化现象,此时在这种材料的两个表面产生符 号相反的电荷,当外力去掉后,它又重新恢复到不带电的 状态,这种现象被称为压电效应。当作用力方向改变时, 电荷极性也随之改变。这种机械能转化为电能的现象称为 “正压电效应”或“顺压电效应”。


2.2

压电材料
压电材料可分为三大类:
一是压电晶体(单晶),它包括压电石英晶体和其他压电单晶; 二是压电陶瓷(多晶半导瓷); 三是新型压电材料,又可分为压电半导体和有机高分子压电材料两种。

在传感器技术中,目前国内外普遍应用的是压电单晶中的 石英晶体和压电多晶中的钛酸钡与锆钛酸铅系列压电陶瓷。


度对外界的作用。

如果在陶瓷片上加一个与极化方向平行的压力 F,陶瓷片 将产生压缩形变。片内的正、负束缚电荷之间的距离变小, 极化强度也变小。释放部分吸附在电极上的自由电荷,而 出现放电现象。当压力撤消后,陶瓷片恢复原状,极化强 度也变大, 因此电极上又吸附一部 分自由电荷而出现充电

压电式传感器
研14 张立伟
压电式传感器

第一章 第二章 第三章 第四章 第六章 第七章
概述 工作原理(压电效应,压电材料) 一般应用 具体汽车上的应用 压电式传感器的优缺点 应用前景
第五章 精讲爆震传感器,从信号采集到显示,执行
第一章
概述
基于压电效应的传感器,将被测量变化转换成由于材料受机 械力产生的静电电荷或电压变化的传感器。 是一种自发电式和机电转换式传感器。 它的敏感元件由压电材料制成。压电材料受力后表面产生电 荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成 为正比于所受外力的电量输出。压电式传感器用于测量力和 能变换为力的非电物理量。
正压电效应是指:当晶体受到某固定方向外力的作用时,内部 就产生电极化现象,同时在某两个表面上产生符号相反的电荷; 当外力撤去后,晶体又恢复到不带电的状态;当外力作用方 向改变时,电荷的极性也随之改变;晶体受力所产生的电荷 量与外力的大小成正比。 压电式传感器大多是利用正压电效应制成的。 逆压电效应是指对晶体施加交变电场引起晶体机械变形的现 象,又称电致伸缩效应。压电敏感元件的受力变形有厚度变 形型、长度变形型、体积变形型、厚度切变型、平面切变型 5种基本形式。

把沿电轴(X轴)方向的作用力产生的 压电效应称为“纵向压电效应” 把沿机械轴(Y轴)方向的作用力产生 的压电效应称为“横向压电效应”
z O

y

沿光轴(Z轴)方向的作用力不产生
压电效应
x
(a)
Байду номын сангаас
压电式传感器主要是利用纵向压电效应

当石英晶体未受外力作用时,正、负离子正好分 布在正六边形的顶角上,形成三个互成 120°夹 角的电偶极矩P1、P2、P3。 因为P = qL(q为电荷量,L为

压电晶体是各向异性的,并非所有晶体都能在这 5种状态 下产生压电效应。例如石英晶体就没有体积变形压电效应, 但具有良好的厚度变形和长度变形压电效应。
(a) (b)
天然石英晶体; 人工石英晶体;
(c) 右旋石英晶体理想外形
以石英晶体为例具体说明压电效应

纵轴Z称为光轴,通过六棱线而垂直于光铀的X铀称为电轴, 与X-X轴和Z-Z轴垂直的Y-Y轴 (垂直于六棱柱体的棱面)称 为机械轴。
现象。——正压电效应。

若在片上加一个与极化方向相同的电场,电场的作用使极 化强度增大。陶瓷片内的正、负束缚电荷之间距离也增大, 即陶瓷片沿极化方向产生伸长形变。同理,如果外加电场 的方向与极化方向相反,则陶瓷片沿极化方向产生缩短形 变。这种 由于电效应而转变为机 械效应,或者由电能转
压电陶瓷

压电陶瓷是一种经极化处理后的人工多晶铁电体。所谓 “多晶”,它是由无数细微的单晶组成;所谓“铁电体”, 它具有类似铁磁材料磁畴的“电畴”结构。每个单晶形成 一单个电畴,无数单晶电畴的无规则排列,致使原始的压 电陶瓷呈现各向同性而不具有压电性

陶瓷片内的极化强度总是以电偶极矩的形式表现出来,即 在陶瓷的一端出现正束缚电荷,另一端出现负束缚电荷。 由于束缚电荷的作用,在陶瓷片的电极面上吸附了一层来 自外界的自由电荷。这些自由电荷与陶瓷片 内的束缚电荷符号相反 而数量相等,它屏蔽和 抵消了陶瓷片内极化强



(P1+P2+P3)z= 0

当晶体受到沿 x 方向的拉力作用时,电偶极矩 P1 增大, P2 、 P3减小,此时它们在x、y、z三个方向上的分量为 (P1 +P2 +P3) x<0 (P1+ P2+ P3)y =0


(P1 +P2 +P3)z =0

在x轴的正向出现负电荷,在y、z方向依然不出现电荷。
们发现了一些晶体在某一特定方向上受压时,在它们的表
面上会出现正或负电荷,这些电荷与压力的大小成正比, 而当压力排除之后电荷也消失。 1881年,他们发表了关于石英与电气石中压电效应的精确 测量。 1882 年,他们证实了李普曼 (G . Lippmann) 关于逆效应的 预言:电场引起压电晶体产生微小的收缩。 利用压电现象,他们还设计了一种压电石英静电计 ——居 里计。 这就是压电式传感器的理论基础
相关文档
最新文档